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Abstract: Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria
that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as
hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure,
and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded
exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence.
Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of
inducing cell death and as proinflammatory factors that sensitize the host target organs to damage,
less is known about the interface between the commensalism of bacterial communities and the
pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing
pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter
other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs
associated with severe illness may have compounding effects on the diversity of the indigenous
bacteria and bacterial communities in the gut. The present review focuses on studies describing
the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the
resident microbiome, and host tissues. The determination of these interactions may provide insights
into the unresolved issues regarding these pathogens.

Keywords: Shiga toxins; Shiga toxin types 1 and 2; Shiga-toxin-producing Escherichia coli (STEC);
commensal microbes; bacterial toxins; gut microbiota; hemolytic uremic syndrome (HUS)

Key Contribution: The review provides an overview comprehensively describing the current un-
derstanding of the roles of Stxs and STEC at their interfaces with commensal microbiota in the gut,
aiming at focusing on interactions with human microbiota.

1. Introduction

Numerous supportive public health measures have led people to erroneously believe
that epidemics of many bacterial infectious diseases are no longer a serious health risk.
However, Shiga-toxin-producing Escherichia coli (STEC) still poses a threat to public health.
Shiga toxin (Stx) is prototypically synthesized by the bacterium Shigella dysenteriae serotype
1, with genetically and structurally related toxin variants produced by certain serotypes of
E. coli, including enterohaemorrhagic strains of E. coli (EHEC) [1]. Bacillary dysentery due
to infection by Stx-producing bacteria, characterized by acute infectious diarrhea, primarily
affects children aged <5 years [2]. Endemic bacillary dysentery occurs globally, including in
portions of Africa, Southeast Asia, and the Indian subcontinent, with an estimated 2–7 per
1000 children per year requiring clinical care and 164,300 deaths per year attributable
to shigellosis [3]. By contrast, STEC-associated illnesses in young children are more
prevalent in developed countries, in which residents consume higher levels of beef and beef
products [4,5]. Major outbreaks of diarrheal diseases caused by EHEC may be due to the
ingestion of foods such as uncooked meat, unpasteurized milk, water contaminated with

Toxins 2021, 13, 416. https://doi.org/10.3390/toxins13060416 https://www.mdpi.com/journal/toxins

https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-6663-1636
https://doi.org/10.3390/toxins13060416
https://doi.org/10.3390/toxins13060416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxins13060416
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins13060416?type=check_update&version=3


Toxins 2021, 13, 416 2 of 19

these bacteria, and by the contamination of foods used in the preparation of fast-food [6].
Perhaps the largest outbreak of hemorrhagic colitis was caused by an O157 infection in and
around Sakai City, Japan, in 1996, which resulted in approximately 1000 hospitalizations
among 7000 infected cases [7]. Many non-O157 STEC serotypes have been increasingly
reported, and a massive outbreak caused by the hybrid STEC/enteroaggregative E. coli
(EAEC) O104:H4 strain occurred in northern Germany from May to June 2011 [8]. More
recently, 439 outbreaks and 5 deaths caused by EHEC-contaminated romaine lettuce were
reported in multiple states of the United States in 2018 [9].

Stx-producing bacteria have received substantial attention as emergent pathogens
due to the dangerous toxins they produce. These exotoxins are the principal virulence
factors associated with the pathogenesis of bloody diarrheal diseases, bacillary dysentery,
and hemorrhagic colitis progressing to acute renal failure in infected patients, primarily in
children. This phenomenon, collectively referred to as hemolytic uremic syndrome (HUS),
is the leading cause of pediatric acute renal failure in many countries, including countries in
the European Union and the United States [10,11]. Both Stxs and the inflammatory innate
immune cells activated by these toxins contribute to the pathogenesis of HUS by rendering
blood vessels in the colon, kidney, and central nervous system (CNS) more sensitive to
the detrimental action of Stxs. Studies in animals found that treatment with purified Stxs
induces intestinal and renal epithelial and endothelial cells to express neutrophil and
monocyte chemoattractants. This, in turn, induces the infiltration of peripheral blood
mononuclear cells (PBMCs) into the lamina propria and kidneys [12,13]. These findings
suggest that the infiltration of inflammatory cells into sites of toxin-induced damage
causes the localized expression of cytokines, which in turn facilitate vascular damage via
immunopathological reactions.

Studies on Stxs-induced host signaling pathways have indicated that these toxins,
which act as multifunctional bacterial proteins, promote ribotoxic stress, apoptosis, endo-
plasmic reticulum (ER) stress, inflammatory responses, and autophagy in host cells [14].
In addition to the toxigenic and immunopathological potential of Stxs in patients, these
toxins interact with multiple cell types in vitro and are responsible for the pathogenic
characteristics of HUS in animal models. Although the Stxs-mediated pathogenesis of
HUS is not fully understood, comprehensive knowledge of the role of Stxs in altering the
composition (also referred to as ‘dysbiosis’) of the intestinal microbiota in a host infected
with EHEC compared with a healthy control must be used to help identify the host factors
or the commensal microbial-derived products that exacerbate tissue damage or protect
against intoxication caused by toxin-producing bacteria. Studies have evaluated the precise
correlations between Stx-mediated pathogenesis and intestinal indigenous commensal
microbes. This review summarizes the current understanding of the roles of E. coli Stxs
and STEC at their interfaces with commensal microbiota in the gut, mainly focusing on
interactions with human microbiota.

2. Toxins

Stxs produced by bacteria, including EHEC and Shigella dysenteriae serotype 1, act as
primary virulence factors. Each ribosome-inactivating holotoxin possess an AB5 molecular
configuration, as confirmed by high-resolution structural analysis, consisting of a large
monomeric 32 kDa A subunit and small homo-pentameric 7.7 kDa B subunits [15] (Figure 1).
The enzymatic subunit A of the holotoxin is associated with cytotoxic activity, whereas
subunit B binds to host receptors on cell surfaces. Stxs bind with high affinity mainly
to the glycolipid Gal (α1→4)Gal (β1→4)Glc (β1→1) ceramide (globotriaosylceramide or
Gb3), or to a lesser extent, GalNAcβ1-3Galα1-4Galβ1-4GlcβCer (globotetraosylceramide
or Gb4) or Galβ1-3GalNAcβ1-3Galαl-4Galβ1-4Glcβl-lCer (globopentaosylceramide or
Gb5), on the host cell surface, which act as the toxin receptors [16,17]. In particular, the
B-subunits mediate the specific binding of toxins to target cell receptors and their receptor-
mediated uptake into target cells [18]. Of note, as a Gb3-independent Stx-binding receptor,
Brigotti et al. demonstrated that the Toll-like receptor 4 (TLR4), a well-characterized
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pattern recognition receptor for lipopolysaccharide, binds to the toxin on the surface of
human neutrophils, which are lacking Gb3, without the internalization or intracellular
processing of the toxin [19]. Many different cell types, including human renal proximal
tubular epithelial cells, human brain microvascular endothelial cells, and primary human
monocyte-derived macrophages, express functional Gb3 on their membrane and therefore
are target cells for the binding of Stxs (reviewed in [20]). Following the binding of Stxs
to their receptors on host cell surfaces, these toxins may be endocytosed via clathrin-
coated pits into early endosomes. Alternatively, Stxs may cluster at the plasma membrane,
followed by their uptake by a clathrin-independent mechanism [21,22]. Otherwise, Stxs are
unable to enter the cell cytosol directly. A recent, extensively updated review of Stxs-toxin
receptor interactions on host cell surfaces provided a concise summary and new insight
into receptor analog-mediated therapeutic approaches against bacterial verotoxins and Stxs-
mediated cytotoxicity [23]. Following its binding to Gb3 on the cell surface, the holotoxin
is internalized via receptor-mediated endocytosis and trafficked intracellularly to early
endosomes, the trans-Golgi network through the Golgi apparatus, and the lumen of the ER
by a process called retrograde transport to deliver Stxs. The precise mechanisms underlying
the retrograde transport of Stxs remain largely unexplored, although it occurs in a KDEL-
receptor-independent manner [24]. During the intracellular processing of the toxin, subunit
A is cleaved by the host protease furin into two fragments: A1, the catalytically active
fragment with N-glycosidase activity; and A2, which remains covalently associated through
a disulfide bond and is essential for the assembly of the AB5 configuration [15]. Following
the reduction of the bond, the A1 fragment retrotranslocates across the ER membrane into
the cytosol by utilizing host cellular endoplasmic reticulum-associated protein degradation
(ERAD) machinery. The integral membrane Sec61 complex translocon core unit may
be involved in the translocation of the A1 subunit. The A1 subunit, which has RNA
N-glycosidase activity, inactivates the 60 S subunit of host cell ribosomes by cleaving the N-
glycosidic bond at a single specific adenine residue in 28S rRNA (in rats, A4324), leading to
the inhibition of the EF-1–dependent aminoacyl-tRNA binding and ultimately preventing
aminoacyl-tRNA from binding to the ribosome. This holotoxin subsequently enters the
host cell cytosol, leading to multiple cellular responses, including the inhibition of protein
synthesis, apoptotic cell death, ER stress, autophagy, and inflammation [25–27] (Figure 2).
As an alternative way of transporting Stxs into host cells, Stx-containing microvesicles,
derived from the plasma membrane of host blood cells in the circulation, reach the kidneys
and the toxin is transferred to the renal target cells, including the glomerular endothelial
cells, where it is released from the microvesicles and elicits cytotoxic effects by reaching
the ribosomes and inhibiting protein synthesis [28]. During STEC-associated HUS, Stxs
directly activate complements by triggering a cascade of signaling events and delaying the
cofactor activation of surface adhesion factor H (FH) bound to the toxin, leading to the
complement-mediated hemolysis with the release of microvesicles from the fragmented
red blood cells [29,30]. Buelli et al. reviewed the etiology of complement activation
in various experimental models and HUS patients [31]. However, due to the complex
pathophysiological cascade of events that ultimately leads to the clinical symptoms of
Shigatoxemia, there are no satisfactory therapeutic interventions or regimens for treating
children infected with EHEC.
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Figure 1. Crystal Structure of Shiga toxin. (A) Shiga Toxin Type 1 (PDB #1DM0). (B) Shiga Toxin
Type 2 (PDB # 1R4P). (C) Shiga Toxin 1 B-subunit with Gb3 receptor (PDB #1BOS). (D) Shiga Toxin
2 B-subunit with Gb3 receptor (PDB #1R4P, deletion of A-subunit). PDB files of all structures were
obtained from RCSB PDB (www.rcsb.org) and PDB files were compiled with Chimera 1.10.2 (UCSF
Chimera, www.cgl.ucsf.edu/chimera, accessed on 10 June 2021). Reproduced from reference [14].
2016, MDPI.

Two major structural types of Stxs have been identified to date: Shiga toxin type 1
(Stx1) and Shiga toxin type 2 (Stx2). Each of these is further subdivided into subtypes, Stx1a,
Stx1c, and Stx1d; and Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, Stx2g (reviewed in [32,33]),
Stx2h [34], and Stx2i [35,36]. Each subtype consists of a number of variants, which are
released by Stx subtype-specific STEC strains. The overall amino acid identity of Stx1 and
Stx2 is only 56%, although residues involved in enzymatic activity and binding to cells
are more highly conserved. By contrast, variations within the Stx1 and Stx2 categories are
much lower, with members having 84–99% amino acid identity. Because the Stx2 variants
differ from one another to a greater extent than the Stx1 variants, they have different levels
of toxicity in animal models of disease and have different receptor preferences [37]. More
importantly, the Stx1a and Stx2a subtypes most commonly cause severe pathogenesis
in humans.

The multiple functions of Stxs have been extensively investigated, both in vitro and
in vivo, by our group and others. Over the course of these studies, we have devised meth-
ods of interrupting Stx-induced host injury signaling mechanisms activated by apoptosis
via ER stress, autophagy, or pro-inflammatory cytokine/chemokine production. However,
the precise pathogenic potential roles of EHEC-Stxs and other commensal microbiota have
not yet been completely investigated. These interactions may be a crucial step in deter-
mining the yet unknown mechanisms by which the toxin encounters host microbiota and
crosses the mucosal layer.

www.rcsb.org
www.cgl.ucsf.edu/chimera
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Figure 2. Summary of STEC/Stx-induced immunopathology. Dysbiosis, induced for a variety of reasons such as diet, colitis,
and inflammation, increases STEC infection and colonization. STEC induces the delivery of Shiga toxins and the production
of cytokines and chemokines through colonization in intestinal epithelial cells. In addition to cell death by Stxs, various
cells, including neutrophils induced by chemotaxis, induce inflammation in the intestine, which leads to damage. Toxins
pass through the intestinal mucosa, enter the bloodstream and travel to target organs such as the kidneys and CNS. After
membrane invasion-mediated endocytosis through the toxin receptor Gb3 on the cell surface, Stxs migrate to the Golgi
and ER. Shiga toxin acts as a multifunctional bacterial protein, promoting ER stress, ribotoxic stress, pro-inflammatory
responses, apoptosis, and autophagy in host cells.

3. Crosstalk with Gut Microbiota in Intestinal Pathology upon STEC Infection

Approximately 1014 bacteria, consisting of 500 to 1000 species, are present in the
gastrointestinal (GI) tract of a human adult. This population of very diverse bacteria, called
the gut microbiota, includes protective bacteria, as well as bacteria that could potentially be
harmful to, but maintain a symbiotic relationship with, the host. Cross-regulation between
the host and the gut microbiota maintains a homeostatic balance of bacteria, keeping the
GI tract healthy and preventing an overgrowth of potentially pathogenic bacteria [38,39].
The Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria groups make up the
largest share of the normal gut microbiota [40]. Dysbiosis refers to an imbalance in the
qualitative and quantitative composition and metabolic activity of intestinal microbiota and
may be associated with a variety of disorders including inflammatory bowel disease (IBD),
allergies, diabetes, obesity, and multiple sclerosis [41]. Dysbiosis may increase the risk of
various gut bacterial infections and has also been linked to STEC infection [42]. Changes in
gut microbiota according to diet are well-known [43,44], and Zumbrun et al. reported that
dietary choice modulates susceptibility to STEC infection. Mice that were fed a high fiber
diet (HFD) exhibited a decrease in native Escherichia species and increased colonization
of STEC, weight loss, and mortality compared with mice that were fed a low fiber diet
(LFD) [45]. A colitis murine model generated using dextran sulfate sodium similarly had
an increased risk of STEC infection [46]. These reports indicate that the robustness of the
gut microbiota plays an important role in the defense against STEC infection (Figure 2).
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Several case reports demonstrated that STEC infection and disease are more likely to occur
in children than in adults [47,48]. The gut microbiota of children, which is less mature
than that of adults, has a low diversity and number of communities [49]. This is likely
one reason for the high rate of STEC infections in children because STEC may colonize
individuals with weak/non-healthy microbiota.

During intestinal infection, STEC can reach the ileum and colon and cause disease
through survival and colonization [50,51]. STEC colonization is a type of attaching and
effacing (A/E) lesion that relies on the type three secretion system (T3SS) to transfer
effector proteins to host cells and on the apoptosis of enterocytes located on the apical
surface of the intestines. STEC attachment is accompanied by the localized destruction of
microvilli [52,53]. Bacteria closely attach to intestinal cells via T3SS and a series of effector
proteins encoded in the locus of enterocyte effacement (LEE). Various effector proteins help
to sustain the presence of bacteria in the intestinal tract, as well as playing a pivotal role
in the toxic effects of these bacteria [54]. After colonization, Stxs produced by STEC pass
through intestinal epithelial cells (IECs) into the bloodstream, allowing them to reach target
organs, including the kidneys, brain, and eyes, and causing diseases such as HUS [55].

STEC-associated immune responses of the host can include the overstimulation of
proinflammatory cytokine production, immune cell activation, and complement activation
by Stxs, resulting in primary tissue injury [56–59]. A continuum of events can result in
the development of HUS. Stxs may bind to IECs and mediate the translocation of toxin
molecules to and through the basolateral membrane. STEC strains and non-pathogenic
commensal E. coli showed differential inflammatory responses using an in vitro IEC infec-
tion model system [60]. Although no single transcriptional or cytokine response pattern
was reported to be characteristic of the early stages of STEC infection, STEC strains and
commensal E. coli differed significantly in the expression of genes involved in amino acid
biosynthesis and in uptake and respiration. These three classes of hypothetical genes were
found in a fairly high percentage of other STEC pathotypes [60].

Although STEC infection can occur in a variety of animals, cattle are the main reser-
voir [61]. STEC colonizes the recto-anal junction (RAJ) in cattle but is asymptomatic [62,63].
This is because the Gb3 expression is lower than in humans, and there are reports that even
when Gb3 is expressed in the kidneys and brain, Stxs cannot bind to blood vessels in the
bovine GI tract [64]. To colonize the RAJ, STEC uses an acid resistance (AR) system. Glutamate
decarboxylase GadA and GadB consume protons by converting glutamate into gamma-amino
butyric acid (GABA), which helps to protect cells against acidic stress in the GI tract [65,66].
The LuxR homologue SdiA detects acyl-homoserine lactone (AHL) produced by other bacteria
and induces a quorum-sensing (QS) system [67]. STEC detects AHL through SdiA in the
rumen, inhibits LEE expression, and activates the GadA/B-mediated AR system to survive in
an acidic environment. STEC migrates to the RAJ, and LEE is expressed in the absence of AHL,
allowing for the colonization of the GI compartment [66]. E. coli O157:H7 in feces is defined
as a super-shedder (SS) at a level higher than 104 CFU per gram [68]. Several studies have
compared changes in the microbiota between non-shedders (NS) and SS. STEC infection alters
the abundance and diversity of some gut microbiota in cattle [69,70]. A paper reviewing data
on changes of the microbial count in cattle due to a recent STEC infection classified and orga-
nized the microbial differences [71]. The composition of the gut microbiota has been reported
to be clinically altered. Lower numbers of Bifidobacteriales and Clostridiales were found in the
feces of patients infected with STEC O26:H11 than in the healthy subjects [72]. Bifidobacteria
are involved in the NF-κB and SOCS signaling pathways in IEC lines by downregulating
the mRNA levels of inflammatory cytokines in response to stimulation with intact bacterial
cells or bacterial cell wall components such as LPS [73,74]. Moreover, Bifidobacteria have
been reported to have protective efficacy in mice infected with EHEC O157:H7 [75]. Many
studies have demonstrated that Clostridium species are probiotics that control the intestinal
inflammatory response caused by LPS, suggesting that they have preventive and therapeutic
effects on EHEC infection [76–78]. Taken together, these findings suggest that STEC infection
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through intestinal colonization may affect the microbial composition and abundance, which
may increase the risk of infection.

In addition to its role in the effects of STEC, Stx is a virulence factor that alone has
the potential to affect intestinal tissue damage and microbiota. Clinically, STEC virulence
genes, including the stx2a and eae genes that encode Stxs, have been detected in the feces of
STEC-infected patients through meta-genomic analysis [72]. This suggests that Stx not only
works by migrating to the lamina propria but can also act in the intestinal lumen. Purified
Stx proteins induce ribotoxic stress, apoptosis, and inflammatory responses in a variety of
cells. Stxs released after STEC colonization bind to intestinal epithelium but not to normal
intestinal cells that do not express Gb3 [79,80]. The human IEC lines Caco-2 and HEp-2 cells,
which express Gb3, were sensitive to Stxs, as shown by the induction of apoptosis through
ER stress [81,82]. Although fully differentiated T84 cells do not express Gb3 and are resistant
to Stx [82], the long-term exposure of T84 cells to Stx2 during in vitro organ culture (IVOC)
induces internalization and damage [83]. Dysbiosis due to EHEC colonization of the intestine
is also affected by Stxs. For example, Stx2 may be involved in increasing the colonization
capacity of EHECs by increasing the expression of necleolin in HEp-2 cells [84]. Moreover, a
Stx2 neutralizing antibody has been reported to protect mice against weight loss and death by
reducing EHEC colonization [85]. These studies suggest that this toxin is the single substance
involved in promoting bacterial intestinal infections and exacerbating disease. In addition,
Stx1 was found to modulate the expression of galetin-3, which is associated with sodium
absorption in the intestine and may contribute to diarrhea [86]. The Stx-induced inflammatory
responses of IECs may enhance colonization by EHECs [55,87]. Compared with homologous
mutations without the Stx gene in rabbit colon epithelium, wild-type EHEC modulates more
diverse transcriptome responses and regulates cytokine gene expression [88].

Stxs stimulate the release of pro-inflammatory cytokines by various host cell types,
including those in the endothelium [89]. Serum concentrations of IL-8, MCP-1, and G-CSF
have been reported to be higher in pediatric patients with HUS than in controls, with
these concentrations associated with disease severity [90–92]. E. coli O157:H7 enteritis was
associated with the production of GRO-α, MIP-1β, and MCP-1 in blood, regardless of the
occurrence of HC or HUS [93]. STEC infection-associated alterations in the expression of
cytokines and chemokines at specific cellular levels is important for understanding the
disease. A study assessing the effects of infection of IECs with STECs (97-3250: STEC O26:
H11, 4865/96: STEC O145: H28) and HS (commensal E. coli O9:H4) on the expression of
cytokine mRNA and protein found that 97-3250 promoted greater polymorphonuclear
leukocytes (PMN) penetration than 4865/96 or HS by upregulating the expression of vari-
ous chemokines, including CXCL8/IL-8, and by enhancing PMN chemotaxis. Moreover, of
the strains tested, 97-3250 had the greatest effect on gene expression [60]. The presence of
polymorphonucleocytes (PMNs) in the stool is considered a risk indicator for the develop-
ment of HUS. Several invasive pathogens, including STEC, cause fever and inflammatory
diarrhea, which is characterized by a high level of PMNs in stools [94]. Increases in the
numbers of macrophages and leukocytes, as well as neutrophils, are associated with disease
development [90,95].

4. Effects of Probiotics on STEC and Stxs in the Gut

E. coli is mainly found in the intestinal cecum and colon of mammals and resides in the
mucosal layer, from which it moves into the intestinal lumen and is excreted into the feces.
Pathogenic E. coli-mediated diseases, such as food poisoning, intestinal tissue damage, and
particularly bloody diarrhea in young children, are major concerns in public health and
medical expense-related economic problems worldwide. More importantly, certain strains
of STEC in the gut may cause severe extraintestinal or extrarenal illnesses in humans.
Certain Gb3-expressing cell types in the gut, such as Paneth cells, may serve as portals
for ingress of Stxs. Several epidemiological studies have shown that infection with STEC
isolates expressing Stx2a is more pathogenic than infection with strains producing Stx1a or
Stx1a+Stx2a [4,33,36]. Infection with strains producing Stx2a may lead to extraintestinal
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complications, although the cause of the latter is likely to be multi-factorial and can include
the constitutive regulation of stx gene expression; antibiotic usage during the prodromal
diarrheal phase, inducing the phage-mediated lytic cycle; the presence or absence of
additional E. coli virulence factors; and variations in host responses to toxins, which all
contribute to the outcome of infection. Moreover, stx genes are carried in the genomes of
temperate phages [96,97], located in the late gene region downstream of the late promoters
and upstream of the lysis cassette, highly expressed upon activation of phage-mediated
lytic cycle and the toxin subunits assembled in the periplasm are secreted by the lytic
cycle [98]. Therefore, antibiotics are not recommended for patients with HUS because
they activate the phage-mediated lytic cycle in STEC [99] that lyses bacterial host cells
to release Stxs and free phage particles that can infect other bacteria and transduce stx
genes [100–105]. Given that antibiotic therapy is not indicated for these reasons, besides
numerous therapeutic approaches utilizing Stxs-specific neutralizing antibodies, toxin
receptor analogs, and vaccinations [106], studies have attempted to increase the population
of intestinal microbiota that can inhibit STEC colonization and/or Stx expression (Table 1,
Figure 3), thereby limiting HUS development.

Table 1. Abilities of probiotics to regulate Stx production and STEC virulence.

Effect Activity Mediator Model Intestine
In-/Out-Side Genus Species Ref

Inhibition

Inhibit growth of E.
coli O157:H7

Butyric, lactic acid Gnotobiotic mice Inside Clostridium butyricum [78]

N/D Gnotobiotic mice Inside Bacteroides fragilis [107]

N/D Gnotobiotic mice Inside Lactobacillus reuteri [108]

N/D Cattle Inside Lactobacillus acidophilus [109]

N-acetylglucosamine (NAG)
and N-acetylneuraminic

acid (NANA)

BALB/c mice
Bovine rumen Inside Bacteroides thetaiotaomicron [110]

Reuterin fluid Inside Lactobacillus reuteri [111]

Reduce autoinducer-2 (AI-2)
production E. coli O157:H7 N/D Lactobacillus acidophilus [112]

Hydrogen peroxide Raw chicken
meat N/D Lactobacillus lactis [113]

Lactic acid E. coli O157:H7 N/D Lactobacillus casei [114]

Decrease pH E. coli O157:H7 N/D Bifidobacterium bifidum [115]

Acetic acid BALB/c mice Inside Bifidobacterium breve [116]

Nutrition competition
(carbon, nitrogen) Lettuce N/D Enterobacter asburiae [117]

Production of anti-Stx1 and
-Stx2 IgA in the colon Infant rabbits Inside Lactobacillus casei [118]

IgA BALB/c mice Inside Bifidobacterium thermacidophilum [119]

Regulate host
immunity

Upregulate intestinal anti-E.
coli IgA responses BALB/c and

C57BL/6 mice Inside Lactobacillus rhamnosus [120]
Blood leukocyte activity

Inhibit translocation of E. coli
O157:H7

Production of anti-Stx1 and
-Stx2 IgA in the colon Infant rabbits Inside Lactobacillus casei [118]

Increase phagocytic activity BALB/c and
C57BL/6 mice Outside Bifidobacterium lactis [121]

Increase production of IgA
against E. coli O157:H7

BALB/c and
C57BL/6 mice Inside Bifidobacterium lactis [121]

Increase production of IgG
and IgM against E. coli

O157:H7
BALB/c mice Outside Bifidobacterium thermacidophilum [119]

IgA BALB/c mice Inside Bifidobacterium thermacidophilum [119]



Toxins 2021, 13, 416 9 of 19

Table 1. Cont.

Effect Activity Mediator Model Intestine
In-/Out-Side Genus Species Ref

Reduce Stx
production

N/D Gnotobiotic mice Inside Bifidobacterium infantis [75]

N/D Gnotobiotic mice Inside Bifidobacterium longum [75]

Butyric, lactic acid Gnotobiotic mice Inside Clostridium butyricum [78]

N/D Gnotobiotic mice Inside Bacteroides fragilis [107]

Acetic acid BALB/c mice Inside Bifidobacterium breve [116]

Production of anti-Stx1 and
-Stx2 IgA in the colon Infant rabbits Inside Lactobacillus casei [118]

N/D E. coli O157:H7 N/D Bacteroides thetaiotaomicron [122]

Uptake vitamin B12 E. coli O157:H7 N/D Bacteroides thetaiotaomicron [123]

Suppress kidney
necrosis induced by

E. coli O157:H7
N/D Gnotobiotic mice Inside Lactobacillus reuteri [108]

Repress T3SS of E.
coli O157:H7 NANA and NAG E. coli O157:H7 N/D Bacteroides thetaiotaomicron [110]

Reduce intestinal
injuries after E. coli
O157:H7 infection

Production of anti-Stx1 and
-Stx2 IgA in the colon Infant rabbits Inside Lactobacillus casei [118]

Increased production of IgG
and IgM against E. coli

O157:H7
BALB/c mice Inside Bifidobacterium thermacidophilum [119]

Inhibit stx2 phage
particle release N/D E. coli O157:H7 N/D Bacteroides thetaiotaomicron [122]
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Damage of E. coli O157:H7
DNA using DNase colicins E. coli O157:H7 N/D Escherichia coli [131]

Increase the
expression of the

virulence genes of E.
coli O157:H7

Regulate Cra, a transcription
factor for virulence genes of

E. coli O157:H7

C3H/HeJ mice Inside Bacteroides thetaiotaomicron [132]
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loss after infection E. coli O157:H7 Inside Bacteroides thetaiotaomicron [132]
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the translocon of the T3SS E. coli O157:H7 N/D Bacteroides thetaiotaomicron [133]
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Figure 3. Overview for the Resistance Mechanism of gut microbiota to STEC Infection. The resistance of microbial guns to
control STEC works in several ways, and the diagram shows the role of each bacterium in STEC. Bacterioides inhibit Stx
production, control direct bacteria and inhibit the colonization of STEC. Bifidobacterium also inhibits STEC colonization and
controls STEC proliferation through acetic acid and IgA. Lactobacillus is involved in inhibiting STEC proliferation through
the production of hydrogen peroxide, lactic acid, IgA, and leukocyte activity. Pediococcus, Clostridium, and Enterobacter are
involved in inhibiting STEC proliferation or controlling Stx production.

4.1. Inhibitory Effects of Microbiota on STEC
4.1.1. Inhibition of E. coli O157:H7 Growth

Bacteroides strains, which are abundant in human gut microbiota, are the most studied
commensal bacteria against E. coli O157:H7. For instance, intestinal E. coli O157:H7 colo-
nization was significantly lower in gnotobiotic mice pre-colonized with Bacteroides fragilis
(B. fragilis) [107]. Due to the reduced colonization of E. coli O157:H7 in the intestines of mice
pre-colonized with B. fragilis, the translocation of E. coli O157:H7 to other organs such as the
kidneys, heart, liver, and spleen was significantly lower than in mice with non-commensal
bacteria, leading to increased survival outcomes against E. coli O157:H7 [107]. Similar to
Bacteroides strains, Lactobacilli such as Lactobacillus reuteri (L. reuteri) also have inhibitory
effects against E. coli O157:H7 colonization independent of the antimicrobial compound
reuterin, suggesting that L. reuteri has a direct role in protecting against EHEC [108]. The
colonization of E. coli O157:H7 was decreased, and subsequently, the necrosis of the kidneys
and weight loss were significantly ameliorated in L. reuteri-fed mice [108]. Cattle that were
fed Lactobacillus acidophilus (L. acidophilus) also showed the inhibition of E. coli O157:H7
colonization in the feces [109].

In addition to the direct role of microbiota against the colonization of E. coli O157:H7,
indirect roles such as the secretion of molecules, modulation of pH, and competition for
nutrients have been reported to suppress the growth of EHEC. For instance, intestinal
N-acetylglucosamine (NAG), which is derived from the degradation of commensals such
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as Bacteroides thetaiotaomicron (B. thetaiotaomicron) by mucin, inhibits the colonization of
BALB/c mouse intestines by E. coli O157:H7 and represses the expression of T3SS-encoding
genes [110]. Reuterin, which was converted from glycerol by L. reuteri, completely sup-
pressed the growth of E. coli O157:H7 incubated in bovine rumen fluid [111]. L. acidophilus
strain La-5 was also found to control the transcription of E. coli O157:H7 genes associated
with colonization by secreting molecules that act as QS signal inhibitors or interact di-
rectly with regulators of bacterial gene transcription [112]. Hydrogen peroxide produced
by Lactobacillus lactis [113] and lactic acid produced by Lactobacillus strains [136] were
found to significantly reduce the colonization of E. coli O157:H7, the latter by altering
pH [114]. Likewise, yoghurt containing Bifidobacterium bifidum (B. bifidum) was found to
inhibit colonization by E. coli O157:H7, followed by a reduction in pH [115]. Mice adminis-
trated E. coli O157:H7 and the acetic acid-producing Bifidobacterium breve (B. breve) show
significantly reduced amounts of E. coli O157:H7 in the feces, leading to higher survival
rates and body weight than mice administrated E. coli O157:H7 alone, suggesting that the
acetate secreted by B. breve lowered the pH in the intestines and thus inhibited disease
pathogenesis [116]. Butyrate-producing Clostridium butyricum (C. butyricum) inhibits the
growth of E. coli O157:H7 and reduces its lethality in gnotobiotic mice [78]. Another novel
butyrate-producing bacteria, Anaerostipes butyraticus, was found in low-E. coli O157:H7-
shedding calves and cattle, suggesting that butyrate-producing bacteria in the GI tract can
be used to treat E. coli O157:H7 infection [137]. Similarly, other butyrate-producing bacteria,
such as strains of Porphyromonadaceae [138], Lachnospiraceae [139], Ruminococcaceae [140],
and Clostridium sartagoforme [141], increased with age in cattle, suggesting a relationship
between the attachment/shedding of E. coli O157:H7 and butyrate-producing bacteria [137].
Competition for nutrients by probiotics was reported to inhibit the colonization of E. coli
O157:H7. Enterobacter asburiae reduced E. coli O157:H7 survival 20- to 30-fold on lettuce by
competition for carbon and nitrogen substrates [117].

4.1.2. Regulation of the Host Immune System

Commensal microbiota not only inhibit E. coli O157:H7 growth but also regulate
host immune responses to reduce the pathogenesis of HUS. For example, mice infected
with E. coli O157:H7 and fed Lactobacillus rhamnosus (L. rhamnosus) HN001 show increased
intestinal anti-E. coli IgA responses [120]. In addition, blood leukocyte activity was higher
in L. rhamnosus HN001-fed mice than in controls, leading to the decreased translocation
of E. coli O157:H7 and associated lethality [120]. Similarly, infant rabbits administered
Lactobacillus casei (L. casei) and infected with E. coli O157:H7 show increased levels of IgAs
against Stx1, Stx2, and E. coli O157:H7 in the intestines [118]. L. casei-fed infant rabbits
show decreased diarrhea, damage of the intestinal mucus, and colonization of E. coli
O157:H7 independent of pH and fermented products such as lactic acid, suggesting that
L. casei enhances local immune responses to E. coli O157:H7 [118]. Similar to Lactobacilli,
Bifidobacteria also enhance the host immune response to E. coli O157:H7. The proportions
of phagocytically active cells in the blood and peritoneum were significantly higher in
Bifidobacterium lactis (B. lactis)-fed mice infected with E. coli O157:H7 than in controls [121].
In addition, the level of intestinal IgA against E. coli O157:H7 was higher in B. lactis-fed
mice than in controls, which may help to inhibit the translocation of E. coli O157:H7 [121].
The levels of serum IgG and IgM, intestinal IgA antibodies against E. coli O157:H7, were
also higher and the levels of fecal E. coli O157:H7 and intestinal injuries were lower
in Bifidobacterium thermacidophilum-fed mice than in control mice, leading to decreased
lethality [119].

4.1.3. Reduction of Stx Production, Gene Expression, and Stx Phage Particle Release

B. thetaiotaomicron produces a soluble factor with a molecular weight <3 kDa that
inhibits the SOS response of E. coli O157:H7 mediated by RecA and consequently inhibits
Stx2 phage particle release and Stx2 synthesis independent of pH [122]. B. thetaiotaomicron
also inhibited the production of Stx2 by E. coli O157:H7 via uptake of vitamin B12 [123].
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Interestingly, mutated B. thetaiotaomicron, which does not express an outer membrane
receptor for vitamin B12, did not significantly inhibit the production of Stx2 by E. coli
O157:H7, suggesting that vitamin B12 is essential for activating the LEE operon of the
latter [123]. B. thetaiotaomicron also inhibits Stx phage production in E. coli O153:H25,
which may reduce the production of Stxs [124]. Moreover, the reduction of the pH due
to the production of organic acids by probiotics such as Pediococcus pentosaceus, L. rham-
nosus GG, and Bifidobacterium thermophilum reduces the gene expression of Stx2 in E. coli
O157:H7 [125]. B. fragilis-fed gnotobiotic mice also have a decreased level of Stxs in their
feces, leading to reduced lethality [107]. B. breve, which reduces lethality in mice infected
with E. coli O157:H7, inhibits Stx production due to a reduced intestinal pH and a higher
concentration of acetic acid [116]. Bifidobacterium infantis and Bifidobacterium longum also
reduce production of Stxs in the intestines of gnotobiotic mice [75]. C. butyricum, which
reduces lethality induced by E. coli O157:H7 in gnotobiotic mice, decreases the fecal level
of Stxs [78]. L. casei-fed infant rabbits demonstrated decreased level of Stxs in the large
intestines due to anti-Stx1 and -Stx2 IgA antibodies in the colon [118].

4.1.4. Reduction of A/E Lesions

Interestingly, it is reported that Lactobacillus strains reduce the pathogenesis of E. coli
O157:H7 by reducing A/E lesions. For instance, the cell-free spent medium (CFSM) of
L. acidophilus decreased attachment of E. coli O157:H7 to epithelial cells in vitro such as
HeLa and HEp-2 cells, suggesting that the CFSM may block QS mechanisms in EHEC [126].
The biologically active fraction of the CFSM of L. acidophilus also reduces attachment of
E. coli O157:H7 to the intestinal epithelium of ICR mice and subsequently decreases body
weight loss [126]. Similar to the CFSM of Lactobacilli, the surface-layer protein extracts
of Lactobacillus helveticus (L. helveticus) decreased the A/E lesions of E. coli O157:H7 and
preserved the barrier function of the monolayers of HEp-2 and T84 cells in vitro [127]. In
addition, L. rhamnosus inhibits the adhesion of E. coli O157:H7 to Hep-2 and T84 cells by
adhering to these cells, thereby reducing the A/E lesions of E. coli O157:H7 [128].

4.2. Enhancing Effects of Microbiota on STEC
4.2.1. Enhancement of Stxs Production

It is reported that the incubation of nonpathogenic phage-susceptible E. coli with toxin-
encoding phages resulted in up to a 40-fold greater production of toxin when compared
with lysogens alone, suggesting that nonpathogenic phage-susceptible commensal E. coli
may play a role in the pathogenesis of HUS [129]. Similarly, intestinal Stx production was
upregulated in CD-1 mice colonized with nonpathogenic phage-susceptible E. coli after
infection with E. coli O157:H7 [130]. Moreover, the DNase colicins (E8/9) produced by
some strains of nonpathogenic E. coli were found to increase Stx2 production from 8- to
64-fold compared with controls via the activation of an SOS response causing damage to
E. coli O157:H7 DNA [131].

4.2.2. Increased Expression of E. coli O157:H7 Virulence Genes

In addition to commensal strains of E. coli, strains of other probiotic species have
been found to enhance the pathogenesis of E. coli O157:H7. Bacteroides, the abundant
type of bacteria in human intestines [142], was found to enhance the virulence of E. coli
O157:H7 as well as disease progression, although the inhibitory effects of Bacteroides against
E. coli O157:H7 are well-known (Section 4.1). For instance, B. thetaiotaomicron increased
the expression of E. coli O157:H7 virulence genes such as ler, the master LEE regulator,
by regulating the transcription factor Cra, which is responsive to fluctuations in sugar
concentrations [132]. Moreover, the in vitro addition of succinate, a major by-product
of Bacteroides [143], increased the expression of the LEE-encoded protein EspA in E. coli
O157:H7 but not in the cra mutant, suggesting an interplay between succinate and Cra [132].
Due to the increased expression of E. coli O157:H7 virulence genes, treatment of B. thetaio-
taomicron-reconstituted C3H/HeJ mice with antibiotics resulted in significant weight loss
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following infection of Citrobacter rodentium, a natural mouse pathogen homologous to E. coli
O157:H7 [132].

4.2.3. Increased Colonization of E. coli O157:H7

Along with the secreted molecules such as succinate, the proteases secreted by Bac-
teroides were found to enhance the processing of the T3SS of E. coli O157:H7, increasing
effector translocations and A/E lesion formation on host cells, which enhances the coloniza-
tion of E. coli O157:H7 [133]. Furthermore, the fucose produced by B. thetaiotaomicron via
multiple fucosidases that cleave fucose from host glycans in the intestines also enhances the
colonization of E. coli O157:H7 [134]. A two-component signal transduction system named
FusKR in E. coli O157:H7, in which FusK is the histidine sensor kinase and FusR is the
response regulator, senses fucose and controls the expression of E. coli O157:H7 virulence
genes, leading to robust colonization of E. coli O157:H7 [134].

4.2.4. Increased Motility of E. coli O157:H7

Interestingly, a multi-omics study using an organ-on-a-chip microfluidic culture found
that four human microbiome metabolites, 4-methyl benzoic acid, 3,4-dimethylbenzoic acid,
hexanoic acid, and heptanoic acid, induced the expression of E. coli O157:H7 flagellin,
which contributes to the pathogenesis of HUS [135]. These metabolites, however, did
not alter colonization by E. coli O157:H7 or the concentration of Stx1, suggesting that
metabolites derived from the human microbiome induce the pathogenesis of HUS, not by
colonization and toxin production but by enhancing bacterial motility [135].

4.2.5. Increased Expression of Toxin Receptors on Host Cells

Mice fed a HFD containing 10% guar gum showed elevated levels of butyrate, which
is derived from fiber by their microbiota. In contrast to the ability of butyrate to inhibit the
pathogenesis of E. coli O157:H7, the high concentrations of butyrate in HFD-fed mice were
found to enhance E. coli O157:H7 colonization and lethality, as well as weight loss [45].
Elevated concentrations of butyrate produced by normal gut microbiota in HFD-mice also
enhanced the expression of Gb3, the receptor of Stxs, suggesting that normal gut microbiota
may indirectly enhance the pathogenesis of HUS [45].

5. Conclusions and Future Perspectives

Attempts to identify Stxs-induced risk factors in host cellular responses have re-
vealed that these toxins have a wide range of novel properties that are associated with
pathogenesis. Although studies have described Stx-induced signaling pathways that are
associated with tissue damage, inflammation, and complement activation resulting from
the immunopathological responses to these bacterial toxins, many details on the interfaces
between STEC and commensal microbiota (Figure 3) remain to be determined. In par-
ticular, no coherent mechanism to date has defined the targets for intervention in HUS
disease progression that might explain the dynamic immune modulation, or the mediators
of inflammation associated with Stxs interacting with commensal gut microbiota. Addi-
tional studies are needed to better understand the intricate pathophysiology involving
Stxs-associated bacterial communities in the gut. The precise mechanism by which changes
of intestinal microbiota in response to EHEC Stxs may enhance host defense or exacerbate
multi-organ damage warrants further investigation. These studies may help to identify
potential targets for the disruption of innate immune responses or the protection of primary
organs from damage induced by Stx1a and Stx2a.
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