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Abstract
Purpose of Review Diabetic retinopathy (DR) is one of the
most common complications associated with chronic hyper-
glycemia seen in patients with diabetes mellitus. While many
facets of DR are still not fully understood, animal studies have
contributed significantly to understanding the etiology and
progression of human DR. This review provides a compre-
hensive discussion of the induced and genetic DR models in
different species and the advantages and disadvantages of
each model.

Recent Findings Rodents are the most commonly used
models, though dogs develop the most similar morphological
retinal lesions as those seen in humans, and pigs and zebrafish
have similar vasculature and retinal structures to humans.
Nonhuman primates can also develop diabetes mellitus spon-
taneously or have focal lesions induced to simulate retinal
neovascular disease observed in individuals with DR.
Summary DR results in vascular changes and dysfunction of
the neural, glial, and pancreatic β cells. Currently, no model
completely recapitulates the full pathophysiology of neuronal
and vascular changes that occur at each stage of diabetic ret-
inopathy; however, each model recapitulates many of the dis-
ease phenotypes.

Keywords Animal models . Diabetic retinopathy . Diabetes .

Inducedmodels . Pancreatectomy . Alloxan . STZ . Genetic
models . VEGF

Abbreviations
BB Biobreeding rat: widely used rat model of diabetes
BRB Blood retinal barrier: wall of tightly joined cells

that prevent the movement of substances from
blood into the retina

DME Diabetic macular edema: leaking macular capil-
laries that lead to loss of vision associated with
diabetes

DR Diabetic retinopathy: damage to the retina leading
to severe vision loss caused by diabetes

GCL Ganglion cell layer: inner most retina layer com-
prised of ganglion cells and displaced amacrine
cells

GLUT2 Glucose transporter 2: carrier protein that trans-
ports glucose in the liver and blood

GK Goto-Kakizaki rat: rat model with hyperglycemia
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GPR10 G-protein-coupled receptor: protein that binds to
prolactin-releasing peptide

INL Inner nuclear layer: nuclear layer in the inner retina
comprised of bipolar, horizontal, and amacrine
cells

IPL Inner plexiform layer: layer of neuronal synapses
connecting the bipolar and amacrine cells to gan-
glion cells

MESA Multi-Ethnic Study of Atherosclerosis: medical
research study involving 6000 men and women
from the six continents

NOD Nonobese diabetic mouse: mouse model of diabe-
tes that is characterized by the absence of weight
gain

NPDR Nonproliferative diabetic retinopathy: first stage of
diabetic retinopathy characterized for the absence
of symptoms

ONL Outer nuclear layer: layer from the retina involve in
the detection of the light

OIR Oxygen-induced retinopathy: retinopathy caused
by the exposure to oxygen concentrations in a
chamber

OLETF Otsuka Long-Evans Tokushima fatty rat: rat model
characterized by obesity and hyperglycemia

PSL Photoreceptor segment layer: retina layer com-
posed of rod and cones.

P Postanatal: related to the time period after birth
PDR Proliferative diabetic retinopathy: advance stage of

diabetic retinopathy characterized for the increase
of new blood vessels that eventually leak

QTL Quantitative trait locus: segment of DNA that cor-
relates to a variation in phenotype

RGC Retinal ganglion cell: neuron present in the inner
surface of the retina

SDT Spontaneously diabetic Torii rat: rat models of
nonobese type 2 diabetes

STZ Streptozotocin: chemical that is toxic to the insulin
producing β cells in the pancreas

VEGF Vascular endothelial growth factor: signal protein
involved in angiogenesis

ZDF Zucker diabetic fatty rat: rat model with spontane-
ous diabetes

Introduction

Diabetic retinopathy occurs in approximately one third of peo-
ple with diabetes [1]. It is the leading cause of blindness in
adults aged 24–70 [1, 2]; in 2010, an estimated 92.6 million
adults had diabetic retinopathy (DR), of which 28.4 million
individuals experience vision impairment associated with DR
[3]. The total prevalence of DR appears to be higher in patients
with type 1 than in those with type 2 diabetes [3, 4].

Approximately 25% of patients with type 1 diabetes start to
develop symptoms of DR within 5 years after diabetes onset,
and the number increases to 80% by 15 years [5].
Interestingly, while sex has not been found to impact suscep-
tibility of type 1 or 2 [3], race [6–9] and socioeconomic status
[8, 10] do influence susceptibility for DR. In 2006, the Multi-
Ethnic Study of Atherosclerosis (MESA) reported disparities
in DR prevalence between diabetic patients of different racial
backgrounds: 36.7% in African-Americans, 37.4% in
Hispanics, 24.8% in Caucasians, and 25.7% in Chinese-
Americans [8, 9]. As a complex disease, it is clear that DR
is strongly influenced by both genetics and environment [9,
11••, 12–17]. Overall, the number of patients suffering from
DR is expected to rise due to increasing prevalence of diabetes
and longer life expectancies for patients with diabetes [3].

The onset and progression of DR is triggered by numerous
factors including extended duration of diabetes, poor control
of blood glucose, and elevated blood pressure [9].
Hyperglycemia leads to the development of microangiopathy,
including microaneurysms, hemorrhages, and basement mem-
brane thickening [18, 19]. This results in increased vascular
permeability of the blood-retinal barrier (BRB) causing leak-
age and diabetic macular edema (DME) [1, 18, 19]. Vascular
permeability also causes increased capillary occlusion that
leads to retinal ischemia, triggering an increase in the levels
of vascular endothelial growth factor (VEGF) [1, 18]. Retinal
ischemia and elevated VEGF levels then promote neovascu-
larization [1, 18]. A schematic summary of various factors that
contribute to disease progression is depicted in Fig. 1.

DR is classified as either nonproliferative (NPDR) or pro-
liferative (PDR) based on the presence of neovascularization
that typifies the proliferative form [1, 20]. NPDR, which can
progress to preproliferative DR, exhibits microaneurysms, dot
and blot hemorrhages, cotton-wool spots, and capillary
nonperfusion due to microvascular damage and pericyte loss.
Microglial changes and DME can also occur in NPDR. In
PDR, neovascularization results in retinal and vitreous hem-
orrhages and can lead to retinal detachment. DME may also
occur in PDR [1]. Disease models have contributed greatly to
the understanding of mechanisms that lead to DR disease.

Several animal models have been developed to investigate
the etiology and pathogenesis of DR and to develop and test
therapies to treat the disease. As DR is a complex disease with
both genetic and environmental influences, animal models are
similarly developed by induction or genetic mutation. Induced
models are generated through surgery, drugs, diet, and laser or
chemical damage. Genetic models are created using selective
breeding and gene editing. While a large selection of species
have been used to generate DR models, including mice, rats,
cats, dogs, pigs, and nonhuman primates, mouse and rat
models are most often studied, as their small size, short life
span, and fast breeding rates allow for the most efficient stud-
ies. Rodents have also been the focus of most genetic studies,
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with the discovery of inherited hyperglycemia or obesity par-
ticular to certain strains [21, 22, 23•, 24–26]. DR phenotypes
in dog models, however, appear to be most similar to human
DR [27–30]. Surprisingly, nonhuman primates have proven
relatively resistant to induced DR [31]. Cats generally do not
develop cataracts [32]. Pigs and zebrafish, in contrast, are
preferred for the similarity of their eye structure to humans,
easily visualized vascular structures, short life spans, and large
breeding sizes (zebrafish) [27, 33, 34]. Though no single an-
imal model to date represents the complete range of vascular
and neural complications of human DR in both early and late
stages, the models described in this review have been instru-
mental in determining the mechanisms behind DR in the
hopes of developing novel therapies.

Induced Models

Induced models have been created through five methods: sur-
gical removal of the pancreas, administration of the drug al-
loxan, administration of the drug streptozotocin (STZ), high-
galactose diets, and laser or chemical damage to the eye [27,
35–46]. While all methods of induction are still studied today,
the most common is STZ administration, as it results in the
fastest rate of disease development [41]. Alloxan is considered
to be less efficient in diabetic induction, and dietary methods
require the most time for disease progression [43]. Surgery-
and damage-induced models are the most technically chal-
lenging, limiting their use historically. The most frequently
used models for inducing DR are mice and rats, but dogs, cats,
pigs, rabbits, monkeys, and zebrafish are also used.

Presentation of induced DR pathology is generally slower in
larger animals, making rodents and, recently, zebrafish more
favored models. A comparison of the available induced
models can be found in Table 1.

Pancreatectomy

One of the oldest methods used to induce diabetes in animal
models is pancreatectomy, the removal of the pancreas or
removal of β cells from the pancreas. Pancreatectomy was
observed as early as 1922 to increase blood sugar levels in
dogs [35], and by 1968–1971, a technique of complete pan-
createctomy in adult dogs had been developed to induce dia-
betes [36, 37]. This technically difficult method is usually
applied to large animals such as cats and monkeys [27]. In
adult cats, hyperglycemia develops within 3 weeks
postsurgery; this time can be reduced to within 1 week by
combining pancreatectomy with administration of alloxan
[47] (described in the “Alloxan” section). Thickening of the
basement capillary membrane can occur from 3 months after
the onset of hyperglycemia [48]. Other DR symptoms, includ-
ing microaneurysm, intraretinal hemorrhages, capillary
nonperfusion, and neovascularization, may take 5–9 years to
develop [49]. Maintenance of this model thus requires an ex-
tended period of time.

In monkeys, pancreatectomy at various ages between 6 and
15 years resulted in insulin dependency and hyperglycemia,
which was then deliberately uncontrolled [50]. This was ob-
served to lead to BRB leakage within 1 year of hyperglycemia
onset. However, 10 years postinduction, monkeys still did not

Fig. 1 Schematic representation
of diabetic retinopathy (DR)
disease progression. DR initiates
with hyperglycemia, which
induces microangiopathy. This
leads to vascular permeability,
followed by diabetic macular
edema and capillary occlusion.
Capillary occlusion leads to
retinal ischemia, followed by
elevated levels of VEGF,
ultimately resulting in
neovascularization. Boxes
represent the point in the pathway
targeted by animal models.
Italicized text corresponds to the
induced models and bold text
corresponds to the genetic models
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develop proliferative retinopathy [50]. Monkeys thus appear
to be surprisingly resilient to induction of DR despite removal
of the pancreas, long-term diabetes, and poor control of blood
sugar levels. This is a similar phenomenon to humans where
only 30% of individuals with diabetes develop DR, suggesting
primates may have additional biological mechanisms to re-
regulate homeostatic state in the presence of chronic insult.
Understanding the regulatory factors that contribute to the
physiological differences in species is important for develop-
ing appropriate disease models.

Alloxan

The first drug found to induce diabetes, alloxan, was discov-
ered by Dunn and McLetchie in 1942 [38]. Alloxan is a de-
rivative of uric acid and directly targets β cells found in the
pancreas [39], and was first produced by Wöhler and Liebig
through a reaction of uric acid with nitric acid. While
conducting rabbit studies focused on kidney disorders, Dunn
and McLetchie found that intravenous injection of alloxan
resulted in hypoglycemia due to necrosis in the islets of
Langerhans in the pancreas. Death of β cells led to the release
of insulin stores in these cells, causing the observed hypogly-
cemia followed by onset of diabetes within 24 h. Dunn and
McLetchie also created the diabetic rat model induced by al-
loxan via intraperitoneal administration. While the diabetic
rabbits appeared listless and lost weight, rats that were given
alloxan ate voraciously and presented with polydipsia, poly-
uria, glycosuria, and hyperglycemia, characteristic of diabetes
[38].

Alloxan-directed cell death is mediated by inhibition of
glucokinase, an enzyme involved in the glucose-insulin regu-
latory pathway and expressed in the liver and pancreas. The
drug can be toxic to liver and kidney cells, but with proper
dosing, toxicity can be avoided. The action of alloxan in the
pancreas is specific toβ cells, with no toxic effect on aα, δ, or
pancreatic exocrine cells. The compound is also unstable in
water at room and body temperature, making it difficult to
administer [38, 40]. In recent times, alloxan has fallen in pop-
ularity in favor of STZ, described in the “Streptozotocin” sec-
tion, due to the latter’s greater ease of use and efficacy.

Alloxan has been used to induce DR in a large variety of
animals including mice, rats, dogs, and pigs, as well as the
rabbits and rats [28, 51•, 52–58]. All models experience dam-
age to pancreatic β cells. Mice aged 8–10 weeks can be given
a single dose of alloxan to induce hyperglycemia leading to
diabetes [51•]. It was previously believed that the alloxan-
induced diabetic mouse did not develop cellular or vascular
lesions, but a recent study found that alloxan does induce
pericyte ghosts and loss of retinal ganglion cells (RGCs) with-
in 7 days and microaneurysms with increased acellular capil-
laries by 21 days in mice from the FOT_FB strain [51•].
Alloxan also induced microglial changes, with thicker cellT
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bodies and shorter dendrites by 3 months of age in the same
animals [52].

Induction of DR by alloxan in rats is determined by weight
(180–200 g weight) [53, 54]. Within a week of alloxan admin-
istration, hyperglycemia and diabetes develop [54, 55].
Neovascularization occurs between 2 and 9 months
postinduction [54] and cataracts within a year [59]. Similar to
the phenotypes observed for mice, pericyte ghosts, acellular
capillaries, and thickened capillary basement membrane are
observed by 15 months postinduction [59, 60]. In addition,
the alloxan-induced diabetic rat exhibits BRB breakdown
[55], expansion of Müller glia, and endothelial swelling [54].
This model is typically studied for up to 22 months [60].

Alloxan induces diabetes in young dogs by once a week
administration for 5 weeks. This results in retinopathy remark-
ably similar to DR in humans however, dogs can take up to 53
to 69 months after onset of alloxan diabetes to develop DR
[28]. Following disease onset, alloxan-treated dogs present
with hemorrhages, acellular capillaries, pericyte loss, and
microaneurysms, making this a viable model of PDR. This
phenotype persists for 11 months.

The porcine alloxan-induced DR model, in contrast to the
dog models, develops hyperglycemia within 48 h [61]. The
molecular phenotype following induction is Müller cell
contraction-promoting activity that is detectable as early as
30 days after alloxan administration, and sustains for up to
90 days. Alloxan-induced pigs also develop cataracts by
60 days following alloxan administration [61] as well as
BRB breakdown, capillary collapse, and pericyte ghosts were
detected by 20 weeks [56]. In contrast to other alloxan models
that exhibit PDR like DR disease, the porcine alloxan-induced
model of DR recapitulates several important markers of
NPDR.

Streptozotocin

In 1963, Rakieten et al. reported that STZ administration
causes diabetes in rats and dogs [41]. STZ is an antibiotic
produced by Streptomyces achromogenes and was studied
for use in cancer chemotherapy [62]. Rakieten et al. studied
intraperitoneal administration of STZ in rats and intravenous
injection of STZ in dogs, both of which led to sustained hy-
perglycemia in each species, along with polyuria and polydip-
sia characteristic of diabetes [41]. The mechanism of diabetes
mellitus induction was found to be the disruption of pancreatic
islets of Langerhans and loss of β cells due to STZ [41]. β
Cells take up STZ specifically because they express the low
affinity glucose transporter 2 (GLUT2), and STZ is structur-
ally similar to glucose and N-acetyl glucosamine [42]. Other
cells that also express GLUT2, including hepatocytes and re-
nal tubular cells, experience similar damage with STZ admin-
istration [42]. STZ mechanism of action is cell death by DNA
fragmentation.

Induction of DR by STZ has been observed in multiple
models including mice, rabbits, pigs, rats, dogs, zebrafish,
and monkeys [31, 63-70]. STZ is now generally preferred
over alloxan, as it is more effective in recapitulating the dia-
betic disease state, though both drugs are still commonly used
[41]. Several protocols for STZ induction of diabetes in mice
have been developed, ranging from 1 to 5 doses delivering a
total of 150 to 400 mg/kg of STZ [27]. Hyperglycemia onset
typically occurs within 2 weeks, regardless of dosage [27] and
can be maintained for up to 22 months [71]. DR phenotypes
observed in STZ mice include increased number of astrocytes
and gliosis 4–5 weeks after onset hyperglycemia [63, 71],
RGC loss at 6 weeks [56], retinal inner nuclear layer (INL)
and outer nuclear layer (ONL) thinning at 10 weeks [72],
neovascularization at 16 weeks [73], and acellular capillaries
and pericyte ghosts at 6 months [71].

In contrast to mice, rats require lower doses of STZ to
develop diabetes [27]. The onset of retinal lesions differs be-
tween rat strains, but several observed phenotypes include
BRB breakdown 2 weeks after diabetes onset [74, 75], ONL
thinning beginning the in the fourth week following induction
[74], increased acellular capillaries, decreased numbers of
both pericytes and endothelial cells after 8 weeks [67], and
basement membrane thickening after 1 year [68]. STZ-
inducedDR rat models are typically studied for up to 20weeks
[75].

While rodents are commonly used for STZ-induced diabe-
tes, several other models have been studied with various out-
comes and onset of disease. Adult zebrafish, 4–6 months of
age, injected with multiple doses of STZ intraperitoneally or
through direct caudal fin injection over one or several weeks,
develop hyperglycemia and within 3 weeks, and display inner
plexiform layer (IPL) thinning, photoreceptor segment layer
(PSL) thinning, cone receptor dysfunction, and neuronal dam-
age by 4 weeks [69, 70]. This model is maintained approxi-
mately 80 days after induction of diabetes [70].

Larger animal models such as rabbits, dogs, and nonhuman
primates use a single dose protocol for STZ induction. A sin-
gle dose of STZ can be given to rabbits weighing 1.5 kg to
induce hyperglycemia, which after 135 days results in retinal
and preretinal hemorrhages, vascular lesions, venous throm-
bosis, and proliferative retinopathy [27, 64]. Beagles ranging
in age from 4.5 to 17 months and weighing between 11 and
24 kg given a single dose alloxan/STZ cocktail develop hy-
perglycemia within 2 days [68]. Alloxan/STZ-induced diabet-
ic dogs present with basement membrane thickening after
1 year and pericyte ghosts and smooth muscle cell loss after
4–5 years [76]. This model is studied for 7 years [76].
Interestingly, monkeys treated with a single dose of STZ at
age 12 develop diabetes, then ischemic retinopathy with
cotton-wool spots and hyperfluorescent spots after 10 years
[27, 31]. Interestingly, the induction of hypertension is re-
quired for retinopathogenesis in this model, as monkeys
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without hypertension fail to develop retinopathy [31]. The
porcine model of STZ is induced, at 20 kg, with STZ admin-
istration for three consecutive days [65]. Induced pigs develop
hyperglycemia within 1 week and are studied for up to
32 weeks. Diabetes lasting 4–8 months after STZ induction
results in increased BRB permeability, thinning of the INL
and ganglion cell layer (GCL), and thickening of the capillary
basement membrane [65, 77]. When STZ-induced pigs are
subject to hyperlipidemic diets, they acquire dyslipidemia
similar to that experienced by patients with type 2 diabetes.
Diabetic pigs also experience increased BRB permeability, as
well as compromised tight junctions in the retina. The pig’s
large size and hierarchal vascular structures make its metabol-
ic and circulatory functions highly similar to humans [66],
thus making it a common model for DR.

High-Sugar Diets

Kern and Engerman first reported an animal model of DR
induced by galactose-heavy diet [43]. Several high-sugar diet
models have been developed including mice, rats, rabbits,
dogs, and zebrafish [33, 43, 44, 60, 78–83] that were persis-
tently exposed to galactose developing retinopathy similar to
that observed in human diabetes. Maintenance of galactose
exposure results in continued disease progression. However,
galactose-fed animals lack some metabolic abnormalities ex-
perienced in diabetes [20]. Mice developed hyperglycemia by
6 weeks of age following high-galactose diet [44]. After
15 months of hyperglycemia, endothelial cell loss and in-
creased acellular capillaries were observed [44, 78]. After
21 months, lesions including pericyte ghosts, microaneurysms,
and retinal thickening are observed [27, 44, 79].While retinop-
athy takes longer to develop in these mice, they do live longer
than other models, allowing them to be observed over a longer
period of time, up to 26 months [78]. Similarly, rats have been
kept on high-galactose diets for over 2 years. Phenotypes ob-
served in rodents on a continuous high-sugar diet include
pericyte ghosts, acellular capillaries, and capillary basement
membrane thickening by 18 months of hyperglycemia [60,
80], as well as gliosis and microaneurysm by 28 months
[20]. While rodents can develop diet-induced DR, drug-
induced and genetic models are more commonly studied in
small animals due to their faster onset of disease.

In contrast, larger animals generally take longer to develop
DR whether by drug induction or diet. Rabbits fed a high-
sucrose diet for 24 weeks develop hyperfluorescent dots and
microaneurysms appeared by the 12th week of the diet [27,
81]. Dogs fed a diet with 30% increased galactose develop a
more complex disease phenotype including DR and cataracts
within 1 year; pericyte ghosts, microaneurysms, dot and blot
hemorrhages, and acellular capillaries by 32 months; and
basement membrane thickening by 60 months [43]. As ob-
served with all dog models of DR, disease can take many

years to develop, but phenotypes in the dog are most similar
to those in humans [27, 29, 30, 80, 84].

Most recently, hyperglycemic zebrafish have been devel-
oped as a model for DR. Zebrafish are housed in freshwater
with alternating concentration 0 and 2% glucose every other
day and develop hyperglycemia after 28 days and IPL thin-
ning [82]. As this model has only been maintained for 28 days
to date, several attributes including similar retinal topography,
ease of vascular structures visualization with fluorescent ex-
pression [33, 83], short life span, and large breeding size re-
duce experimental time and make zebrafish a strong model to
study DR [27].

Hypoxic Damage-Induced Retinopathy

Models of retinal neovascularization and vasculature leakage
lacking hyperglycemia have been used in recent years to study
DR. These models simulate advanced-stage PDR observed in
human patients. In a 1969 study, Dollery, Bulpitt, and Kohner
exposed newborn kittens to hyperoxic conditions and found
that returning the kittens to normal air made them experience
hypoxia, leading to neovascularization [85]. It was later dis-
covered that retinal damage induced the release of angiogen-
esis factors [45]. This discovery led to a number of different
damage models for retinal neovascularization using mouse,
rats, primates, and zebrafish [27, 46]. Hyperoxic mouse
models are generated by exposing juvenile mice, typically
postnatal days 7–12, to hyperoxic conditions, which results
in hypoxic conditions of the retina once they return to normal
air and the growth of blood vessels in the retina [86, 87].
These models of oxygen-induced retinopathy (OIR) exhibit
neovascularization and nonperfusion, accompanied by the ap-
pearance of microaneurysms, which typically occur within
5 days postexposure [88].

Similar to mice, OIR in nondiabetic rats results in neovas-
cularization. Rat pups were exposed to the hyperoxic condi-
tions between 11 and 14 days [89, 90]. Neovascularization is
apparent immediately once rats are returned to normoxic con-
ditions followed by astrocyte degeneration [91] and subse-
quent reduction in INL and IPL thickness, with disorganized
outer segments [92, 93]. A distinct feature of this model is the
incomplete development of the vascular plexus and the pres-
ence of abnormal endothelial tufts [91]. Two nonrodent OIR
models, monkey and zebrafish, also develop neovascular dis-
ease. OIR-induced neovascularization in zebrafish requires for
the animal to be placed in normoxic water followed by the
gradual reduction of O2 tension over a period of 48–72 h until
reaching 10% of air saturation (820 ppb) [94]. Zebrafish can
bemaintained in this environment for up to 15 days [95]. After
exposure, neovascularization is evident as well as reduction in
intercapillary distance [94]. The primate model of OIR-
induced neovascularization is distinct in that induction is lo-
calized by laser vein occlusion. Thus, focal regions of hypoxia
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are created rather than a whole organism exposure to hypoxic
conditions. Retinal neovascularization in OIR primates typi-
cally occurs 4–7 days postexposure. Hypoxic monkeys show
vascular leakage, venous occlusion, capillary nonperfusion,
venous dilation, and dot and blot hemorrhages, which result
from microaneurysm ruptures [96]. Interestingly, a primate
model was used to develop anti-VEGF treatment [96].

Cytokine Induction

The alkali burn model results in increased cytokine activity to
produce DR like neovascularization. This model is less com-
monly used and involves a more painful method to induce
retinal neovascularization in mice. This technique has been
used in inbred mouse strains such as BALB/c and involves
placing 2-mm filter disks soaked in 1 N NaOH on the ocular
surface adult mice [97]. Neovascularization is typically ob-
served within 2 weeks. Not surprisingly, treated mice also
exhibit increased levels of inflammatory cytokines in
neovascularized retinas [96]. While cytokines may be second-
ary to the neovascular disease phenotype, they likely play a
significant role in maintaining the disease state.

Genetic Models

There are several genetic modes of DR in mouse, rat, and
zebrafish. These models include spontaneous, strain-specific,
and genetically edited mutations. Several inbred mouse strains
for example, including the nonobese diabetic (NOD) and db/
db (Leprdb), exhibit hyperglycemia, one of the main charac-
teristics of diabetes, and are thus maintained and studied as
diabetic models. Rodents are frequently used as genetic
models of DR as they are easy to maintain, have well-
characterized genetic backgrounds, and are easily manipulat-
ed to generate knockout or transgenic models. Genetic models
exist for both type 1 and type 2 diabetes, and models for type 2
can be either obese or nonobese [98]. A comparison of the
currently available genetic models can be found in Table 1.

Mouse Genetic Models of DR

There are five known genetic mouse models of DR: Ins2Akita,
nonobese diabetic (NOD), db/db (Leprdb), Kimba, and
Akimba. These models vary in mode of inheritance, disease
etiology, pathology, and progression of disease. The Ins2Akita

mouse is a model for type 1 diabetes that harbors a missense
mutation in the Insulin 2 gene. The missense mutation leads to
a conformational change in the insulin protein, causing the
protein to accumulate in pancreatic β cells, leading to β-cell
death [99, 100]. Disease onset in this model is at 8 weeks, with
an increase in retinal vascular permeability and reactive
gliosis. Disease progression continues up to 8 months of
age, with a reduction in axons and dendrites of RGCs by

12 weeks, an increase in acellular capillaries at 36 weeks,
and an increase in leukocytes in the vascular wall, as a result
of inflammation [101, 102]. Additionally, a decreased number
of cholinergic and dopaminergic amacrine cells [103] is also
observed leading to a reduction in the thickness of the IPL and
INL [101, 104]. The Ins2Akitamouse is useful for studying the
early progression of DR and the neuroprotective effects of
treatments, as loss of RGCs can be detected in a short span
of time [20].

A second commonly used model for type 1 diabetes is the
NOD mouse, which exhibits an autoimmune response in
which the CD4+ and CD8+ cells attack pancreatic β cells
[21, 105, 106]. Diabetes in NOD mice has been well docu-
mented and, similar to humans, is a polygenic model with
several loci associated with the disease phenotype
[107–109]. Similar to what is observed in humans with type
1 diabetes, NODmice suffer from infiltration of dendritic cells
and macrophages in pancreatic islets leading to inflammation,
hyperglycemia, and apoptosis of insulin-producing β cells
[21, 22, 23•]. Disease onset begins when spontaneous hyper-
glycemia occurs in these mice by 12 weeks of age. NODmice
show apoptosis of pericytes, endothelial cells, and RGCs, as
well as retinal capillary basement membrane thickening
starting at 4 weeks [110]. Vasoconstriction and degeneration
of major vessels with abnormal microvessels can be detected
approximately 4 months after hyperglycemia [111].
Additionally, focal proliferation of vessels was also detected
[112]. In contrast to the human disease, NOD mice exhibit a
gender bias where by 30 weeks, 80% of females and 20% of
males become diabetic [21]. Due to the variation of diabetes
seen in females and males, constant monitoring of glucose
levels is important for appropriate study design. Despite the
gender bias, the pathophysiology of type 1 diabetes is very
similar between the NOD mouse model and humans, making
it a desirable model for DR research [113].

The db/db (Leprdb) mice were developed to study type 2
diabetes. db/db mice harbor a mutation in the leptin receptor
and develop hyperglycemia and obesity after 4–8 weeks [24,
25], and disease progression continues for 10 months.
Homozygous animals exhibit chronic hyperglycemia, morbid
obesity, atrophy of pancreatic β cells, and eventually become
hypoinsulinemic [25, 114, 115]. After 6 weeks, a reduction in
the number of RGCs and increased thickness in the central
retina are observed [116]. By 18 weeks, reactive gliosis as well
as pericyte loss is detected [117]. This model is used to study
late stages of the disease as db/db mice present late reactive
gliosis along with vessel leakages [118]. db/db mice have con-
tinued increases in blood sugar levels, severe depletion of pan-
creatic islets, and myocardial diseases, eventually leading to
death at approximately 10 months of age [119, 120].

Another method to develop a more physiologically relevant
mouse model for DR is breeding two mutant mouse strains.
The Akimba mouse was generated by crossing two mouse
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strains. The Kimba mice, a nondiabetic model of proliferative
retinopathy resulting from overexpression of Vegf driven by
the rhodopsin promoter [121, 122], were crossed with the dia-
betic Ins2Akita mice to create the Akimba model. Kimba mice
show reduction in the INL and ONL by postnatal day 7 (P7)
[123]. By P28, microvascular abnormalities and capillary
dropout are observed and continue until 9 weeks of age, at
which time pericyte loss is detected [123, 124]. The Akimba
mice are hyperglycemic and appear to have additive effects
from both parental strains [125, 126]. Akimba mice are char-
acterized by pericyte and vessel loss and retinal neovasculari-
zation with diffuse vascular leakage that is observed in late-
stage DR [125, 127]. Additionally, the Akimba mouse exhibits
leaky capillaries, tortuous vessels, and microaneurysm by
8 weeks [125]. Enhanced photoreceptor loss, reduction of ret-
ina thickness, increased persistence of edema, and retinal de-
tachment are observed as the animal ages and disease pro-
gresses [125].

Rat Genetic Models of DR

There are six genetic rat models of DR: Zucker diabetic fatty
(ZDF), Otsuka Long-Evans Tokushima fatty (OLETF),
biobreeding (BB), WBN/Kob, spontaneously diabetic Torii
(SDT), and Goto-Kakizaki (GK). The ZDF, OLETF, and BB
are monogenic models of DRwith independent mutations that
perturb different nodes of the DR disease pathway (Fig. 1).
The SDT, WBN/Kob, and GK models, in contrast, are poly-
genic models. These models demonstrate the genetic com-
plexity of DR. Quantitative trait locus (QTL) analysis identi-
fying novel DR loci may provide insight into the multiple
genes and networks that are impacted and lead to DR patho-
genesis in humans.

There are three monogenic rat models of DR. The ZDF rat
is a monogenic model for severe spontaneous type 2 diabetes.
These animals have a missense mutation in the leptin receptor
gene, Lepr, that results in insulin tolerance along with exces-
sive body weight gain [128, 129]. ZDF rats are characterized
by hyperglycemia at 6 weeks that continues throughout their
lives. As a result, thickening of the capillary basement mem-
brane can be detected along with increased capillary cell nu-
clear density 5 months after hyperglycemia [130].

The OLETF rat is a monogenic DR model that was created
by the selective breeding of Long-Evans rats that is character-
ized by obesity, hyperglycemia, and glycosuria [26]. OLETF
is a model for spontaneous type 2 diabetes and obesity and
harbors a mutation in the initiation codon of the G-protein-
coupled receptor GPR10 that leads to obesity [131]. Disease
onset is characterized by increased blood glucose that is ob-
served by 5–6 months [132]. Six weeks following the onset of
hyperglycemia, microvessel-related symptoms are observed,
including leukocyte entrapment in retinal microcirculation
[26]. At 3 months posthyperglycemia, a reduction in the

number of pericytes is detected and damage of endothelial
cells is observed [133]. In addition, increased thickness of
the capillary basement membrane, microaneurysms, capillary
formation in loops, and tortuosity are also detected [26, 134].
This model is not commonly used to study DR as it lacks
acellular capillaries and has a late onset of diabetes.

The BB monogenic model is widely used to study type 1
diabetes. This model presents with retinal lesions, pericyte
loss, capillary degeneration, and microaneuryms by 8–
11 months, as well as apoptosis of pancreatic β cells due to
an autoimmune response [135, 136]. The BB model harbors a
frameshift mutation in the immune-associated nucleotide-
binding protein gene Ian4, also known as Ian5, Iddm1, and
Gimap5. The mutation generates the lymphopenia phenotype
associated with diabetes [137-139]. Alterations in lymphope-
nia are associated with both type 1 and type 2 diabetes [140,
141]. Lymphophenia is also commonly observed in cancer
and autoimmune disease [142–144].

The WBN/Kob rat model presents acellular capillaries and
is a spontaneous model of type 2 diabetes whose causative
gene remains unknown [20, 145]. This model is characterized
by intraretinal angiopathy with new vessel formation and
hyalinization of intraretinal vessels, making it an ideal model
for understanding the progression of DR [146]. To determine
the gene or genes involved in generating the described pheno-
type in this model, QTL analysis identified two significant
regions in chromosome 7 and X hinting that several genes
might be involved [147]. Later studies were able to narrow
down the search to chromosome 7, a region designated as
Pdwk1 (pancreatitis and diabetes mellitus in WBN/Kob locus
1) that harbors 14 genes [148].

There are two rat models of nonobese type 2 diabetes: the
SDTand the GK rats. The SDT male rats develop glycosuria at
approximately 20 weeks compared to females at 45 weeks
[149, 150]. Similarly diabetes develops at different rates: by
40 weeks, 100% of males have diabetes, compared to 33% of
females at 65 weeks when the study ended [150]. SDT rats are
characterized by retinal dysfunction, which includes retinal de-
tachment with fibrous proliferation, absence of retinal ischemia
in the presence of neovascularization, leukostasis, increased
number of apoptotic cells in the GCL and INL, vascular lesions,
and pericyte loss [151–154]. A distinct feature of this model is
the appearance of large retinal folds with extensive leakage
around the optic disc, similar to retinal detachment observed
in humans [151–154]. The SDT rat is the rat model that most
closely resembles the pathophysiology seen in humans; how-
ever, the absence of microaneurysm makes them a more suit-
able model for studying NPDR. The characteristic phenotype
associated with SDT rats has been linked to three QTL assigned
as Gisdt1, Gisdt2, and Gisdt 3 for glucose intolerance found in
chromosomes 1, 2, and X, respectively [155].

GK rats, in contrast to SDT rats, develop hyperglycemia
earlier at 4–6 weeks and have an increased number of retinal
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endothelial cells compared to the number of pericytes present
[156, 157]. GK rats are characterized by having a reduced
retinal blood flow with no changes in the diameter of veins
and arteries in the early stages of diabetes, making it an excel-
lent model to study microcirculatory changes in the retina [20,
158]. Increased BRB permeability is observed at 3 months
followed by increased endothelial/perycite ratio at 7 months
[158, 159]. GK rats were generated by multiple inbreeding
crosses of the glucose-intolerant Wistar rats. Consequently,
the exact genetic background as well as the causative genes
remains unknown [160]. Whole genome sequencing and QTL
analysis revealed 192 potential genes [161].

Zebrafish Genetic Model of DR

Zebrafish are valuable genetic models for human diseases as
genetic manipulation is easily performed and they often reca-
pitulate human retinal vascular disease accurately. The Vhl
zebrafish have a mutation in the von Hippel-Lindau tumor
suppressor gene and are characterized by increased blood ves-
sel formation, along with upregulation of the hypoxia-
inducible factor, which triggers expression of Vegf [162].
This model is characterized by an increased number of hyaloid

vasculature with concomitant vascular leakage, macular ede-
ma, retinal detachment, and severe neovascularization [151].

Conclusions and Future Directions

Animal models play a crucial role in understanding the etiol-
ogy and pathophysiology of DR and in the development of
viable therapeutics to prevent and attenuate disease. DR is a
complex disease that involves multiple genetic and environ-
mental inputs and, therefore, a challenging disease to model.
Most models focus on a genetic or environmental insult to one
of the major DR phenotypes. Combining genetic and/or ge-
netic and induced models may provide more accurate DR
models. An example is the generation of the Akimba mouse
that results from breeding Kimba mice, which overexpress
Vegf, with the Akita mice, which have spontaneous type 1
diabetes designed to generate a model that has the key char-
acteristic of the early and late phases of the disease and as
many traits of the phenotype as possible. As of today, the
available models, both induced and genetic, are mostly char-
acteristic of NPDR, such as microaneurysm and retinal degen-
eration, and key characterist ics of PDR, such as

Fig. 2 Hypothetical diabetic
retinopathy gene network.
Ingenuity pathway analysis of
genes reviewed in this article
yielded one major gene network
that contains genes that fall under
the following biological
classifications: for cellular
development, growth,
proliferation, and lymphoid
development and structure
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neovascularization, are less likely to be seen in the models.
Similarly, the majority of models imitate the aspects of early
DR, and only few of the high-order animals recapitulate the
retinopathies of the later stages of the disease.

The majority of the available models better recapitulate the
early stages of the diseases, limiting the availability of models
to evaluate comprehensive therapies for DR. Treatments are
generally restricted to targeting the early progression of the
disease due to the available models. Additionally, animal
models of retinal neovascularization, without hyperglycemia,
have been developed. These models may provide valuable
tools to understand pathogenesis and develop appropriate
treatment options for late-stage DR disease. It is critical to
properly understand the pathophysiology and limitations of
each available model to determine the best model for a study.
Based on current research, we generated a hypothetical DR
gene network (Fig. 2) [163]. Data were analyzed through the
use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis). The review and
hypothetical network will provide bases for improved
therapeutic study design to develop viable treatments for this
complex and common disease.
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