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The recent sociodevelopmental cognitive model of schizophrenia/psychosis is a highly
influential and compelling compendium of research findings. Here, we present logical
extensions to this model incorporating ideas drawn from epigenetic mediation of psychi-
atric disease, and the plausible effects of epigenetics on the emergence of brain network
function and dysfunction in adolescence. We discuss how gene–environment interactions,
effected by epigenetic mechanisms, might in particular mediate the stress response (itself
heavily implicated in the emergence of schizophrenia). Next, we discuss the plausible rele-
vance of this framework for adolescent genetic risk populations, a risk group characterized
by vexing and difficult-to-explain heterogeneity. We then discuss how exploring relation-
ships between epigenetics and brain network dysfunction (a strongly validated finding in
risk populations) can enhance understanding of the relationship between stress, epige-
netics, and functional neurobiology, and the relevance of this relationship for the eventual
emergence of schizophrenia/psychosis. We suggest that these considerations can expand
the impact of models such as the sociodevelopmental cognitive model, increasing their
explanatory reach. Ultimately, integration of these lines of research may enhance efforts
of early identification, intervention, and treatment in adolescents at-risk for schizophrenia.
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INTRODUCTION
Schizophrenia remains the most profoundly debilitating of psychi-
atric conditions (1, 2). General theories have struggled to capture
the complexity of the disorder: genetic polymorphisms (3), neu-
rodevelopment (4), and altered neurotransmission [dopamine
(DA) and glutamate] (5, 6) have all being proposed as medi-
ating factors in its emergence. A recently proposed “sociode-
velopmental cognitive model” (7) has made compelling addi-
tions to the discourse on schizophrenia, with a specific empha-
sis on psychosis. A factorial combination of genetic and neu-
rodevelopmental effects sensitize the DA system in early life.
The disordered sensitivity subsequently leads to a disordered
stress response that is further amplified by misattributed salience
and paranoia. This cascading and recursive series of events
eventually leads to the entrenchment of psychosis (and schiz-
ophrenia), explaining the life-long nature of the illness. This
model is uniquely important because it integrates environ-
mental, genetic, developmental, and molecular mechanisms (all
converging on dysregulated DA release), providing a synthe-
sis for several multi-disciplinary research agendas. Here, we
attempt an incremental contribution to this synthesis suggest-
ing that an expansion of this model may help elucidate the
following:

(a) How do gene–environment interactions, effected by epige-
netic mechanisms, mediate the stress response? The role
of epigenetic mechanisms may be crucial in understanding
why certain individuals at genetic risk eventually convert to

schizophrenia but others with similar genetic vulnerability
do not.

(b) In this context, the vexing problem of specific genetic at-risk
populations is considered. Specifically, adolescents with one or
both of whose parents have a diagnosis of schizophrenia form
a “perfect storm” of genetic and neurodevelopmental contrib-
utors to risk for schizophrenia. These individuals present with
extensive pre-morbid cognitive deficits (8) and sub-threshold
clinical symptoms (9), yet a majority of them do not appear
to develop the disorder. Whereas unexplained neurodevel-
opmental variation and resilience may explain this (10), we
suggest that epigenetic mediation, particularly of genes medi-
ating the stress response in adolescence, may explain some of
this uncharacterized variance.

(c) Finally, we note the vast evidence of functioning brain network
disruptions in schizophrenia, and the fact that these dis-
ruptions are now being characterized in at-risk populations,
including children of patients, and suggest that epigenetic
effects may mediate the shaping of functioning brain networks
in the adolescent risk state, resulting in a highly variable and
(currently) unpredictable pattern of conversion to psychosis
(hence explaining the difficulty in estimating incidence rates
of schizophrenia in at-risk groups).

In short, the proposed addendum motivates the role of epige-
netics in the schizophrenia diathesis, the (potentially crucial) role
of epigenetics in setting gene-expression levels that mediate the
stress response, and ultimate causal (though presently unproven)
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effect on developing brain networks that sub-serve many of the
cognitive functions impaired in schizophrenia. We note at the
outset, that the proposed extensions remain speculative, yet seek
to account for the relative under-representation of epigenetic
considerations in schizophrenia-related research to date. In fact,
epigenetics may provide a more proximate mediator of neu-
ronal and behavioral effects than changes in the DNA sequence,
and in turn these neuronal alterations may predispose individu-
als to schizophrenia, a question that has received comprehensive
coverage in a recent canonical review (11). Moreover, the pro-
posed additions also provide a prospective research impetus for
studying particular sub-groups such as children of schizophrenia
patients, a group that provides a particularly unique intersec-
tion of genetic risk, altered neurodevelopment, and environmen-
tal contributions (12–14). Finally, the notion of stress reactivity
impacting brain network function is a particular extension of
the seminal concept of “allostatic load” (15, 16), morphologic
degeneration as a response to repeated adaptive responses to
stress.

GENETICS, DEVELOPMENT, ENVIRONMENT: AN ARRAY OF
INTERACTIONS
Schizophrenia is an “epigenetic puzzle” (17). Apart from the rare
variant of the illness that is childhood onset schizophrenia (18), the
typical manifestations of schizophrenia occur in late adolescence
and early adulthood (1). This relatively late onset suggests that
a seemingly intractable array of interactions between genetically
endowed vulnerability, and environmental effects may amplify
genetic predisposition, leading to post-natal effects on brain plas-
ticity and development in the critical adolescent period (2, 19).
The role of genes in mediating the emergence of the disorder is
likely to be extremely complex. After all, genes do not code for
complex psychiatric disorders but for biological processes (20).
Thus, dysfunctional genetic expression is likely to lead to dysfunc-
tional biological processes, with psychiatric disorders an emergent
phenomenon in this causal pathway (20, 21). Moreover, the lack of
complete concordance even in monozygotic twins (22, 23), sug-
gests that genes primarily confer vulnerability to the illness and
that other factors that mediate gene-expression during pre- and
post-natal developmental, life span, and environmental effects play
a significant role in the transition to the illness.

Several proximate environmental factors may be highly relevant
as noted in the sociodevelopmental cognitive model. Stress – nar-
rowly defined as a real or employed threat to homeostasis (24) –
assumes particular importance, primarily because adolescence is a
period of dynamic stress both in terms of substantive neurode-
velopmental turnover (25), and environmental influence (26).
Repeated stress exposure in particular during critical developmen-
tal periods exerts untenable biophysical costs. These costs typically
referred to as allostatic load, increase vulnerability for somatic dis-
ease (27), and notably exert tangible biological effects. For exam-
ple, glucocorticoid elevations that result from chronic stress have
been associated with medial temporal lobe atrophy across multiple
disorders including mood disorders, post-traumatic stress disor-
der, and schizophrenia (28–30). Beyond medial temporal lobe
regional atrophy, the documented molecular effects in the pre-
frontal cortex are suspected to ultimately impact frontal–striatal

brain networks (31, 32). Elevated DA release during acute stress
(33) adversely affects prefrontal pyramidal cells leading to a series
of degenerative molecular events. The resultant dendritic spine
loss in the infra-granular prefrontal cortex results in reductions
in prefrontal-based network connectivity, particularly on pre-
frontal efferent pathways (34). These molecular effects are likely to
have mesoscopic expressions; among them disordered prefrontal
cortex related brain network function and organization that are
hallmarks of schizophrenia (3, 35–37).

STRESS AND THE RISK STATE FOR SCHIZOPHRENIA
The risk state for schizophrenia offers a powerful framework for
synthesizing multiple theoretical constructs of the disease (38),
and disordered stress reactivity may play a key role in amplifying
disposition for psychosis in the risk state (39). A critical challenge
for high-risk research is navigating the relationship between mul-
tiple (and potentially non- or partially overlapping) risk groups
each with different etiologies and defined based on different cri-
teria (40). Here we consider prodromal subjects (41–46) in whom
the role of stress has been heavily assessed, separately from ado-
lescents with a genetic history of schizophrenia (including twins
discordant for the illness and offspring of patients). The role of
stress in the latter groups is relatively understudied. We note that
the distinction does not imply exclusivity but rather criteria used
to identify risk. Prodromal or clinical high-risk subjects (also on
occasion referred to as “ultra high-risk”) are classified as such
because they show non-specific yet considerably advanced clin-
ical symptoms (47). Rates of conversion to psychosis within a
short period after the emergence of clinical symptoms are high
(estimates at 35%) (48). Genetic high-risk groups are identified
typically on account of a family history of the illness itself; that
is, not using clinical criteria. However, genetic high-risk groups
may present with prodromal symptoms, hence these groups are
not exclusive.

We will ultimately seek to drive our ideas in the direction of
genetic risk in adolescence, largely because the prodromal question
is heavily addressed in the sociodevelopmental model, whereas
adolescent genetic risk is not. The adolescent genetic risk state
presents a particularly vexing challenge, with substantial hetero-
geneity, and relative low rates of conversion to psychosis (9). The
early identification of individuals who are likely to convert from
the genetic risk state to actual schizophrenia (or psychosis?) thus
remains a key issue to be addressed by future research efforts, as
we propose here.

Prodromal subjects (sometimes referred to as “clinical high-
risk”) present with a variety of symptoms that do not specifically
warrant a diagnosis of schizophrenia, but include paranoia and
impairment in social function. In general, prodromal patients have
high rates of conversion to schizophrenia itself (48). For instance,
multiple studies suggest that the average 12-month conversion rate
in ultra high-risk samples not receiving any special anti-psychotic
treatment is between 35 and 38% (48, 49). That a significant
percentage of these individuals convert to psychosis is unsur-
prising because as noted, the prodromal state consists of highly
advanced stage of clinical symptoms. Thus, these relatively non-
specific symptoms that lead, and predict the presentation of the ill-
ness itself (38, 48, 50, 51) are considered the best clinical predictor
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of schizophrenia itself. Impaired neurobiology of the prodromal
state is also relatively well understood: subjects are characterized
by profound deficits in brain structure that are typically interme-
diate between healthy controls, and those observed in patients.
Recent fMRI studies indicate substantive deficits in regional and
brain network interactions (52–54) including frontal–striatal and
frontal–limbic; cognitive and social neuroscience has established a
crucial role for these networks in sub-serving basic mechanisms of
memory, attention, and emotion. Heightened stress reactivity itself
may be exacerbated by the presence of sub-threshold symptoms.
For instance, prodromal subjects indicate heightened sensitivity
to inter-personal interaction, an indirect measure of heightened
stress (55), and a significant percent of prodromal subjects who
have experienced trauma in their lives convert to psychosis (41).
As noted, DA synthesis is increased in prodromal subjects, and
the degree of synthesis is positively associated with the sever-
ity of sub-threshold clinical symptoms (56). Moreover, impaired
stress sensitivity is also associated with a wide range of prodromal
symptoms (44). The role of stress sensitivity, the hypothalamic–
pituitary–adrenal (HPA) axis, and its impact on brain structures,
has been heavily treated in the empirical and theoretical literature
(43, 45, 57–59).

In contrast to the prodromal state, which includes individuals
with a degree of existing symptoms, the genetic high-risk state
encompasses individuals who are defined by having one (or more)
parent(s) with schizophrenia, and who themselves may or may not
evince symptoms of the disorder. The genetic high-risk state con-
stitutes a partial complement of the clinical high-risk or prodromal
state (these samples are often “enriched” by subjects with a fam-
ily history of schizophrenia or psychosis providing overlap) (60).
Genetic distance from a schizophrenia patient is a strong predictor
of risk for the disease, and of the degree of biological impairments
including brain structure, function, and behavior (61, 62). For
example, children of schizophrenia patients being reared by the ill
parent constitute a very particular and enigmatic high-risk sub-
group (9, 13). These individuals have a genetic loading for the
disease, but are also likely exposed to increased environmental
stressors by virtue of being raised by their ill parent. Unlike with
prodromal patients, conversion to psychosis in genetic high-risk
groups is variable and lower.

Three principle longitudinal genetic high-risk studies are infor-
mative regarding lifetime incidence of schizophrenia in these
groups. Between them, the New York (63), the Copenhagen high-
risk projects (64), and a notable Israeli study (65) have provided
evidence of lifetime incidences of narrowly defined schizophrenia
at between 8 and 21%. While low, these rates constitute signifi-
cantly elevated incidence rates relative to the sporadic incidence in
the population (~1–2%). However, these rates are still notably
lower than conversion rates in prodromal populations, a dis-
crepancy that is somewhat surprising because the developmental
psychopathology that characterizes prodromal patients is the very
same one that is in play in adolescent high-risk subjects (45, 46).
Subjects at genetic risk also show increased HPA axis sensitivity
(59, 66), similar to what is observed in prodromal subjects, though
the relationship to regional measures of brain integrity (e.g., pitu-
itary size), is highly variable, and perhaps not informative as a bio-
marker (67). Heterogeneity is a cardinal characteristic of genetic

risk groups (68, 69). Significant percentages of these subjects
show attention deficits, working memory impairment, emotion
dysregulation, and sub-threshold symptoms including negative
symptoms (9, 70–75). Notably each of these cognitive, emotional,
and clinical domains is highly impacted by stress sensitivity in
adolescence (76, 77). Adolescent risk subjects also present with
increased frequency of sub-threshold clinical symptoms including
schizotypy and both positive and negative symptoms such as anhe-
donia (78–80), some of which have been associated with perceived
stress (81, 82).

Understanding of altered DA synthesis in genetic risk groups
is limited. A recent study in twins discordant for schizophrenia
showed no increase in the elevation of striatal DA synthesis in the
healthy twin (83) though the age range was well past the typical age
of onset of the illness, and the healthy twin must retrospectively be
classified as “low risk.” It is plausible the elevated striatal DA is not
a marker of genetic risk per se, but might distinguish between ado-
lescent sub-groups. Given that animal models and human studies
have been highly informative in elucidating the impact of stress
on neurobiology (32, 84), it is plausible that these effects might be
quantifiable in neuroimaging data derived from such models in
the context of risk for schizophrenia.

BRAIN NETWORK DYSFUNCTION IN THE ADOLESCENT RISK
STATE FOR SCHIZOPHRENIA
The origins of psychiatric disorders lie in adolescence (85, 86),
a developmental stage characterized by a unique set of vulner-
abilities, where highly dynamic neurodevelopmental processes
intersect with increasing environmental stressors (26, 87). The idea
of “three-hits” in schizophrenia, which includes pre-natal insults
(e.g., obstetric complications, exposure to infections in utero),
neurodevelopmental processes and disease-related degeneration,
predicts the emergence of reliable and identifiable abnormali-
ties through the life span (10, 88, 89). Notably, the period from
birth to early adulthood is characterized by significant poten-
tial for epigenetic dysfunction that can increase symptom sever-
ity, beginning with the emergence of sub-threshold symptoms
in adolescence, and culminating (in some individuals) in psy-
chotic symptoms in young adulthood (11). Moreover, brain net-
work development remains highly tumultuous in this period
and disordered brain network dynamics are likely to be a car-
dinal biological characteristic in adolescents at genetic risk for the
illness (13).

Disordered frontal–striatal and frontal–limbic brain network
interactions, a defining characteristic of schizophrenia (90, 91),
are increasingly established in the adolescent genetic risk state.
These interactions are well-understood for working memory and
sustained attention, both domains particularly associated with
these regions (92), with risk for schizophrenia (70), and with
DA (93, 94). During working memory, adolescents at genetic
risk for schizophrenia show inefficient regional responses as well
as network interactions in frontal and striatal regions. During
working memory-related recall, at-risk subjects hyper-activate
frontal–striatal regions, specifically for correctly recalled items
(95), an effect highly consistent with what has been documented
in schizophrenia itself (96, 97) and with large studies assessing the
relationship between genetic risk and prefrontal efficiency (98).
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More impressively, network interactions are also inefficient.
For instance, the degree of modulation by the dorsal anterior
cingulate, the brain’s principle “cognitive control” structure (99),
during working memory is significantly increased in at-risk sub-
jects (100). Thus, when performing the task at levels comparable to
typical control subjects, control-related “afferent signaling” from
the dorsal anterior cingulate cortex is aberrantly increased in
adolescents at genetic risk. This evidence of inefficient pair-wise
network interactions is highly revealing of “dysconnection” in the
adolescent risk state. Similar results have been observed in the
domain of sustained attention, where again, frontal–striatal inter-
actions are impaired in the risk state (80, 101). Genetic high-risk
subjects are also characterized by disordered “effective connectiv-
ity” estimated from fMRI signals. Effective connectivity is noted as
the most parsimonious “circuit diagram” replicating the observed
dynamic relationships between acquired biological signals (102).
Recent evidence suggests reduced effective thalamocortical (54)
and frontal–limbic (103) effective connectivity in genetic risk
groups. These and other studies establish a pattern of general brain
network dysfunction in adolescents at genetic risk for schizophre-
nia, suggesting that dysfunction in cortical networks is a plausi-
ble “end-point” in a cascade of genetic and neurodevelopmental
events.

However, this story on brain networks is incomplete, because
these high-risk groups present with considerable heterogeneity
in sub-clinical symptoms, and recent evidence suggests that this
heterogeneity predicts fMRI responses. For example, high-risk
subjects with sub-threshold negative symptoms show attenuated
responses to rewarding social stimuli, particularly in regions of the
limbic system, including the amygdala and the ventral prefrontal
cortex (75). This pattern of responses is in fact similar to those seen
in patients with frank depression, and suggests additional com-
pelling evidence in support of stress mediating the emergence of
negative symptoms that in turn affect functioning brain networks
(44, 104–107).

PATHWAYS AND EPIGENETIC MEDIATION
Psychological stress is a major mediator of externally experienced
(i.e., environmental) events, with relevance to both the central
and peripheral nervous systems (108). Stress induces the release
of corticotrophin releasing factor that activates the HPA axis to
produce cortisol, and the sympathetic nervous system to produce
norepinephrine and epinephrine. In some individuals, the initia-
tion of an acute, adaptive “fight-or-flight” response in the face of
threatening events becomes persistent and pathological. How this
failure to return to homeostasis occurs in only a subset of indi-
viduals, resulting in a psychopathological state, remains to be fully
elucidated. Stress is a clear risk factor for schizophrenia (109), and
the biologic mechanisms linking stress, schizophrenia, and risk for
schizophrenia are still being comprehensively characterized.

One candidate factor that may be a mediator in this causal
chain is epigenetics, a field of increasing interest in mental illness,
including risk for schizophrenia (110–112). Epigenetics, a term
proposed nearly 70 years ago by Conrad Waddington, was born
out of the terms “genetics” and “epigenesist,” narrowly referring
to the study of causal relationships between genes and their phe-
notypic effects (113), but more recently associated with changes

in gene activity independent of the DNA sequence, that may or
may not be heritable, and that may also be modified through the
life span. Epigenetic factors include DNA methylation which in
vertebrates typically involves the addition of a methyl group to
cytosine where cytosine and guanine occur on the same DNA
strand; histone modifications, involving the addition (or removal)
of chemical groups to the core proteins around which DNA is
wound; and non-coding RNAs such as microRNAs (miRNAs),
which bind to mRNAs to suppress gene-expression posttranscrip-
tionally. Among these several mechanisms, DNA methylation is
the most stable and the best studied within the context of psychi-
atric disorders, including schizophrenia, although emerging work
suggests that miRNAs, which target multiple mRNA transcripts,
serve as master regulators of developmental gene-expression pat-
terns, and are responsive to stress (114), play an etiologic role in
SCZ (115).

As mounting evidence fails to conclusively link individual genes
to specific mental illnesses (116), epigenetic effects during criti-
cal developmental periods assumes increasing significance (11).
In such a model, genetic etiology may be expressed in differenti-
ated psychiatric phenotypes because epigenetic factors changing
in response to external experiences vary across these phenotypes.
Indeed, as potential regulators of DNA accessibility and activity,
epigenetic factors through influences on gene-expression, offer
a mechanism by which the environment – and, in particular,
one’s response to the environment – can moderate the effects
of genes (117). In the context of schizophrenia, models sug-
gest that epigenetic deregulation of gene-expression at specific
loci is highly unlikely, again given the highly polygenic nature
of the illness. Rather, epigenetic effects may progressively impact
gene-expression in salient neurodevelopmental gene networks
during critical developmental periods, in response to environ-
mental inputs (11). For example, the loss of synchronal activity
of GABAergic interneurons in the prefrontal cortex might result
from environmental stressors such as cannabis (118), which inter-
act with the expression of vulnerability genes such as GAD1 that
control GABA synthesis (119).

Previous work has shown that glucocorticoids (GC) such as
cortisol induce epigenetic, DNA methylation changes in HPA axis
genes (e.g., FK506 binding protein 5, FKBP5), both in neuronal
[i.e., hippocampal (120, 121)] and peripheral [i.e., blood (121–
123)] tissues, as well as in additional cells relevant to the HPA axis
[i.e., pituitary cells (120)]. Moreover, GC-induced DNA methyla-
tion changes persist long after cessation of GC exposure (121–123),
suggesting that stress-induced GC cascades have long lasting con-
sequences for HPA axis function that may be accompanied by
behavioral (mal)adaptations (121, 124).

These epigenetic mechanisms are of relevance to the previ-
ously noted role of stress as a major contributor in the emergence
of cognitive impairments in first episode psychosis, in particular
resulting from high stress sensitivity in this group (125). Stress
sensitivity, a tendency to experience negative affect in response
to negative environmental events (126), is a well-established risk
factor for psychopathology (127), including schizophrenia (44,
128). This role has been clarified in recent work using experience
sampling methods (ESM), where participants in prospective stud-
ies note their life experiences in real time. Using a twin-study
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design in a large longitudinal cohort of mono- and dizygotic
twins, participants recorded multiple mood and daily life events
with stress sensitivity defined as an increase in recorded negative
affect to event unpleasantness. Notably, stress sensitivity showed
relatively little genetic mediation and was almost exclusively envi-
ronmentally determined (126). Whereas non-ESM investigations
and some animal studies in models of schizophrenia (129) sug-
gest a genetic, heritable component, the majority of variance still
appears to be environmentally determined (130, 131). Thus, stress
sensitivity is a labile characteristic that can change in response
to environmental experiences to alter risk for psychopathology.
Tracking epigenetic changes in stress-sensitive genes of the HPA
axis, as well as additional stress-sensitive genes that interact with
the HPA axis, might enable identification of a biologic mecha-
nism that mediates risk for, and the emergence, of schizophrenia.
Indeed, strong signatures of gene-expression differences in stress-
related genes have been recently identified in post-mortem brain
tissue in a manner that distinguishes schizophrenia patients from
controls and from individuals with other psychiatric disorders
(132). Many of these are likely accompanied by DNA methyla-
tion differences, as has been reported by studies performed on
related genes in animal models (133).

Emerging evidence suggests that brain endophenotypes, as
well as psychiatric outcomes, can be predicted by peripheral
DNA methylation measurements. Notably, genes belonging to
the HPA axis, as well as DA- and serotonin (5HT)-related genes,
whose products interact those of the HPA axis, shape the stress
response (109, 134, 135) and are known to show psychopathology-
associated differences in blood (136–138). For example, recent
work has shown that leukocyte DNA methylation in the sero-
tonin transporter locus (SLC6A4) was higher among adult males
who had experienced high childhood-limited physical aggression;
moreover SLC6A4 DNA methylation was negatively correlated
with serotonin synthesis in the orbitofrontal cortex,as measured by
positron emission tomography (PET) (139). Similarly, leukocyte
DNA methylation in the promoter region of the MAOA gene –
whose product metabolizes monoamines such as serotonin and
DA, is negatively associated with brain MAOA levels as measured
by PET in healthy male adults (140). Structural imaging data analy-
ses in relation to the FKBP5 locus discussed above have identified
a negative association between DNA methylation in peripheral
blood and volume of the right (but not left) hippocampal head
(121). This observation is particularly noteworthy, as it suggests
that lower FKBP5 DNA methylation in peripheral blood is asso-
ciated not only with altered stress sensitivity (as indexed by a
glucocorticoid receptor sensitivity assay within the same study),
but also with structural brain differences in a brain region known
to mediate stress reactivity (121). Finally, investigation of the
COMT locus, a gene encoding an enzyme critical for degradation
of DA and other catecholamines, has shown that, among Val/Val
genotypes, subjects (all healthy adult males) with higher stress
scores have reduced DNA methylation at a CpG site located in the
promoter region of the gene (141). Moreover, DNA methylation at
this site was positively correlated with working memory accuracy,
with greater methylation predicting a greater percentage of cor-
rect responses (with results again limited to analysis of the Val/Val
subjects); furthermore, fMRI demonstrated a negative correlation

between DNA methylation at this site and bilateral PFC activ-
ity during the working memory task (141). Additional analyses
showed an interaction between methylation and stress scores on
bilateral prefrontal activity during working memory, indicating
that greater stress, when combined with lower methylation, are
associated with greater activity (141).

This last finding is especially noteworthy, because whereas
stress–DNA methylation interactions have been reported for other
stress-sensitive loci (142), the referenced study represents a direct
demonstration of a heterogeneity in stress load that, when mod-
erated by DNA methylation, impacts working memory. Clearly,
greater stress and lower COMT DNA methylation correlate with
reduced efficiency of prefrontal activity (141). This mechanism
may be explained by the fact that disordered stress responses
following prolonged stress exposure induces hyper-stimulation
of prefrontal DA receptors (143, 144) that may be mediated
by prefrontal glutamate neurotransmission (145). This hyper-
stimulation in turn appears to affect the receptive field properties
of prefrontal neurons during working memory (94). Patterns of
network dysfunction in the genetic risk state may reflect brain net-
work sensitivity to stress in the “pre-morbid” risk state that may
be under as yet undiscovered epigenetic control. Thus, much of
the unaccounted variance in schizophrenia previously construed
as genetic, may likely be epigenetic (11, 146). Is it possible to
assess epigenetic factors mediating the stress response in risk for
schizophrenia, and the effects on brain network function?

The influence of stress on DNA methylation on HPA axis
genes in blood is well established (121–123). Indeed, blood dis-
perses GC hormones produced by the HPA axis throughout the
body, which then regulates gene-expression in virtually all cell
types (108). Thus, the broad reach of HPA axis activity, together
with evidence that blood-derived DNA methylation in HPA axis
genes is altered through stress (121, 147), provides ample biologic
and clinical plausibility to our proposed hypothesis that stress
sensitivity, measured in the periphery, can serve as an important –
perhaps even predictive – index of transition from the genetic
risk state into actual schizophrenia. Importantly, although GCs
also influence DNA methylation and gene-expression in the CNS
and neuronal cells (120, 121), our model does not suppose that
this epigenetic measure in CNS tissues will match those in the
periphery; rather, it proposes that DNA methylation in stress-
sensitive, HPA-axis genes in the periphery will index the known
dysregulation in brain function and connectivity in stress-sensitive
regions of the brain among adolescents at genetic risk. Figure 1
provides an overview of an integrative approach and builds on pre-
vious considerations of epigenetic mechanisms in developmental
psychopathology (11).

Existing data support the hypothesis that schizophrenia-
associated DNA methylation differences exist in stress-sensitive
genes. Table 1 summarizes results from existing genome-scale
studies that have been conducted in blood and brain in rela-
tion to schizophrenia, focusing specifically on the HPA axis genes
involved in the glucocorticoid receptor complex (148), as well as
representative DA- and serotonin-related genes, and genes that
produce DNA methylation and have been shown to be respon-
sive to glucocorticoid induction in both the brain and periphery
[i.e., DNA methyltransferase 1, DNMT1; (120)]. As can be seen
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FIGURE 1 | Overview of working model. HPA axis reactivity is determined
both by intrinsic genetic factors and stressful environmental (including
pre-natal) experiences. Stressful exposures induce a glucocorticoid (i.e.,
cortisol) cascade that then induces DNAm changes in HPA axis genes in the
blood. These changes are expected to be more pronounced in at-risk
adolescents, particularly those who may already exhibit sub-clinical
psychopathology, such as negative symptoms. Risk-associated,
blood-derived DNAm differences in HPA axis and related stress sensitivity
genes are hypothesized to index metrics of brain function including
activation patterns and effective connectivity in stress-sensitive brain
regions. The activation patterns are reproduced from Diwadkar (13) and
reflect engagement of an extended face-processing network in controls and
high-risk subjects during a continuous emotion-processing task. These

activations are most likely generated by complex dynamic interactions
between brain networks that are represented in the figure below. The figure
presents a putative combination of intrinsic connections between brain
regions activated during such a task, and the contextual modulation of
specific intrinsic connections by dynamic task elements. The role of
effective connectivity analyses is to recover and estimate parameter values
for intrinsic and modulatory connections that a) may be different in the
diseased or risk state and b) may plausibly be under epigenetic mediation.
The figure is adapted and reprinted from: Mehta and Binder (124), with
permission from Elsevier; adapted by permission from Macmillan Publishers
Ltd.: Frontiers in Neuropsychiatric Imaging and Stimulation (108).
Reproduced with permission, Copyright ©(2012) American Medical
Association. All rights reserved.

from the table, all of the genes show SCZ-related DNA methy-
lation differences in brain derived tissue (149), and the majority
(four of five) of GC-receptor chaperone complex genes show DNA
methylation differences in the blood as well. Although we have
limited our analysis to genome-wide studies of DNA methyla-
tion, additional candidate gene studies have linked stress-sensitive
mental disorders to methylation differences in blood (142, 150,
151), suggesting that similar findings may be forthcoming for
schizophrenia as additional studies are completed. Importantly,
among these genes, some (but not all) have shown that DNA
methylation levels can vary depending on local [e.g., Ref. (141)]
or distal [e.g., Ref. (121)] DNA sequence variation – so-called
“methQTLs” (methylation quantitative trait loci). Thus, as evi-
dence accumulates regarding the existence of methQTLs, we note
that analyses based on these proposed genes should take these into
consideration.

CONCLUSION
Incorporating epigenetic considerations into the sociodevelop-
mental model might provide a particular powerful explana-
tory framework for understanding genetic risk in adolescence.
Regressive pressures from a combination of fixed genetic vulnera-
bility for schizophrenia and epigenetic effects during adolescence
are most likely to impact the development of neuronal network
profiles (155, 156). As we noted earlier, advances in the analyses
of fMRI signals now permit the estimate of effective connectivity
and dysconnectivity between healthy, clinical, and at-risk pop-
ulations, providing a significant framework for exploring brain
dysfunction using a priori hypothesis (157). A focus on frontal–
striatal and frontal–limbic dysconnectivity may be particularly
warranted. A disordered stress response may cleave apart frontal–
striatal and frontal–limbic neuronal network profiles in high-risk
adolescents, providing a convergence of biological markers across
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Table 1 | Summary of genome-wide studies reporting differential DNA methylationa (DM) within stress-sensitive genes in blood or brain.

Gene name Pathway Studies in blood Studies in brain

Reference Blood Blood cell Method Data available? Reference Brain Brain tissue Method Data available?

COMT Dopamine

catabolism

(152)* Increased

(cg13175282,

cg06860277)

DNA methylation

in SCZ patients

Whole blood 450 K GEO (149) Increased DNA

methylation

(cg12457376) in

SCZ patients; DM

between SCZ

sub-groups,

increased

(cg00107488) and

decreased

(cg12728623,

cg07579946,

cg04856117,

cg06787004)

DNA methylation

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

DNMT1 DNA methylation NA No SCZ-related

DM reported in

genome-wide

blood-based

studies to date

NA NA NA (149) Decreased DNA

methylation

(cg06128182,

cg01347596) in

SCZ patients; DM

between SCZ

sub-groups,

increased

(cg21892967) and

decreased

(cg12053136 and

cg26705765)

DNA methylation

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

FKBP4 GC-receptor

chaperone

complex

(152)* Decreased

(cg15260466)

DNA methylation

in SCZ patients

Whole blood 450 K GEO (149) Increased DNA

methylation

(cg00779206) in

SCZ patients;

increased

(cg00779206)

DNA methylation

between SCZ

sub-groups

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs
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Table 1 | Continued

Gene name Pathway Studies in blood Studies in brain

Reference Blood Blood cell Method Data available? Reference Brain Brain tissue Method Data available?

FKBP5 GC-receptor

chaperone

complex; HPA

axis gene

(152)* Decreased

(cg25114611)

DNA methylation

in SCZ patients

Whole blood 450 K GEO (149) DM between SCZ

sub-groups.

Increased

(cg19226017,

cg17030679,

cg07061368) and

decreased

(cg14284211 and

cg01294490)

DNA methylation.

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

HSP90 GC-receptor

chaperone

complex

(152)* Increased

(cg10833014

HSP90AA1) and

decreased

(cg07086455

HSP90AA1) DNA

methylation in

SCZ patients

Whole blood 450 K GEO (149) Increased

HSP90AA1

(cg02017208)

DNA methylation

in SCZ patients

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

(153) HSP90AA1

hypomethylation

(cg04281268) in

First Episode SCZ

patients

Peripheral

blood cells

27K Included

supplement of

the 603 DM CpGs

NR3C1 GC-receptor; HPA

axis gene

(152)* Decreased

(cg06968181 and

cg17617527) DNA

methylation in

SCZ patients

Whole blood 450 K GEO (149) Decreased

(cg06613263 and

cg07733851)

DNA methylation

between SCZ

sub-groups

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

PTGES3 GC-receptor

chaperone

complex

NA No SCZ-related

DM reported in

genome-wide

blood-based

studies to date

NA NA NA (149) Decreased DNA

methylation

(cg20253639) in

SCZ patients

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs
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Table 1 | Continued

Gene name Pathway Studies in blood Studies in brain

Reference Blood Blood cell Method Data available? Reference Brain Brain tissue Method Data available?

SLC6A3 Dopaminergic

system

(154)* Schizophrenia-

associated DNA

methylation

(increased beta

0.05 avg)

differences in

discordant

monozygotic

twins

Whole blood 27 K Only list top 100

DM CpGs

(149) Decreased DNA

methylation

(cg01204634,

cg05030481,

cg24756227) in

SCZ patients;

decreased

(cg24756227,

cg16392193,

cg16180821)

DNA methylation

between SCZ

sub-groups

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

(153) Hypomethylation

(cg26205131) in

first episode

schizophrenia

patients

Peripheral

blood cells

27 K Included

supplement of

the 603 DM CpGs

(152)* Increased

(cg1161677) and

decreased

(cg22659953)

DNA methylation

in SCZ patients

Whole blood 450 K GEO

SLC6A4 Serotonergic

system

NA No SCZ-related

DM reported in

genome-wide

blood-based

studies to date

NA NA NA (149) Decreased DNA

methylation

(cg03363743) in

SCZ patients;

decreased

(cg26126367 and

cg03363743)

DNA methylation

between SCZ

sub-groups

Frontal cortex 450 K Three

supplemental

tables including

all DM CpGs

aDM based on adjusted p-values except where indicated (*).

Gene-expression omnibus (GEO) is a public repository of functional genomic data accessible via NCBI.

The Horvath data were analyzed using GEO2R.
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multiple levels (genetic, epigenetic, and brain networks). Here,
we have proposed that increased stress sensitivity (which can be
indexed in the periphery) can help to unpack the heterogeneity
among individuals at genetic high-risk of SCZ when linked to
a strongly validated finding in genetic risk populations, namely
brain network dysfunction. This framework may help to identify,
among individuals at high genetic risk for SCZ, a subset who are
likely to go on to develop the disorder. Our focus on stress-relevant
genes does not exclude the possibility that genes in other path-
ways (e.g., dopaminergic, serotonergic, glutamatergic) may also
be important; indeed, this focus may be considered a limitation
of the proposed hypothesis. However, we believe that our pro-
posed framework is a logical starting point for merging central and
peripheral indicators of the potential for SCZ among HRS indi-
viduals. This framework may help extend the sociodevelopmental
cognitive model into the realm of high-risk research. The presence
of non-specific, sub-threshold symptoms continues to remain a
significant clinical challenge for disorders such as schizophrenia
and bipolar disorder (38, 158). Early intervention strategies will
be boosted if biological markers can be interlinked to identify
ultra high-risk adolescents. Our intent is to motivate this search
for biological convergence hoping that this may lead to psychosis
prediction and, ultimately, prevention.
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