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Abstract: 

Wastewater surveillance of SARS-CoV-2 has been shown to be a valuable source of information 

regarding SARS-CoV-2 transmission and COVID-19 cases. Though the method has been used 

for several decades to track other infectious diseases, there has not been a comprehensive review 

outlining all of the pathogens that have been surveilled through wastewater. Herein we identify 

what infectious diseases have been previously studied via wastewater surveillance prior to the 

COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of 

wastewater surveillance across 38 countries, as well as themes of how wastewater surveillance 

and other measures of disease transmission were linked. Twenty-five separate pathogen families 

were identified in the included studies, with the majority of studies examining pathogens from 

the family Picornaviridae, including polio and non-polio enteroviruses. Most studies of 

wastewater surveillance did not link what was found in the wastewater to other measures of 

disease transmission. Among those studies that did, the value reported varied by study. 

Wastewater surveillance should be considered as a potential tool for many infectious diseases. 

Wastewater surveillance studies can be improved by incorporating other measures of disease 

transmission at the population-level including disease incidence and hospitalizations. 

Introduction: 

Infectious disease surveillance is most commonly conducted at the health center or the 

hospital (1), either through passive reporting or active case identification (2). This type of 

clinical surveillance requires events, where the event of a case, hospitalization, or death 

occurring allows for estimations in trends in morbidity and mortality (Figure 1). In this way, the 

number of cases, hospitalizations, and deaths from endemic infectious diseases such as malaria 

or influenza are tracked and the effectiveness of interventions such as mosquito control or 

vaccines can be monitored. Importantly, due to cost and unequal access to clinical healthcare 

diagnostic tools, many pathogens under surveillance are characterized by their symptoms or 

syndromes, such as influenza-like illness. For emerging pathogens, event-based infectious 

disease surveillance may note an unexpected increase in some symptom or condition, notably as 

occurred with microcephaly and Zika (3,4), or observed pneumonia cases without a known cause 

as occurred with COVID-19 (5). Event-based infectious disease surveillance requires a health 

system capable of observing trends, a population with sufficient access to that health system, and 

a sufficiently large trend or cluster of odd cases to alert officials. Importantly, event-based 

surveillance misses any infectious disease transmission that is not captured by cases, 

hospitalizations, and deaths (Figure 1). 

Environmental surveillance, on the other hand, is a broad category for systems that 

monitor the potential risk of a pathogen by identifying and perhaps quantifying that pathogen in 

the environment. Their defining characteristic is the circumvention of human behavior and health 

systems, which reduces bias, while still providing information regarding risks to human health. 
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For example, environmental surveillance may routinely test known vectors for pathogens (6), 

alerting the public to the detection of, or an increase in, the pathogen in the vector population.  

Wastewater surveillance is a type of environmental surveillance that has historically been 

utilized to track water-borne or fecal-orally transmitted pathogens. The origins of wastewater 

surveillance go back to the London cholera epidemic of the mid-1800’s where John Snow,  

identified a cesspool near a house with multiple cholera deaths that was excavated and found to 

be leaking into the pump’s water supply (7). With the scientific evidence supporting germ theory 

at the time, scientists began hunting sewage not only for cholera but also for other pathogens 

including salmonella typhi bacteria (typhoid) (8,9), coxsackie viruses (10), and poliovirus (11). 

From the 1970’s onward, wastewater surveillance formed a critical component of the worldwide 

initiative to eradicate polio (12), and perhaps polio provides the best contrast between event-

based and environmental surveillance systems. Whereas event-based polio surveillance relies on 

an unexpected increase in acute flaccid paralysis which occurs in only 0.5% of polio cases (13), 

wastewater surveillance can detect poliovirus circulating in a community prior to widespread 

transmission (14). 

In general, wastewater surveillance provides an indicator of infectious disease 

transmission independent of treatment-seeking behavior or access to care. It is most easily 

implemented at a wastewater treatment plant, which provides a representative sample for all 

individuals connected to the sewer network. The approach can also be implemented upstream 

from a wastewater treatment plant or even in communities without a wastewater treatment plant 

so long as sewage from multiple individuals gathers at a centralized point (septic tanks, latrines, 

and lack of sanitation access present challenges to wastewater surveillance systems). By 

circumventing the need for a diagnostic test, wastewater surveillance better captures the 

spectrum in infectious diseases including asymptomatic infections and cases that may not seek 

treatment (Figure 1). Care and expertise are needed to interpret the results from wastewater 

surveillance, as fecal or urinary shedding rates and timing of different pathogens varies. Indeed, 

perhaps the greatest amount of research advance that is needed is in relating what is found in 

wastewater surveillance back to public health understanding and action. 

 

 

The COVID-19 pandemic saw the broad adaptation of wastewater surveillance across the 

globe (15), as the limitations of event-based surveillance systems for an emerging pathogen were 

laid bare. Most interestingly, COVID-19 is a respiratory-transmitted pathogen, suggesting that a 

pathogen’s mode of transmission need not be fecal-oral or waterborne for wastewater 

surveillance to be useful. Recent reviews of wastewater detection focusing on COVID-19 have 

elaborated on the importance of this method for detecting viruses with specific focus on 

pathogens transmitted via the fecal-oral route despite COVID-19 being a respiratory virus (16). 

This focus suggests a potential gap in knowledge for wastewater-based epidemiology where the 

assumed scope of pathogens for this method may be limited by researchers' perception that the 

pathogen must be transmitted through the fecal-oral or waterborne routes. Other reviews have 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



5 

also focused exclusively on viruses ignoring the potential for detecting bacteria in wastewater to 

inform public health action (17). This leads to the key questions we seek to answer: 1)What 

infectious diseases have been detected in wastewater and can public health systems incorporate 

their detection as they build capacity in wastewater surveillance?, and 2)What insights for public 

health can be drawn from the types of pathogens that have been detected in wastewater? Herein 

we present a systematic review of wastewater surveillance for infectious diseases other than 

COVID-19, reporting the documented successes of testing wastewater for infectious disease 

pathogens that circulate primarily in humans.  

Methods: 

Systematic Literature Review 

Following PRISMA guidelines (18), we searched PubMed, SCOPUS, Science Direct and 

Google Scholar for studies looking at wastewater-based surveillance of infectious diseases (both 

viral and bacterial) in human populations and published before August 1st, 2020. For the 

databases (PubMed, SCOPUS, and Science Direct), search terms included Mesh headings, 

MeSH terms, and text words and synonyms, including “Wastewater”, “Waste water”, “Sewage”, 

“Sewer”, “Environmental”, “Surveillance”, “Disease”, “Feces”, "wastewater-based 

epidemiology", "Environmental surveillance", “Environmental Epidemiology “, “Wastewater 

Surveillance “, "Environmental Monitoring", "Wastewater Monitoring", “Virus”, “Bacteria”. 

These terms were combined using the boolean terms “AND” and “OR” when applicable. Similar 

terms were used but with filters on Google Scholar to limit the search to material of interest. The 

filters included the inclusion of the characters “doi” to look for a Digital Object Identifier to 

ensure that it was a published work, and the exclusion of the terms "systematic review", 

"literature review", "meta-analysis", and "review" in the title. The boolean term “NOT” was used 

to aid in excluding these terms. All sources, databases and Google Scholar, were filtered to look 

for texts in the English language.  

Once article lists were pulled from their respective sources, duplicates were removed, 

using Microsoft Excel’s built-in remove duplicated function, using both title and authors as the 

reference for removal. Reviewers screened titles and abstracts for remaining articles, retrieved 

articles for full-text review, and assessed full-text articles based on eligibility criteria. 

 

Eligibility Criteria 

We included published studies which tested wastewater for communicable and/or 

infectious human diseases on more than one occasion and during two or more time periods. Non-

communicable diseases, such as diabetes and obesity, were excluded. As we defined surveillance 

as having the requirement of testing over time, all articles which tested wastewater only once 

and/or on a single day were excluded. Articles which discussed diseases not related to humans or 

not in the context of humans (e.g. influenza virus in pigs), were also excluded. Peer-reviewed 

journal articles were included as long as they were not reviews, systematic reviews, literature 

reviews, or meta-analyses. Non-peer reviewed journal articles such as research notes, research 
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letters, and short communications were excluded. Methods papers that looked purely at and 

compared different techniques of drawing and sampling wastewater were also excluded if they 

did not offer analysis of pathogens naturally present in the wastewater. This included studies that 

spike wastewater with a pathogen only to look at recovery in the context of comparing methods 

of sampling. Lastly, with the goal of understanding what else can be surveilled in wastewater we 

excluded all papers which reported the surveillance of SARS-CoV-2 in wastewater. Wastewater 

surveillance for SARS-CoV-2 has been covered by several reviews already (17,19–23). This 

determination was made to support the utility of environmental surveillance outside of 

emergency/pandemic situations, to determine what and where disease surveillance has been 

conducted in the past, and to support expansion and extension of wastewater surveillance to 

other pathogens and regions. 

 

Data Extraction 

We initially extracted the following information from the articles meeting the eligibility 

criteria: period of sampling, country the sampling occurred in, pathogen(s)/disease(s) being 

monitored, number of samples pulled, amount of sample pulled, sample type (grab, composite, 

other), method of detection, overall findings, was genetic typing done, and did the researchers 

connect their findings to population health. The primary information of interest were the 

disease(s) being monitored, method of detection, and if the authors connected their findings to 

population health.  

 

Role of the funding source 

 There was no funding source for this study. 

Results 

Literature searches initially identified 1005 entries (after removing duplicates), of which 

159 abstracts met the inclusion criteria. After review of the articles, 100 scientific papers were 

included (Figure 2, Table 1). More detail on each study is available in a spreadsheet format in 

web appendix 1.  

 

 

Across the 100 included articles, studies were conducted in 38 countries with the most 

studies conducted in Italy (10 studies), China (8 studies), Japan (7 studies), Israel (7 studies), and 

Brazil (7 studies). These 5 countries accounted for 39% (39/100) of the studies conducted across 

all articles.  

 

 

Within the included articles, the most prevalent pathogens found were viruses from the 

families Picornaviridae, Calciviridae, Adenoviridae, Reoviridae, and Hepeviridae (Figure 4). Of 

the most prevalent families, three of them are known to have pathogens contributing to diarrheal 
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diseases (Picornaviridae, Caliciviridae, and Reoviridae) and make up 57.5% of the pathogens 

studied across all articles. Within the Piconaviridae family, the most prevalent genus studied was 

enteroviruses, with poliovirus being the most common among that genus. Enteroviruses made up 

32.5% (52 instances) of pathogens found in all of the articles. Additionally, there were 20 other 

families of pathogens that appeared between 1 - 9 times within our literature review, with a mean 

of 2.2 appearances and a median of 2 appearances each. Considering the global burden of disease 

(Figure 5), diarrheal diseases were the most represented among studies of wastewater 

surveillance, with other infectious diseases with a great burden not found in this systematic 

review. Infectious diseases of international concern (a World Health Organization distinction 

(24)) were better represented, with only influenza and HIV/AIDS not represented among studies 

of wastewater surveillance (Figure 5). 

 

A number of studies correlated the level of an infectious disease pathogen found in 

wastewater to relevant measures of transmission such as population-level incidence, without 

reporting if public health action or policy was influenced by wastewater surveillance or not 

(Figure 6). For example, studies have linked the level of norovirus in wastewater to incidence of 

gastroenteritis (25), levels of hepatitis E virus in wastewater to incidence of hepatitis E (26), and 

level of enteric viruses in wastewater to the incidence of acute diarrhea (27). Other studies 

compared population seroprevalence to the level of hepatitis A virus (28) and hepatitis E virus 

(29) found in wastewater. In comparison with the incidence of clinical cases, wastewater 

surveillance provided early warning of hepatitis A virus and norovirus outbreaks in Sweden (30). 

However, in the Netherlands wastewater surveillance did not serve well in an early warning 

capacity for a variety of enteroviruses (31). Wastewater surveillance correlated well with 

outbreaks of enterovirus (32), hepatitis A virus (33), and Salmonella enterica (34,35). In Russia, 

outbreaks of aseptic meningitis caused by echovirus type 6 correlated with levels in wastewater, 

but outbreaks of aseptic meningitis caused by echovirus type 30 did not (36). A few studies 

directly compared the sensitivity of surveillance for the incidence of acute flaccid paralysis (a 

type of non-specific clinical surveillance) to wastewater surveillance for poliovirus, finding that 

wastewater surveillance was more sensitive and combining the two systems was optimal (37–

40). The most common type of comparison of wastewater surveillance with clinical cases linked 

the genetic diversity of bacteria or viral strains found in wastewater surveillance back to samples 

from clinical cases of meningitis, gastroenteritis, or diarrhea-related illness (41–62). These 

studies did not examine the use of wastewater surveillance to inform of outbreaks or correlate 

levels of the pathogens found in wastewater to trends in population-level incidence over time.  

 

A handful of publications documented the utility of wastewater surveillance to assess the 

impact of public health interventions (Figure 6). Wastewater surveillance was able to confirm the 

cessation of the transmission of vaccine-derived poliovirus following a transition from oral 

poliovirus vaccine to inactivated poliovirus vaccine in numerous studies (63–66). Wastewater 
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surveillance was also used to assess the impact of rotavirus vaccine deployment in Rio de 

Janeiro, Brazil (67). 

 When considering the use of wastewater surveillance to inform public health action or 

policy (Figure 6), the most common reported application was to document the elimination of 

wildtype poliovirus transmission (68–74). In countries with circulation of wildtype poliovirus, 

wastewater surveillance has been used to guide vaccination efforts. In Nigeria, directed vaccine 

efforts based on results from wastewater surveillance interrupted polio transmission in numerous 

areas (75). In Mumbai, India, wastewater surveillance was used to alert importation of wild-type 

poliovirus and inform subsequent vaccine distributions (76). And in Israel, the importation of 

wildtype poliovirus was detected using wastewater surveillance which then led to an expansion 

of wastewater surveillance and vaccination campaigns to prevent re-establishment of poliovirus 

transmission (77). No articles were identified that documented the use of wastewater surveillance 

to inform public health action for any other pathogen than poliovirus. 

 The majority of articles reporting on wastewater surveillance included no comparison to 

other measures of transmission such as clinical cases of disease (Figure 5). Some articles 

assessed the presence of poliovirus (78–81), either wildtype or vaccine-derived, including 

potential neurovirulence of vaccine-derived poliovirus (82–84). Many articles documented the 

diversity of non-polio enteroviruses found in wastewater (82,85–100), with a variety of focuses 

including rotavirus (101–105), norovirus (97,100,106–108), astrovirus (109,110), polyomavirus 

(111), Saffold virus (112), hepatitis A virus (94), hepatitis E virus (113), mastadenovirus (114), 

Aichi virus (115), and human bocavirus (115). Surveillance of Giardia and/or Cryptosporidium 

was also documented (116,117). Other studies examined the extent of antimicrobial resistance 

(118,119), or virulence genes (120), in Escherichia coli or Salmonella bacteria. 

Discussion 

Numerous pathogens have been found in wastewater, not just those transmitted via the 

fecal-oral route. The majority of studies, unfortunately, failed to link what was found in the 

wastewater to what is observed in other measures of population health  ,  Linking wastewater 

surveillance to population-level health can be challenging, but this is a first key step in 

understanding wastewater surveillance’s role in public health. Wastewater sewersheds rarely 

align spatially with political boundaries that are used to report infectious disease dynamics (such 

as counties or postal codes), and unless an infectious disease is notifiable then estimates of 

incidence are not likely available. Nevertheless, linking wastewater surveillance to an estimate of 

population-level incidence or prevalence should  at least be attempted; we found relatively few 

studies reporting any estimate of the disease burden. There is difficulty in obtaining incidence 

rates for a variety of pathogens, but this should not prevent scientists from comparing wastewater 

surveillance to syndromic surveillance, e.g. incidence of diarrhea, gastroenteritis, or pneumonia. 

Increased collaboration between epidemiologists, microbiologists, and environmental engineers 

is needed to maximize the knowledge gained from studies of wastewater surveillance. 
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Furthermore, we found that wastewater surveillance has been used extensively to guide 

public health policy and interventions to eliminate and eradicate poliovirus, but we found no 

reports of wastewater surveillance being used proactively for other pathogens. With the COVID-

19 pandemic, wastewater surveillance has been proactively used by a variety of organizations, 

including institutions of higher education (121), local health departments, and national 

governments (122). From our review, the most obvious link between wastewater surveillance 

and public health policy/intervention was the confirmation of the absence of transmission of 

polio, as well as early notification or confirmation of outbreaks. With the expansion of 

wastewater surveillance during the COVID-19 pandemic, we anticipate use of this tool in 

evaluating policy and intervention impact in similar ways that environmental surveillance for 

vector-borne diseases is used (123). 

As evidenced in this review, epidemiologists have typically thought of wastewater 

surveillance only as a tool to surveil pathogens that are either waterborne or fecal-orally 

transmitted. For example, a recent textbook from the Global Pathogens Project highlights the 

potential for wastewater surveillance for waterborne pathogens, but completely ignores 

pathogens of other transmission types (https://www.waterpathogens.org/). This narrow focus 

overlooks the potential utility of wastewater surveillance for sexually-transmitted, respiratory-

transmitted, and vector-borne diseases of pandemic potential (124,125). Indeed, only one of the 

six times that the World Health Organization has declared a public health emergency of 

international concern (a term conceptualized in 2005) has the pathogen been waterborne or fecal-

orally transmitted (poliovirus compared to H1N1 influenza, ebola twice, Zika, and COVID-19) 

(24). In addition, the only pandemics in the 20th century were caused by influenza and 

HIV/AIDS.  

The COVID-19 pandemic has shown wastewater surveillance to be an effective tool for a 

respiratory-transmitted pathogen (126). Given the low cost and population-level representation 

that a single wastewater sample provides, further research into the utility of wastewater 

surveillance for infectious diseases in general is needed. Among other pathogens that are not 

waterborne nor fecal-orally transmitted, we found reports of Zika and Ebola virus in wastewater, 

suggesting that they could be potential targets of continuous wastewater surveillance. 

Wastewater surveillance could be useful for other high-burden infectious diseases as well. 

Evidence from the 1990’s suggests HIV can be detected in wastewater (127), and this systematic 

review found a report of HIV detection in wastewater. (It was only a single detection and so was 

not considered “surveillance”). Tuberculosis can also be found in wastewater (128), even to the 

extent of endangering sewage workers (129). But again this systematic review found no reports 

of surveilling tuberculosis in wastewater. Bearing in mind that wastewater surveillance is useful 

for tracking antimicrobial resistance (130) should wastewater be useful for surveilling 

tuberculosis, then it could potentially be used to surveil multi-drug resistant tuberculosis as well. 

Malaria can be easily diagnosed in human feces (131), which leaves us to speculate the 

possibility for finding and surveilling this pathogen in wastewater, perhaps again aimed toward 

drug-resistant malaria. Numerous groups are currently assessing the capacity to find influenza in 
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wastewater with success now documented from Michigan (132), but H1N1 influenza was not 

found in the wastewater of the Netherlands during the 2009 pandemic (133). Additionally there 

is evidence that respiratory synctial virus may be surveilled in wastewater (134). 

 Wastewater surveillance should be considered a general tool for public health going 

forward. As with any tool, wastewater surveillance will certainly have limitations. Of course, any 

person not connected to a sewer network will be missed by wastewater surveillance and in many 

countries across the globe sewer networks are rare. Wastewater surveillance is more easily done 

in larger cities, but larger cities also have to deal with greater dilution of a pathogen in larger 

volumes of wastewater. Additionally, shedding into wastewater via urine, feces, oral secretions, 

or other mechanism will vary by pathogen and further understanding of different shedding rates 

is needed. However, the advances in wastewater surveillance for SARS-CoV-2 were not made 

by extensive fecal shedding studies that to this date have not been conducted. Instead, the 

advancements were driven by the high quantity of clinical surveillance data – COVID-19 is a 

notifiable disease in the US and many countries across the world and as such the incidence of 

COVID-19 can be easily linked to levels of SARs-CoV-2 RNA in wastewater. Numerous studies 

have now modeled SARS-CoV-2 transmission as a function of wastewater (135–139). Linking 

what is found in wastewater to population-level measures of incidence and/or prevalence for 

other pathogens is key to understanding how this type of surveillance information can be used 

for public health benefit.  

 The science of detecting and quantifying pathogens in wastewater has advanced rapidly 

through the course of the COVID-19 pandemic, but is nowhere near settled. Ensuring sound 

methodology in testing wastewater for pathogens is required to build confidence in the utility of 

the tool for public health benefit (140,141). In principle, the process involves four distinct steps: 

1) sampling, 2) concentration, 3) nucleic acid extraction, and 4) nucleic acid measurement. A 24-

hour composite sample is considered the gold standard for sampling. Passive sampling with 

Moore swabs (142) or polar organic chemical integrative samplers (143) is also viable, as is 

sampling with grab samples albeit at potentially reduced sensitivity (144). There is an 

outstanding question about whether sampling from wastewater or sludge (settled solids) is better 

(126). The settling process will naturally concentrate pathogen nucleic acids suggesting sludge 

may be more sensitive, but sludge is not easily accessed at smaller treatment plants nor upstream 

from treatment plants. Numerous methods have been published regarding concentration. The US 

Centers for Disease Control lists five approaches to concentrating SARS-CoV-2 RNA in 

wastewater, namely: ultrafiltration, filtration through an electronegative membrane, polyethylene 

glycol precipitation, skim milk flocculation, and ultracentrifugation. This is not a definitive list 

of methods employed for concentrating nucleic acids in wastewater, and variations within these 

methods also exist. While some comparison studies have been conducted for SARS-CoV-2 

(145–147), it is unknown whether the different methods are more or less sensitive for different 

pathogens. The extraction of nucleic acids from wastewater also has a variety of methods, with 

numerous wastewater-specific extraction kits readily available from commercial companies. 
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Lastly, quantitative polymerase chain reaction (qPCR) or digital droplet PCR (ddPCR) are both 

used extensively for detecting and quantifying a pathogen in wastewater (148). 

A variety of factors affect the probability that a pathogen will be found in wastewater and 

then documented in the scientific literature. Publication bias certainly plays a role, with 

numerous pathogens neglected in the scientific literature (149), as well as negative results not 

being published. Along these lines different types of studies are needed including studies of load 

shedding dynamics, pathogens’ persistence in wastewater, and the relationship between levels of 

a pathogen found in wastewater and other measures of transmission such as population-level 

incidence. Perhaps most important for public health, more studies are needed that assess the 

utility of wastewater surveillance to guide policy and public health intervention. 
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Table 1: Characteristics of wastewater surveillance studies included in the systematic review
 a
  

First Author, Year (Reference No.) 

Years of 

Study  Country 

Populatio

n health 

measures 

Adenovirus     

 Aw, 2010 (150)  2007 - 2007 Singapore Yes 

 Bisseux, 2018 (61)  2014 - 2015 France No 

 Elmahdy, 2020 (115)  2017 - 2017 Egypt Yes 

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

 Grøndahl-Rosado, 2014 (97)  2011 - 2012 Norway Yes 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 Lun, 2019 (114)  2016 - 2017 Australia Yes 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

Aichi virus     

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Shaheen, 2020 (115)  2017 - 2018 Egypt No 

 Wong, 2013 (86) 2006 - 2007 

United States of 

America No 

Astrovirus    

 Aw, 2010 (150)  2007 - 2007 Singapore Yes 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Wong, 2013 (86) 2006 - 2007 

United States of 

America No 

 Zhou, 2014 (109)  2013 - 2013 China No 
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 Zhou, 2016 (110)  2014 - 2014 China No 

Bocaparvovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Cacipacore virus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Chikungunya    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Circovirus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Coronavirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Cosavirus    

 Prevost, 2015 (27)  2013 - 2014 France Yes 

Cryptosporidium    

 Heitman, 2002 (44)  1998 - 2000 Canada No 

 Martins, 2019 (116)  2014 - 2015 Brazil No 

Deltaretrovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

E. Coli    

 Hutinel, 2019 (55)  2016 - 2016 Sweden Yes 

 Yang, 2014 (120)  2010 - 2011 

United States of 

America No 

 Yao, 2017 (119)  2011 - 2013 Spain No 

Eastern equine encephalitis    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Ebolavirus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Enterovirus (non-polio)    

 Aw, 2010 (150)  2007 - 2007 Singapore Yes 

 Antona, 2007 (32)  2000 - 2004 France Yes 

 Berchenko, 2017 (39)  2013 - 2013 Isreal (and Palestine) Yes 
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 Bisseux, 2018 (61)  2014 - 2015 France No 

 Bisseux, 2020 (51)  2014 - 2015 France Yes 

 Cesari, 2010 (89)  2005 - 2008 Italy No 

 Delogu, 2018 (68)  2009 - 2015 Italy No 

 Farias, 2018 (91)  2013 - 2014 Argentina No 

 Farias, 2019 (99)  2009 - 2014 Argentina Yes 

 Grabow, 1999 (84)  1996 - 1997 South Africa No 

 Harvala, 2014 (48)  2009 - 2010 

United Kingdom 

(Scotland) Yes 

 Ivanova, 2019 (36)  2004 - 2017 Russia Yes 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 Lizasoain, 2018 (85)  2011 - 2013 Uruguay No 

 Lu, 2015 (43)  2009 - 2012 China Yes 

 Majumdar, 2018 (88)  2015 - 2015 

United Kingdom 

(Scotland) No 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

 Monge, 2018 (31)  2007 - 2016 Netherlands Yes 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

 Ozawa, 2019 (90)  2013 - 2016 Japan No 

 Pavlov, 2006 (80)  2001 - 2003 South Africa Yes 

 Pellegrinelli, 2013 (87)  2005 - 2010 Italy No 

 Pellegrinelli, 2017 (74)  2012 - 2015 Italy Yes 

 Pellegrinelli, 2019 (94)  2016 - 2016 Italy No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Tiwari, 2018 (47)  2007 - 2009 India Yes 

 Wieczorek, 2015 (92)  2011 - 2011 Poland No 

 Wong, 2013 (86) 2006 - 2007 

United States of 

America No 

 Zheng, 2013 (95)  2009 - 2012 China No 

Erythroparvovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Giardia    

 Ajonina, 2013 (117)  N/A Germany No 

 Heitman, 2002 (44)  1998 - 2000 Canada No 
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 Majumdar, 2018 (93)  2013 - 2017 

UK (Scotland and 

Englad); Pakistan; 

Senegal No 

 Martins, 2019 (116)  2014 - 2015 Brazil No 

Gammaretrovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Hepatitis A    

 Aw, 2010 (150)  2007 - 2007 Singapore Yes 

 Béji-Hamza, 2014 (62)  2007 - 2008 Tunisia Yes 

 Bisseux, 2018 (61)  2014 - 2015 France No 

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 La Rosa, 2014 (33)  2012 - 2013 France Yes 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

 Pellegrinelli, 2019 (94)  2016 - 2016 Italy No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Yanez, 2014 (28)  2009 - 2010 Argentina Yes 

Hepatitis C    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Hepatitis E    

 Alfonsi, 2018 (26)  2012 - 2016 Italy Yes 

 Beyer, 2020 (45)  2014 - 2019 Germany Yes 

 Bisseux, 2018 (61)  2014 - 2015 France No 

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Iaconelli, 2020 (113)  2011 - 2019 Italy No 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Ram, 2016 (49)  2013 - 2015 Isreal Yes 
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 Wassaf, 2014 (29)  

2007; 2009 - 

2011 Argentina Yes 

Hepatovirus    

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

HIV    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Human bocavirus    

 Shaheen, 2020 (115)  2017 - 2018 Egypt No 

Human papillomavirus (HPV)    

 McCall, 2020(60)  2017 - 2018 

United States of 

America No 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Lymphocryptovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Mastadenovirus    

 Lun, 2019 (114)  2016 - 2017 Australia Yes 

Norovirus    

 Aw, 2010 (150)  2007 - 2007 Singapore Yes 

 Bisseux, 2018 (61)  2014 - 2015 France No 

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Fioretti, 2018 (57)  2013 - 2014 Brazil Yes 

 Fumian et al 2019 (42)  2013 - 2014 Brazil Yes 

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

 Grøndahl-Rosado, 2014 (97)  2011 - 2012 Norway Yes 

 Hassine-Zaafrane, 2014 (50)  2007 - 2010 Tunisia Yes 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Kazama, 2016 (58)  2012 - 2013 Japan Yes 

 Kazama, 2017 (25)  2013 - 2016 Japan Yes 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 La Rosa, 2010 (106)  2007 - 2007 Italy No 

 Mabasa, 2018 (107)  2015 - 2016 South Africa No 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 
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 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Tao, 2015 (108)  2013 - 2013 China No 

Orthopoxvirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Parechovirus    

 Abe, 2016 (41)  2012 - 2014 Japan Yes 

 Bisseux, 2018 (61)  2014 - 2015 France No 

 Harvala, 2014 (48)  2009 - 2010 

United Kingdom 

(Scotland) Yes 

Picobirnavirus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Poliovirus    

 Antona, 2007 (32)  2000 - 2004 France Yes 

 Berchenko, 2017 (39)  2013 - 2013 Isreal (and Palestine) Yes 

 Cesari, 2010 (89)  2005 - 2008 Italy No 

 Chowdhary, 2008 (73)  2004 - 2006 India Yes 

 Coulliette-Salmond, 2019 (72)  2016 - 2017 Haiti No 

 Cowger, 2017 (40)  2011 - 2013 Pakistan Yes 

 Delogu, 2018 (68)  2009 - 2015 Italy No 

 Deshpande, 2003 (76)  2001 - 2001 India Yes 

 Esteves-Jaramillo, 2014 (63)  2010 - 2010 Mexico Yes 

 Grabow, 1999 (84)  1996 - 1997 South Africa No 

 González, 2019 (70)  2015 - 2015 Colombia No 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Ivanova, 2019 (36)  2004 - 2017 Russia Yes 

 Lodder, 2012 (59)  2011 - 2011 Netherlands Yes 

 Manor, 1999 (37)  1989 - 1997 Israel (and Palestine) Yes 

 Manor, 2007 (83)  1989 - 2005 Israel (and Palestine) No 

 Manor, 2014 (77)  2013 - 2013 Israell Yes 

 Más Lago, 2003 (65)  1997 - 1998 Cuba Yes 

 Muluh, 2016 (75)  2012 - 2015 Nigeria Yes 

 Nakamura, 2015 (64)  2010 - 2013 Japan Yes 

 de Oliveira Pereira, 2016 (69)  2011 - 2012 Brazil No 

 O'Reilly, 2018 (38)  2011 - 2015 Pakistan Yes 
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 Ozawa, 2019 (90)  2013 - 2016 Japan No 

 Pavlov, 2006 (80)  2001 - 2003 South Africa Yes 

 Pellegrinelli, 2013 (87)  2005 - 2010 Italy No 

 Pellegrinelli, 2017 (74)  2012 - 2015 Italy Yes 

 Richter, 2005 (71)  2005 - 2007 Cyprus No 

 Shulman, 2006 (79)  1998 - 2006 Isreal (and Palestine) No 

 Tao, 2010 (81)  2009 - 2009 China Yes 

 Wahjuhono, 2014 (66)  2004 - 2007 Indonesia No 

 Vinjé, 2004 (82)  2000 - 2000 

Haiti; Dominican 

Republic Yes 

 Yoshida, 2000 (78)  1993 - 2015 Japan No 

Polyomavirus    

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

 Torres, 2016 (111)  

2005 - 2006; 

2011 - 2013 Argentina No 

Roseolovirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Rotavirus    

 Barril, 2015 (104)  2009 - 2011 Argentina No 

 Bisseux, 2018 (61)  2014 – 2015 France No 

 Fumian, 2011 (67) 2009 - 2010 Brazil No 

 Hassine-Zaafrane, 2015 (46)  2007 - 2010 Tunisia Yes 

 Hellmér, 2014 (30)  2013 - 2013 Sweden Yes 

 Kargar, 2013 (102)  2010 - 2011 Iran No 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 Kumazaki, 2015 (53)  2007 - 2012 Japan Yes 

 Motayo, 2016 (101)  2014 - 2015 Nigeria No 

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

 Prevost, 2015 (27)  2013 - 2014 France Yes 

 Ruggeri, 2015 (56)  2010 - 2011 Italy Yes 

Rubivirus (rubella)    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 
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Salivirus    

 Prevost, 2015 (27)  2013 - 2014 France Yes 

Salmonella    

 Diemert, 2019 (34)  2010 - 2011 

United States of 

America Yes 

 Li, 2011 (103)  2007 - 2008 China No 

 Vincent, 2007 (35)  2003 - 2005 

United States of 

America Yes 

 Yan, 2018 (52)  2010 - 2011 

United States of 

America Yes 

Sapovirus    

 Farkas, 2018 (96)  2016 - 2017 

United Kingdom 

(Wales) No 

 Fioretti, 2016 (54)  2013 - 2014 Brazil Yes 

 Garcia, 2012 (100)  2010 - 2011 Brazil No 

 Kiulia, 2010 (105)  2007 - 2008 Kenya No 

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Scaffold virus    

 Bonanno Ferraro, 2020 (112)  2017 - 2018 Italy No 

Simplexvirus    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

Tanapox virus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Torque teno virus    

 O'Brien, 2017 (98)  2016 - 2016 Uganda No 

Varicellovirus (chickenpox)    

 McCall, 2020 (60)  2017 - 2018 

United States of 

America No 

 
a
 Web appendix 1 contains further information on each study including sampling site, the number 

of samples, the amount of wastewater sampled, the type of wastewater sample, and the 

laboratory method used. 
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Figure Legends 

Figure 1. Infectious disease transmission in a population is often viewed as an iceberg. Only a 

fraction of infectious disease transmission is ever visible, as cases, hospitalizations, and deaths 

arise and are counted. Clinical surveillance captures this fraction of visible infectious disease 

transmission. Wastewater surveillance captures the visible as well as the “invisible” information 

on infectious disease transmission, including infections that do not result in cases, 

hospitalizations, or deaths. Infections may be “invisible” for a variety of reasons including: a 

lack of symptoms, individuals not seeking a diagnostic test or treatment, lack of access to a 

diagnostic test or treatment, or even clinical systems unable or unwilling to report cases.  

 

Figure 2. PRISMA flow chart of articles included in the review. Reasons for exclusion include: 

hypothetical Models – the experiment was hypothetical and no data were collected; methods 

comparison – the paper compared multiple recovery methods; not pathogen – paper focused on 

non-communicable diseases (e.g. diabetes); not surveillance – sampled only once or for non-

surveillance purposes; not WW-based – wastewater was not directly tested;  pathogen removal – 

paper looked at removal techniques of pathogens in wastewater;  not relevant* - e.g. diseases not 

tied to human population, effect on other species/animals 

 

Figure 3. Frequency of the families of pathogens found in wastewater in the published literature. 

 

Figure 4. Pathogens historically surveilled in wastewater are not reflected in the greatest burden 

of disease except for diarrheal diseases. Many infectious diseases of international concern  have 

been surveilled in wastewater. HIV/AIDS has been detected in wastewater (127), although no 

study fits our inclusion criteria. Influenza was not detected in wastewater during H1N1 pandemic 

(swine flu) (133), but many groups including ours are trying to adapt wastewater surveillance to 

various strains of influenza and there is report of success (132). Tuberculosis is a known risk to 

wastewater treatment plant operators (128), and so wastewater surveillance of tuberculosis is 

likely possible. Malaria can be readily diagnosed in human stool (131) suggesting that 

wastewater surveillance is likely possible. 

 

Figure 5. Frequency of reviewed studies linking what was found in the wastewater to measures 

of infectious disease transmission, evaluation of a public health intervention, or the use of the 

wastewater surveillance to guide public health response or policy. 
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