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Abstract: Patients with sickle cell disease (SCD) have reduced functional capacity due to anemia and
cardio–respiratory abnormalities. Recent studies also suggest the presence of muscle dysfunction.
However, the interaction between exercise capacity and muscle function is currently unknown in SCD.
The aim of this study was to explore how muscle dysfunction may explain the reduced functional
capacity. Nineteen African healthy subjects (AA), and 24 sickle cell anemia (SS) and 18 sickle cell
hemoglobin C (SC) patients were recruited. Maximal isometric torque (Tmax) was measured before
and after a self-paced 6-min walk test (6-MWT). Electromyographic activity of the Vastus Lateralis
was recorded. The 6-MWT distance was reduced in SS (p < 0.05) and SC (p < 0.01) patients compared
to AA subjects. However, Tmax and root mean square value were not modified by the 6-MWT,
showing no skeletal muscle fatigue in all groups. In a multiple linear regression model, genotype,
step frequency and hematocrit were independent predictors of the 6-MWT distance in SCD patients.
Our results suggest that the 6-MWT performance might be primarily explained by anemia and the
self-paced step frequency in SCD patients attempting to limit metabolic cost and fatigue, which could
explain the absence of muscle fatigue.

Keywords: skeletal muscle fatigue; electromyography; functional capacity; hemoglobin disorder

1. Introduction

Sickle cell disease (SCD) is a group of genetic disorders characterized by the presence
of at least one hemoglobin S (HbS) allele (p.Glu7Val in the hemoglobin β globin-subunit)
and a second β globin-subunit pathogenic variant, resulting in pathological hemoglobin
polymerization [1]. The most prevalent form of SCD is the homozygous sickle cell anemia
(SS), where patients inherit two copies of HbS [2]. Under deoxygenated conditions, HbS is
able to polymerize, creating rigid fibers that modify the morphology of the red blood cells
(RBCs) into a crescent-like shape (i.e., sickling) [3]. Association of the HbS allele with the
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hemoglobin C (HbC) allele (p.Glu7Lys in β globin-subunit) leads to sickle cell-hemoglobin
C disease (SC) [4]. In SC patients, HbC promotes RBCs dehydration through the activation
of KCl transporter [5] and, as a result, facilitates HbS polymerization [6]. These sickled
RBCs are very fragile and rigid, which may lead to chronic hemolytic anemia and frequent
painful vaso-occlusive crises [3]. The two SCD genotypes are characterized by severe
multiorganic complications leading to a reduced life expectancy. However, anemia is a
milder, the frequency of vaso-occlusive-like complication is lower, and life expectancy is
usually higher in SC compared to SS patients [7,8].

SCD patients display low functional capacity as demonstrated by the reduced dis-
tance performed by patients during a 6-min walk test (6-MWT) [9–14]. The 6-MWT is a
submaximal exercise test used in a clinical setting to assess functional capacity in vari-
ous chronic diseases [15,16]. In the past decade, several studies showed that the 6-MWT
performance in SCD patients was influenced by the pulmonary capacity [17,18], anemia
level [17,19–21], tricuspid regurgitation velocity [9,10,21–23] and the extent of hemorhe-
ological alterations [18,20]. Recent studies showed profound histological and functional
alterations of the skeletal muscle in SCD patients such as amyotrophy, a decrease in ox-
idative capacity, a profound microcirculatory remodeling [24] and a reduction in muscle
microcirculatory oxygenation [25,26]. Although both skeletal muscle strength and fati-
gability are strongly associated with the 6-MWT performance and functional capacity in
various chronic diseases [27–32], the role of skeletal muscle in the functional capacity of
SCD individuals has been poorly investigated and it is unknown whether the skeletal
muscle is impacted by a submaximal exercise in this disease.

The aim of this study was to study the effects of a 6-MWT on the skeletal muscle
function of healthy (AA), SS and SC individuals. The second aim was to explore the rela-
tionship between the 6-MWT distance and the skeletal muscle function. We hypothesized
that SCD patients should display increased muscle fatigue during the 6-MWT, which could
partly explain the reduced functional capacity.

2. Materials and Methods
2.1. Study Design and Patients

Nineteen African AA subjects, 24 SS and 18 SC patients were recruited to participate
in this study. SCD patients were screened among patients in a clinical steady state (i.e.,
no acute vaso-occlusive crises, acute chest syndrome or hospitalization within the past
2 months, and no blood transfusion within the past 3 months) to verify the absence of
exclusion criteria. They were followed at the University Hospital of Lyon (Hospices Civils
de Lyon, Lyon, France), either by the Internal Medicine department (adults) or by the
Haematology and Oncology Paediatric unit (adolescents). Exclusion criteria included: posi-
tive history of stroke or cerebral vasculopathy, leg ulcers, osteonecrosis of the femoral head,
current pregnancy and pulmonary hypertension, shown by elevated tricuspid regurgitant
jet velocity on doppler echocardiography. Physicians then proposed to eligible patients to
participate to the study. The study was approved by the French Ethics Committee (CPP
Est IV, Strasbourg, France, Clinical trial number: NCT03243812), and all experiments were
performed according to the guidelines set by the Declaration of Helsinki. All subjects
were volunteers and signed written informed consent (with parents for patients under
18 years old).

2.2. Experimental Design

Venous blood was drawn into EDTA tubes to determine hematological parameters.
Transcutaneous oxygen saturation (SpO2), heart rate (HR) and blood pressure (BP) were
measured at rest. Since SCD patients would be characterized by low physical activity
level [33,34] (which could contribute to skeletal muscle deconditioning [35]), the physical
activity level of the subjects was quantified with the Global Physical Activity Questionnaire
(GPAQ) [36]. After a standardized warm-up, absolute maximal isometric torque (Tmax) of
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the knee extensors was measured at rest. Following a recovery period, they performed a 6-
MWT and immediately after, Tmax was measured again to evaluate skeletal muscle fatigue.

2.3. Force Measurement

All participants performed a warm-up consisting of two bouts of 10 full knee exten-
sions with weights of 2 and 4 kg, respectively, separated by a 2-min resting period. After
this warm-up, they performed three isometric maximal voluntary contractions (iMVC) to
determine Tmax of the quadriceps of the dominant leg, separated by a 2-min recovery to
avoid any skeletal muscle fatigue [37]. They were asked to “push as hard and as fast as
possible”, and strong verbal encouragement was provided to ensure production of their
maximal torque. Tmax was measured with a strength dynamometer (DFS II, Chatillon
Force Measurement, AMETEK STC, Elancourt, France) at a 90◦ knee joint and hip joint
angle. In order to compare Tmax between groups, the highest value of Tmax measured in
each subject throughout the study was selected.

2.4. 6-Minute Walk Test (6-MWT)

The self-paced 6-MWT was conducted according to the guidelines set by the American
Thoracic Society [38]. Briefly, participants were instructed to perform the greatest distance
in 6 min, i.e., walking as fast as they can without running. They walked between two
marker cones situated 21 m apart. Standardized verbal encouragements were given every
minute. HR, SpO2 and dyspnea, with the CR-10 Borg scale [39], were also determined
before and immediately after the 6-MWT. The 6-MWT is particularly relevant since it has
been widely used to determine functional status of SCD patients [9,10,13,20,40] and it
reflects daily-life activities [15]. Predicted distance was calculated based on the equation of
Burr et al. [41] and Geiger et al. [42] for adults and adolescents, respectively.

2.5. Electromyography

Electromyographic activity (EMG) of the Vastus Lateralis (VL) was recorded using sur-
face electrodes (EMG Triode, nickel-plated brass, electrode diameter = 1 cm, inter-electrode
distance = 2 cm, Thought Technology, Montreal, QC, Canada). EMG signal was sampled at
2048 Hz using the Flexcomp Infiniti system (Thought Technology, Montreal, QC, Canada).
Before placing the electrodes, the skin was shaved, if needed, and cleaned with alcohol
to improve the contact between the skin and the electrode and reduce skin impedance.
Electrodes were placed on the VL belly according to the SENIAM guidelines [43]. Before
analysis, raw EMG signals were filtered (Butterworth order 2, band pass from 10 to 500 Hz)
and amplified with a gain of 500. Mean root mean squared (RMS) values were calculated
with a 125 ms sliding window (Origin 2017, OriginLab, Northampton, MA, USA). Maximal
mean RMS value (RMSmax) was measured during the plateau phase of the signal during
iMVC. Each skeletal muscle contraction was detected during the walking test thanks to
a threshold set at 10% of maximal RMS value, determining the onset and offset of the
contraction. Then, mean RMS value was calculated and normalized by RMSmax. Step
frequency of each subject was calculated as the number of EMG bursts detected per unit of
time multiplied by 2 to take into account the fact that only one leg has been measured.

2.6. Statistical Analysis

All data were expressed as mean ± SD. The normality was checked with the D’Agostino–
Pearson’s test. Comparison of data among the three groups was performed by a one-
way ANOVA, followed by Bonferroni post hoc test or Kruskal–Wallis test, followed by
Dunn post hoc test, depending on the normality of data. The effects of the 6-MWT on
physiological variables were investigated and compared among the 3 groups by using a two-
way ANOVA with repeated measurements followed by Bonferroni multiple comparisons.
Spearman correlation was performed to test the association between several parameters.
Finally, we performed a multiple linear regression model with all variables at p < 0.20 to
identify independent predictors associated with the 6-MWT distance. The significance
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level was set at p < 0.05. Statistical analyses were performed using GraphPad Prism 8
(GraphPad Software, La Jolla, CA, USA).

3. Results

Anthropometrics, physiological, and hematological characteristics of the three groups
are summarized in the Table 1. Diastolic blood pressure was significantly lower in both
SS and SC compared to AA (p < 0.001 and p < 0.05, respectively). Leucocytes count was
significantly higher in SS compared to AA (p < 0.05). Daily physical activity was not
significantly different among the three groups. Both hematocrit and hemoglobin values
were significantly different among the three groups: AA > SC > SS.

Table 1. Characteristics of subjects. BP: blood pressure. VOC: Vaso-occlusive crisis. ACS: Acute chest
syndrome. *: p < 0.05 vs. AA; ***: p < 0.001 vs. AA; #: p < 0.0001 vs. AA; $: p < 0.0001 vs. AA and SC.

AA SS SC

Men 10 (53%) 12 (50%) 6 (33%)
Women 9 (47%) 12 (50%) 12 (67%)

Age (years) 32 ± 9 27 ± 8 27 ± 12
Height (cm) 172 ± 10 172 ± 8 167 ± 8
Weight (kg) 73.1 ± 12.2 63.5 ± 9.1 * 64.1 ± 17.1

Heart rate (bpm) 74 ± 12 73 ± 8 77 ± 12
SpO2 (%) 97 ± 1 95 ± 3 95 ± 5

Systolic BP (mmHg) 125 ± 13 116 ± 16 120 ± 16
Diastolic BP (mmHg) 86 ± 9 75 ± 9 *** 78 ± 8 *

Hematocrit (%) 43.4 ± 4.4 26.2 ± 3.6 $ 32.6 ± 3.0 #

Hemoglobin (g/dL) 14.3 ± 1.4 9.00 ± 1.2 $ 11.6 ± 1.1 #

RBC (1012/L) 4.95 ± 0.6 2.95 ± 0.7 $ 4.44 ± 0.8
Leucocytes (109/L) 5.39 ± 1.7 7.22 ± 2.3 * 6.55 ± 2.5

Hydroxyurea (n) 17 1 (6%)
VOC (n/5 years) 3.9 ± 3.0 2.5 ± 5.6
ACS (n/5 years) 0.7 ± 0.8 0
Physical activity
(Met-min/sem) 2707 ± 3316 5282 ± 5815 1589 ± 1148

The absolute distance walked during the 6-MWT was significantly lower in SS
(p < 0.05) and SC (p < 0.01) patients (Figure 1A) compared to AA subjects but, when
expressed in percentage of the predicted distance, the distance was lower in SS patients
only (p < 0.05) and tended to be reduced in SC patients (p = 0.09) (Figure 1B). Interestingly,
we found a genotype effect on step frequency with significantly lower values in SS patients
compared to AA subjects throughout the test (p < 0.05) (Figure 1C) but, for each group,
there were no modifications of step frequency within the 6-MWT.

At rest, Tmax0 of the knee extensors was significantly reduced in SCD patients
(p < 0.01) (Figure 2A), but the 6-MWT did not induce any reduction in Tmax in the
three groups (Figure 2B). Interestingly, there was a slight increase in Tmax in AA subjects
(+5.27 ± 29.26%) while Tmax decreased in SS (−9.75 ± 12.72%, p < 0.05 vs. AA) and SC
(−11.50 ± 19.06%, p < 0.05 vs. AA) patients. The RMS values were not different before and
after the 6-MWT in the three groups (Figure 2C). The RMS/RMSmax ratio did not change
significantly during 6-MWT and was not different among the three groups (Figure 2D).
HR, SpO2 and dyspnea increased significantly following the 6-MWT in all groups but, at
the end of the test, we observed no differences among the three groups.
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In order to study the determinants of the 6-MWT performance, we first performed
univariate analyses (i.e., Spearman correlation tests) in all SCD patients and in SS and
SC patients separately. When pooled together, we found no correlation between the 6-
MWT performance and Tmax (r = 0.26, p = 0.09), the percentage of Tmax loss (r = 0.13,
p = 0.45), physical activity (r = 0.21, p = 0.22), hematocrit (r = 0.25, p = 0.11) and hemoglobin
concentration (r = 0.16, p = 0.33). However, step frequency was strongly correlated with
6-MWT distance (r = 0.58, p < 0.001) in SCD patients. Then, we used a multilinear re-
gression model to test if genotype, step frequency, Tmax and/or hematocrit were inde-
pendent predictors of the 6-MWT distance. The model was highly significant (R2 = 0.62,
p < 0.0001) and genotype (p < 0.05), step frequency (p < 0.0001) and hematocrit (p < 0.05)
were independent predictors of the 6-MWT distance. In each SCD genotype, univariate
analysis showed that step frequency was positively correlated with the 6-MWT distance in
SS (r = 0.62, p < 0.05) and SC patients (r = 0.56, p < 0.05). Interestingly, Tmax was moder-
ately correlated with the 6-MWT distance in SS (r = 0.52, p < 0.05) but not in SC (r = −0.04,
p = 0.87), while hematocrit was positively correlated with the 6-MWT distance in SC
(r = 0.60, p < 0.01) but not in SS (r = 0.38, p = 0.06). Multivariate analysis showed that only
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step frequency (p < 0.05) remained an independent predictor of the 6-MWT in each geno-
type separately. No correlation between the 6-MWT distance and the different parameters
was found in AA subjects.
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4. Discussion

The main findings of this study were that (1) the 6-MWT did not induce skeletal
muscle fatigue in SCD patients and (2) step frequency, genotype and hematocrit were
independently associated with the 6-MWT test distance in SCD patients.

The absolute distance performed during the 6-MWT was significantly reduced in SCD
patients as previously described [9–14], and we hypothesized that the apparition of skeletal
muscle fatigue during the test could have participated in the lower distance reached by
SCD patients. However, the 6-MWT did not result in skeletal muscle fatigue as shown by
the absence of significant reduction in Tmax and/or modification in the RMS value during
and after the 6-MWT. These results could be explained by the relatively low intensity of
exercise that did not result in enough physiological perturbations to cause skeletal muscle
fatigue. Interestingly, even though we observed no significant reduction in Tmax after
the 6-MWT within each group, the percentage of change of Tmax was positive in AA
subjects, while it was negative in both SS and SC patients. In SCD patients, it seems that
the 6-MWT started to induce skeletal muscle fatigue, but the duration may be too short to
induce enough perturbations to result in a significant loss in Tmax. Consequently, it can
be hypothesized that walking at a higher speed or during longer duration could result in
skeletal muscle fatigue in SCD patients.

During the past decades, several studies showed that the distance performed during
the 6-MWT was modulated by pulmonary capacity [17,18], anemia [17,19,20], tricuspid
regurgitation velocity [9,10,22,23] and the degree of hemorheological modifications [18,20].
In our study, we found that step frequency was an independent predictor of 6-MWT
distance in SCD patients. These results are explained by the strong relationship between
step frequency and walking speed [44,45] and as a consequence, higher step frequency
results in a higher walking speed and distance performed during 6-MWT. It was previously
shown in healthy subjects that step frequency and walking speed are chosen in order to
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minimize the metabolic cost of walking [46–48]. In pathological conditions and ageing,
alterations in respiratory, cardiovascular and skeletal muscle systems result in higher
energetic cost to perform daily life activities, causing higher sensations of fatigue [49–51].
Indeed, greater perceived fatigability is positively correlated with O2 cost of walking and
negatively correlated with the 6-MWT distance in older women [52]. In our study, we
observed lower step frequency in SS patients compared to healthy subjects; therefore, it
could be hypothesized that SS patients chose a lower step frequency to limit the rise in
metabolic cost and perceived fatigue during the 6-MWT. It could also explain the absence
of skeletal muscle fatigue following 6-MWT in SS patients as they chose a step frequency
to limit exercise-induced perturbations associated with skeletal muscle fatigue. However,
our current results do not allow us to confirm this hypothesis, and further studies are
needed to answer this question. We also observed that hematocrit level was an independent
predictor of the 6-MWT as previously described in SS children and adults [17,20,21], and
it was also shown that anemia is a major factor in the reduction of exercise capacity in
SS patients [53,54]. During exercise, the capacity of the cardiovascular system to deliver
O2 to the skeletal muscle is critical, and in SCD patients, anemia may reduce O2 delivery
and limit exercise performance. Indeed, it was previously shown that blood transfusion
increases exercise performance in SCD individuals [55]. Finally, the genotype (SS or SC)
was also an independent predictor of the 6-MWT distance.

Then, we explored the determinants of the 6-MWT distance in each genotype. In SS
patients, univariate analysis showed a positive correlation between the 6-MWT distance
and both step frequency and Tmax, while hematocrit was nearly correlated with the
6-MWT distance (p = 0.06). In SC patients, both step frequency and hematocrit were
positively correlated with the 6-MWT distance. However, in both genotypes, only step
frequency remained an independent predictor of the 6-MWT distance. Considering the
strong relationship between step frequency and walking speed [46–48], it is not surprising
that step frequency remained an independent predictor of the 6-MWT distance. On the
contrary, hematocrit did not remain an independent predictor of the 6-MWT when each
genotype was considered separately. Our results contrast with those of Waltz et al. [20] and
Marinho et al. [17], who found a positive relationship between the 6-MWT performance
and the level of anemia in SS patients. These differences with our study could be explained
by the difference in age (children vs. adults). Even though Tmax and hematocrit were
not independent predictors of the 6-MWT distance in SS and SC separately in our study,
both parameters should still be considered in the rehabilitation of SCD patients as they
are closely related to the choice of step frequency. Indeed, anemia is a major factor in the
reduction of exercise capacity in SS patients [53,54], and it should be a major target during
exercise intervention. Moreover, skeletal muscle function is strongly implicated in step
frequency and walking speed in healthy subjects [45,56] and a positive correlation between
maximal isometric torque and functional capacity in chronic disease patients [27–32,57].
Therefore, similarly to anemia, skeletal muscle dysfunction should be considered as a
therapeutic target in exercise rehabilitation in SCD patients as it was previously described
that skeletal muscle function can be improved by endurance training [58,59].

5. Conclusions

In conclusion, our results showed that skeletal muscle dysfunction would be impli-
cated in the reduced functional capacity of SCD patients, especially in SS, even though the
6-MWT did not result in skeletal muscle fatigue. Recently, an increasing number of studies
showed that SCD patients display a profound skeletal muscle dysfunction that seems to
contribute to the reduction of the functional capacity and quality of life of the patients.
Further studies should be conducted to better characterize the relationship between skeletal
muscle dysfunction and reduced functional capacity in SCD patients, in order to define
intervention to improve muscle function. In addition, present results tend to indicate
that SCD patients freely chose lower step frequency to minimize energy expenditure and
minimize muscle fatigue during the 6-MWT.
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