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Abstract: Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical
and clinical settings for various diseases. MSCs have been used in treating degenerative disorders
pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa,
diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of
MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often
resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible
strategy options to enhance treatment outcomes with MSC therapy. We will review the application
of various types of biomaterials and advances in nanotechnology, which have been employed on
MSCs to augment cellular function and differentiation for improving treatment of visual functions.
In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes
that are important for modulation of ocular tissue function and repair will be highlighted.
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1. Introduction

The human retina is organized into layers of cells comprising of six unique neurons, namely,
rod and cone photoreceptors, ganglion cells, bipolar cells, amacrine cells, and horizontal cells [1].
Together, the retinal neurons process visual signals and form a relay of synaptic transmission, known as
photo-transduction, to the visual cortex in the brain. The proper working coordination and condition of
these neurons are maintained by the retinal pigmented epithelial (RPE) cells. Any injury or pathology
in the eye may lead to the death of retinal neurons, mainly photoreceptors and RPE cells. The loss of
these cells is non-replaceable and could contribute to irreversible visual impairment or blindness [1].
Hence, most of the current studies have targeted the regeneration of the photoreceptors or engineering
functional RPE layers.

The idea of using stem or precursor cells has emerged in the last decade as a leading approach in
regenerative medicine to address ocular disease [2,3]. In this context, mesenchymal stem cells (MSCs)
are the most favored candidates for cellular therapy in the correction of ocular disorders [4], including
those diseases that are complicated by fibrosis [5,6]. MSCs is a type of adult stem cell which is capable of
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renewing itself and differentiating into multiple functional cell phenotypes, such as bone, cartilage, fat
cells, and others [7]. MSCs were initially discovered in the bone marrow, however, further studies have
reported successful isolation and cell expansion from other sources, such as umbilical cord Wharton’s
jelly [8–10], amniotic fluid [11], dental pulp [12], and adipose tissue [13]. MSC from these origins
circumvent the invasive isolation procedure of conventional bone marrow MSCs and are considered
hypoimmunogenic [1], thus supporting the use of allogeneic MSCs in regenerative medicine.

Although MSCs are characterized by the expression of a classical set of cell surface antigens (CD90,
CD73, CD105, and CD44) [1] and display multilineage differentiation potential, studies reported that
different cell sources exhibit unique biological and molecular identities [14,15]. In a recent study, flow
cytometric analysis displayed a variation in CD106 (VCAM-1; immunomodulatory effect) expression
in different sources of MSC. For example, the expression of CD106 was found to be present in 81% of
the MSCs population isolated from the chorionic plate, while dental pulp MSCs showed an absence
of this marker [15]. In addition, the author also noticed a discrepancy in the secretion of cytokines.
The hepatocyte growth factor (HGF) and transforming growth factor-beta 1 (TGF-β1) were highly
expressed by MSCs derived from the chorionic plate. Meanwhile, angiopoietin-1 (Ang-1) and vascular
endothelial growth factor (VEGF) were secreted largely by dental pulp MSCs [15]. Thus, it is crucial to
understand these biological disparities before selecting the best source for cell isolation in order to
tackle different pathologies in the eye.

The possible cellular mechanisms utilized by MSCs in correcting ocular disorders have been
intensively reviewed. We also described that MSCs could either directly differentiate into retinal
neuron cells or stimulate tissue repair by protecting them from further cell apoptosis, modulation of
inflammation, and angiogenesis through its secretory molecules [1]. For example, a study by Sun et al.
reported that MSCs grafted in retinal degeneration 1 (rd1) mice could intervene photoreceptor cell
apoptosis under the influence of MSCs secretion of pigment epithelium-derived factor (PEDF) [16].
In a rat model of ocular hypertension, the administration of MSCs was reported to relieve intraocular
pressure and enhance progenitor cell proliferation [17]. Furthermore, a study demonstrated the
generation of photoreceptor-like cells through the direct culture of MSCs with the conditioning medium
derived from RPE cultures [18]. Using an MSC/RPE co-culture system, Duan et al. (2013) also evidenced
that MSCs were able to adopt the physical and functional characteristics of RPE cells, as observed by
the significant expression of CRALBP, RPE65, and ZO-1, and the phagocytosis of photoreceptor outer
segments [19].

In our recent review [20], we highlighted the limitations of the current management of eye
infection using anti-inflammatory and antimicrobial drugs and surgical approaches. In the same
review, we discussed that MSCs excrete human cathelicidin antimicrobial peptide-18 (hCAP18), which
has been clinically tested for the treatment of infectious meningitis. It was reported that this peptide
molecule could provide protection against infection by viruses, fungus, Gram-negative (Escherichia coli
and Pseudomonas aeruginosa), and Gram-positive (Staphylococcus aureus) bacteria. Moreover, MSCs are
currently being evaluated for the treatment of organ dysfunction associated with sepsis, including
cytomegalovirus infection in clinical settings [20].

Notwithstanding the therapeutic potentials of MSCs, several issues have been raised about current
conventional approaches (Figure 1), whereby cells administered in an aqueous medium generally
resulted in poor transplanted cell survivability [21,22]. Direct MSC transplantation also yielded
unspecific dispersion of cells at the site of injection [23] that could indirectly hamper MSC therapeutic
outcomes. The method used for the culture expansion of MSCs prior to administration could also
impact the treatment efficiency. For example, a hypoxic culture condition was shown to produce
a smaller cell size [24] with improved migration compared to a normoxic culture condition [24].
A substantial advance in our understanding of the regulatory machinery and beneficial secretory
proteins of MSCs have paved the way for further development of the technique. Harnessing the
potential of biomaterials and tissue engineering [12,25–29], nanotechnology [30–33], and genome
engineering [10,34–43] to maximize MSCs therapeutic insight for stem cell replacement therapy holds
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potential for further leaps in using MSC in stem cell therapy. For a clinical translatable stem cell
therapy for ocular degenerative disorders, integration of tissue engineering approaches will overcome
limitations associated with low transplanted cell survivability [21,22] and cell dispersion [23], and
further encourage a targeted delivery system in the transplanted MSCs.
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Figure 1. Current failures in cell therapy. (A) The patient’s age and mechanical and pathological
conditions are among the factors that affect the therapeutic potential of cell therapy. In particular,
transplanted cell survival may be affected by (i) mechanical stress during the transplantation procedure;
(ii) a harsh microenvironment due to the activation of inflammation-related factors; (iii) oxygen and
nutrient starvation due to poorly vascularized environments at the site of implantation; and (iv) a lack
of optimization of the delivery protocols. (B) The benefits of cell transplantation could be improved by
donor cell preconditioning or modifying transplanted cells prior to implantation to support or enhance
their resistance to hypoxic stress. (C) The tissue engineering approach could enhance the survival of
transplanted cells through the use of suitable biomaterials as carriers, such as a biologic-derived ECM
scaffold. O2 = oxygen; Bcl-2 = B-cell lymphoma 2; EPO = erythropoietin.

2. The Chemistry of Biomaterials and Tissue Engineering in MSC Replacement Therapy

The incorporation of bioengineered scaffolds (also referred as matrices or constructs) in stem cell
therapy has emerged as an artificial supporting platform that emulates the physiological niche of the
transplanted cells and the biological response of the recipient [44]. Given that the composition that
makes up the scaffold bypasses enzymatic degradation in the human body, it can be selectively tailored
to mimic the endogenous extracellular matrix by providing a feasible delivery system for MSCs and
other essential biomolecules [26,44,45]. These scaffolds are derived from biomaterials of either natural
(collagen, fibrin, silk, hyaluronic acid) [12,25,46–48] or synthetic (poly (D, L-lactic-co-glycolic acid);
PLGA, poly(methyl methacrylate); PMMA, poly(ε-caprolactone); PCL) [49–51] origin, which forms
a three-dimensional (3D) structure made of the interconnected network.

Several substrates incorporated into condition MSCs from procurement to transplantation [52,53]
were shown to strengthen cell-to-cell and cell-to-biomaterial interactions [44,54] and further guided
MSC differentiation through the action of local chemical cues [55] (Figure 2). It has been suggested that
the topography, mechanical stresses, biocompatibility, degradability, and elasticity of nanomaterials
on which the cells adhere will greatly affect cellular functions and differentiation potentials [26,44,45].
A recent study reported that MSCs embedded on a synthetic nanofiber scaffold resulted in
the attenuation of oxidative damage in the model of alkali-induced degenerating rabbit corneal
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epithelium [25]. Following to MSC-nanofiber scaffold transplantation, the author observed a profound
reduction in the activity of pro-inflammatory cytokines, including matrix metallopeptidase 9 (MMP-9),
inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor (VEGF) along with the
decline in corneal transparency and thickness as compared to MSCs transplanted alone [25].
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Figure 2. Strategies for empowering mesenchymal stem cells for ocular degenerative disorders.
(A) The development of biomaterials can be utilized with or without the addition of growth factors or
cytokines that may selectively promote multipotent mesenchymal stem cells (MSCs) either to restore
or differentiate into desired cells. (B) Biomaterial can also be 3D-printed to form a sheet or layer
of cells that resembles the local environment of the damaged site (Right). (C) MSCs can also be
encapsulated or coated with nanoparticles of various sizes or origins to enhance the native property of
MSCs. (D) Genetic modification of MSCs can be achieved by introducing MSCs with genes containing
beneficial trophic factors or cytokines that could affect the physiological behavior of MSCs.

With regard to naturally-derived polymer, intravitreal delivery of MSCs encapsulated in
a biodegradable hyaluronic acid-based hydrogel was found to attenuate vascular injury and rescue
retinal ganglion cell (RGC) from cell death in the model of retinal ischemia-reperfusion [26]. It was
reported that the suppressive effect of MSC was mediated by the downregulation of pro-inflammatory
cytokines activity [26]. While MSCs delivered in PBS were mainly dispersed in the vitreous body,
the transplanted MSCs embedded in the hydrogel scaffold predominantly localized around the basal
membrane of the Műller glia and concomitantly induced the local release of neurotrophic factors,
including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) from Műller glia
cells [26].

Meanwhile, several studies evinced that probing MSCs with polymeric scaffolds improved the
regeneration capacity of MSCs into the desired retinal cell types. For example, bio-compatible fibrin
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hydrogel was observed to direct dental pulp-derived MSCs cell fate into retinal ganglion-like cells
in vitro [12]. The differentiated MSCs cultured in induction medium supplemented with fibroblast
growth factor 2 (FGF2), sonic hedgehog (Shh), and fetal bovine serum (FBS) were observed to have an
increased expression of transcription factors essential for RGC cell fate specification, such as paired
box protein 6 (Pax6), atonal bHLH transcription factor 7 (Atoh7), and brain-specific transcription factor
3b (Brn3b), as compared to their culture in the absence of hydrogel [12]. Similar finding previously
illustrated an enhanced differentiation potential of bone marrow-derived MSCs into retinal-like neurons
following culture induced with a biopolymer-based scaffold made up of silk fibroin-conjugated with
integrin-binding laminin peptide motifs under retinoic acid stimulation [27]. This approach was
found to circumvent shortfalls of using whole laminin protein, such as poor stability and cost, while it
exemplified the MSC adherence and proliferation rate in the presence of glycine amino acid found
within silk fibroin [27]. More recently, it was suggested that MSCs isolated from the trabecular
meshwork displayed a greater shift into photoreceptor cell fate when cells were seeded onto the
amniotic membrane scaffold, in comparison to conventional polystyrene culture [56]. Thus, with the
incorporation of polymeric scaffolds, we have evidenced its use in probing MSC differentiation and
reparative effects, which enables an effective transplantation strategy in the future, especially when
MSCs were to be delivered into a hypoxic microenvironment [28].

Until recently, the introduction of three-dimensional (3D) bio-printing has been used substantially
in various fields of architecture, art, and even in medicine to produce 3D models for medical
imaging [57]. Bio-printing employs biological components and living cells in ‘bioinks’ to construct
viable 3D structures that closely resemble the anatomy and physiology of the human tissue [58].
Few studies have also explored the use of 3D bio-printing on neural and retinal tissues [59–63].
A study done by Lorber et al. [61] showed that adult rat retinal ganglion cells and glial cells could
be 3D-printed using the piezo inkjet printing technology without significant loss in cell viability.
Interestingly, Kolesky et al. [64] successfully constructed a heterogeneous population containing cells,
extracellular matrix, and even vascular tissue through 3D bio-printing. This method could be adapted
to construct vascularized retinal tissues that could better recapitulate the in vivo physiology of the
retina. Since the conventional monolayer MSC culture techniques lack the capacity to produce a high
number of functional RPE and retinal cells [65], 3D bio-printing can be a useful technique to generate
transplantable MSC-derived retinal tissue for the treatment of ocular disorders. Using 3D bio-printing
technology, MSCs can be triggered to differentiate into retinal cells and culture on a biomaterial
platform for fabrication into a functional 3D retinal tissue structure.

Furthermore, co-printing using a thermal-based approach may serve as an efficient transfection
tool to deliver therapeutic agents which may influence cell survivability, proliferative, and regenerative
capabilities [66–68]. Cui et al. [66] previously observed that cell printing causes a transient pore opening
on the cell membrane of printed cells, which was found to facilitate transfection of plasmid encoding
for green fluorescent protein (GFP) without compromising cell viability [67,68]. This strategy can be
employed on MSCs to achieve a successful delivery system of functional genes or nanocarriers that
minimizes issues related to cell incompetency and toxicity [69,70]. The combination of MSCs therapy
with bio-printing technology will thus create a patient-specific therapy through the customization
of fabricated retinal tissue prototype in the near future and, further supporting the development of
targeted therapy in MSCs.

3. Crosslinking Nanotechnology with Mesenchymal Stem Cells

Nanotechnology revolutionized the use of technology in physics, chemistry, and biology for the
creation of nanoscale materials. The involvement of nanotechnology for cell imaging and therapy has
aided researchers to monitor the fate of transplanted cells, as well as enabled the local delivery of growth
factors and drugs [30,31]. This could be manipulated to assist in identifying the causes responsible for
the discrepancy in therapeutic outcomes between patients when subjected to MSC therapy [71], and
hence provide a qualitative and quantitative evaluation of the efficiency of transplantations.
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The application of nanotechnology has been demonstrated in pre-clinical settings as a targeted
cancer therapy. It is helpful to oncologists tracking the residential and metastasized malignant cells
to elucidate treatment efficiency [41,42]. A previous study has shown that gold nanoparticles could
selectively target tumor-associated antigen on the cancerous cells through conjugation with specific
antibodies. Exposure to photo-thermal energy on the nanoparticles could raise the temperature of the
cancerous cells, and hence, it causes the destruction of these heat-sensitive cells. This strategy could
prevent unnecessary damage to adjacent healthy tissue, a complication which is usually associated
with other treatments such as chemo- or radio-therapy [9,39].

It is noteworthy that the co-labeling of MSCs with nanoparticles may offer a novel strategy for
the treatment of eye cancers associated to choroidal melanoma [43] and retinoblastoma [44,45]. MSCs
possess the ability to home towards tumor cells [46–48], and the destruction of MSCs can lead to the
release of beneficial cytokines and trophic factors [49–51], which would further promote the local
recovery and regeneration of injured tissue. A recent study has examined the feasibility of labeling
MSCs with gold nanoparticles prior to subretinal transplantation into a rat model [9]. The authors
indicated that there was no physical alteration in labeled MSCs which allowed real-time monitoring
of the cell localization using micro-computed tomography [9]. The combinational therapy using
nanoparticles and MSCs may thus provide a fundamental approach to achieve a synergistic effect for
the treatment of ocular cancer.

Alternatively, magnetic-based nanoparticles have been considered as a potent cell or drug carrier
as their bioreactive surfaces can be formulated to attain a stronger interaction towards the targeted site
while imposing minimal damage to the healthy tissue [72]. Ferumoxytol is a type of SPIO nanoparticle
which has long been approved by the US Federal Drug Administration for use in anemia patients [73].
Previous studes have demonstrated successful tracking of engrafted MSCs in the rat model of optic
nerve crush by the use of superparamagnetic iron oxide (SPIO) nanoparticles and magnetic resonance
imaging [11]. It was detected that MSCs mainly resided around the injured sites of the vitreous
body and optic nerve, and thus permits long-term assessment of MSCs in vivo [11]. According to
Liu et al., ferumoxytol can be used to establish a new strategy for labeling MSCs and that cell labeling
is dependent on MSC cell size [71]. Nevertheless, it was shown that MSC pre-labeled with ferumoxytol
displayed a relatively high engulfment by macrophages upon in vivo administration into a rat model
of cartilage defect with greater phagocytosis in apoptotic MSCs, which releases iron oxide. These
intracellular nanoparticle delivery systems are typically not high-throughput [74] and have been shown
to cause significant cellular injury and death [75].

4. Genetic Modifications to Deliver Therapeutic Genes

Incorporation of gene editing technology into stem cells for the treatment of ocular disorder due
to defective genes or to correct dysregulation of gene expression has seen several successes [36,37].
Delivery of therapeutic gene into MSCs requires either viral [32,33,75] or non-viral [40] transfection
methods. Here, we reviewed some of the strategies and choice of therapeutic genes which had been
used to restore the RGCs, photoreceptors, or RPE cells.

Ample studies have attempted to deliver neuroprotective genes, such as BDNF and PDGF, into
MSCs through viral transduction. For instances, Harper et al. [35,43] reported that co-treatment of
BDNF-transduced MSCs with glutamate- and hydrogen peroxide-induced RGCs were found to prevent
RGC from cell death and further promote neurite growth in cultured RGCs. The presence of BDNF
receptor, tropomyosin receptor kinase B (TrkB), on the RGCs have previously been found to mediate
RGCs neuroprotection. The research showed that the transplantation of BDNF-transduced MSCs was
able to survive and secrete functional BDNF protein for the enhancement of RGC viability in a chronic
glaucomatous rat model [35]. It was also demonstrated that MSCs transduced with Math5 (Atoh)
adenoviral vector were found to facilitate MSC differentiation into RGC-like cells, characterized by the
expression of RGC-related genes, such as GAP-43 and Brn3b [76].
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Other than the restoration of RGCs, lentiviral-transduced MSCs could also migrate, integrate,
and stably express pro-survival neurotrophin-4 (NT-4) at the injured retina, particularly on the RPE
and photoreceptor cells [41]. Moreover, transplanted MSCs encoding NT-4 were found to restore
retinal function and architecture through upregulation of anti-apoptotic mediators including B cell
lymphoma-2 (Bcl-2) and baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins via
activation of mitogen-activated protein kinase (MAPK) and Akt signaling cascades, and the induction
of crystallins for neurogenesis [41].

While there is debate on the risk of tumorigenicity as a result of viral gene integration
into proto-oncogene site in cells, Boura et al. [42] have noticed that modification of MSCs using
lentiviral-based delivery of HLA-G was found to enrich MSC immunomodulatory actions which are
absent in non-viral transfer. It was also shown that the lentiviral approach significantly prevented
the activation of lethal immune responses toward MSCs through the re-establishment of immune
tolerance against NK cells and T cells proliferative responses [42]. Hence, this would further promote
the sustainability of transplanted MSCs for tissue repair.

Of note, studies showed that pre-conditioning of the microenvironment with growth factors
such as erythropoietin (EPO) before stem cell transplantation could improve cell survival [77–80]
and tissue repair with a smaller dose of transplanted cells. The manipulation of MSCs to deliver
EPO for the treatment of ocular disorders by direct injection into the vein is feasible in the future
as these cells could migrate to the inflammatory site [81,82] and cross the blood-retinal barrier
(BRB) [83–88]. The autocrine activity of EPO itself on the stem cells could enhance the survivability of
transplanted cells [89,90] in a pathologically-harsh microenvironment. Compared to unmodified MSCs
transplantation, Guan et al. [91] discovered a significant improvement on the retinal morphology and
function following subretinal transplantation of EPO gene-modified MSCs in a rat model of retinal
degeneration (RD) [91]. Despite that, there is a need to research for a better-controlled regulation system
on the expression of the EPO gene in MSCs for ocular therapy in the future [92,93]. It is noteworthy
that the utilization of a short DNA construct vector known as minimalistic, immunologically defined
gene expression (MIDGE) has been shown to be relatively safer, yet capable of providing stable
and prolonged EPO protein secretion when transfected into human bone marrow MSCs in vitro [40].
Other methods such as ultrasound- [94] or microbubbles-assisted [95] gene delivery could be used to
improve transfection efficiency [88–90] and promote MSCs trans-migratory capability [96–98], and its
differentiation potential too [99].

5. Conclusions

Accumulative pre-clinical and clinical trials have reported beneficial outcomes using MSCs for
a wide range of pathological complications pertaining to ocular degenerative disorders. Hence, it has
been considered as a source for cell replacement therapy. We have reviewed several recent approaches to
maximizing the native therapeutic potential of MSCs, especially to overcome complications concerning
low transplanted cell viability and unspecific cell targeting to the damaged site. Reports of disconcerting
outcomes have warranted more provision of a standardized method to assess the kinetic rate of the
biomaterial degradation, the toxicity level of administered nanoparticles, as well as the mode of gene
delivery that minimize the chances for tumor formation in MSCs in the future.
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