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ABSTRACT An early characterization of drug-induced cardiotoxicity may be possible by combining
comprehensive in vitro proarrhythmia assay and deep learning techniques. We aimed to develop a method
to automatically detect irregular beating rhythm of field potentials recorded from human pluripotent stem
cells (hPSC) derived cardiomyocytes (hPSC-CM) by multi-electrode array (MEA) system. We included field
potentials from 380 experiments, which were labeled as normal or arrhythmic by electrophysiology experts.
Convolutional and recurrent neural networks (CNN and RNN) were employed for automatic classification
of field potential recordings. A preparation phase was initially applied to split 60-s long recordings into a
series of 5-s windows. Subsequently, the classification phase comprising of two main steps was designed
and applied. The first step included the classification of 5-s windows by using a designated CNN. While,
the results of 5-s window assessments were used as the input sequence to an RNN that aggregates these results
in the second step. The output was then compared to electrophysiologist-level arrhythmia detection, resulting
in 0.83 accuracy, 0.93 sensitivity, 0.70 specificity, and 0.80 precision. In summary, this paper introduces a
novel method for automated analysis of ‘‘irregularity’’ in an in vitro model of cardiotoxicity experiments.
Thus, our method may overcome the drawbacks of using predesigned features that restricts the classification
performance to the comprehensiveness and the quality of the designed features. Furthermore, automated
analysis may facilitate the quality control experiments through the procedure of drug development with
respect to cardiotoxicity and avoid late drug attrition from market.

INDEX TERMS Arrhythmia detection, cardiomyocyte, CiPA, deep learning, hPSC.

I. INTRODUCTION
Cardiotoxicity is one of the major reasons for drug attrition
from market which may impose tremendous costs to phar-
maceutical companies [1]. Drugs may impose side effects
on structure or electrophysiology of cardiac myocytes. Com-
prehensive in vitro proarrhythmia assay (CiPA) using the
hPSC-CM/MEA system have been proposed as a robust,
efficient, and sensitive platform for electrophysiological

cardiotoxicity screenings [2]–[13]. While industry standard
assays are based on using immortalized cell lines or ani-
mal models, CiPA takes the advantage of cardiomyocytes
obtained from cardiogenic differentiation of hPSC, literally
representing the most similar physiology to human heart [14].
Therefore, this high throughput physiologically relevant plat-
form for cardiotoxicity [6] may provide an advanced com-
plementary method with great potential for reducing the
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costs of drug development and cardiotoxicity-related drug
attrition. However, the implementation of CiPA initiative is
highly dependent on necessary adjustments to this technique
including generation of mature hPSC-CM as well as standard
culture, differentiation and assay methods [8].

Field potentials recorded from hPSC-CM using MEA sys-
tem is well correlated to action potentials recorded from sin-
gle cardiomyocytes and electrocardiogram (ECG) recorded
from the whole heart [15]. Furthermore, hPSC-CM/MEA
platform could reliably demonstrate the cardiotoxicity of
drugs which are known to be arrhythmogenic, according to
previous reports [16]–[18]. Based on these findings, efforts
have been made to generate a quantitative system in order to
predict drugs with proarrhythmic risk [16], [19], [20].

By developing diverse experimental platforms and their
quantitative readouts, scientists faced large datasets which
required extensive human resource and time to perform the
analyses and interpretation. Last few decades have been
the golden age for the development of automated tasks
to help experts and improve performance in the field of
medical data analyses [21]–[25]. Especially, recent studies
have proposed deep learning methods to overcome draw-
backs of employing hand-engineered features to describe
data characteristics. In fact, the deep learning methods do
not explicitly require any type of feature design by human
experts, and instead, the features are implicitly learned
from data through an automatic learning procedure [26].
Recently, a few studies have investigated the task of anal-
ysis and classification of electrocardiogram (ECG) signals
with deep learning methods [27], [28]. Kiranyaz et al. [27]
and Pranav Rajpurkar et al. [28] introduced a deep learn-
ing model to classify ECG samples and could exceed
the average cardiologists performance in both sensitiv-
ity and precision measures [28]. In another study, a per-
sonalized monitoring and warning system based on deep
learning methods was designed for cardiac arrhythmia
prediction [27].

Despite the development of new methods for automation
of arrhythmia detection on surface ECG, the interpretation
of data obtained from hPSC-CM/MEA system and the trans-
lation of findings for risk assessment is still in its infancy.
Advanced machine learning methods can play an important
role on creating computer-aided diagnosis (CAD) tools for
hPSC-CM/MEA data analysis. In this study, we hypothesized
that deep learning approach can be exploited to create amodel
for irregularity detection in the field potentials recorded from
hPSC-CM. Our model was designed using two different net-
works namely CNN [29] and RNN [30] to classify signals of
different durations, which resulted in proarrythmia prediction
with 0.83 accuracy.

II. METHODS AND PROCEDURES
A novel approach for automated assessment of irregularity
in the field potentials recorded from hPSC-CM is proposed.
The recorded field potentials are classified into normal and
arrhythmic using a specific deep learning method designed

for this purpose. The diagram of the proposed method is
shown in Fig. 1. In this section, we first introduce the gen-
eration of hPSC-CM data. Then, the proposed deep learning
model for classifying hPSC-CM data is presented.

A. EXPERIMENTAL DATA
1) GENERATION OF hPSC-CM
hPSC lines including hESC (RH5) [31] and hiPSC [32]
were subjected to cardiogenic differentiation. In order to
induce CM differentiation of hPSC in a suspension cul-
ture system, the 5-day-old size-controlled hPSC spheroids
(average size: 175 ± 25 µm) were cultured for 24 hours
in differentiation medium (RPMI 1640 medium; Gibco)
supplemented with 2% B-27 supplement without vitamin A
(12587-010; Gibco), 2 mML-glutamine (25030-024; Gibco),
0.1 mM β-mercaptoethanol (M7522; Sigma-Aldrich) and
1% nonessential amino acids (11140-035; Gibco) containing
12 µM of CHIR99021 (a small molecule activating canon-
ical Wnt/β-catenin pathway) (CHIR; 041-0004; Stemgent).
The spheroids were subsequently washed with Dulbecco’s
phosphate-buffered saline (DPBS) and maintained in fresh
differentiation medium without small molecule (SM) for one
day. Thereafter, the medium was exchanged for new differ-
entiation medium that contained 5 µM IWP2 (3533; Tocris
Bioscience) as a Wnt antagonist, 5 µM SB431542 (S4317;
Sigma-Aldrich) as an inhibitor of transforming growth factor-
β superfamily type I activin receptor-like kinase receptors,
and 5 µM purmorphamine (Pur; 04-0009; Stemgent) as a
sonic hedgehog (SHH) agonist. The spheroids were cultured
for 2 days in this medium, after which they were washed with
DPBS and further cultured in a fresh differentiation medium
without SMs. This medium was refreshed every 2–3 days.

Cardiomyocytes differentiated from two patient-specific
hiPSC lines including CPVT1 and LQTS2 were used
as test data. CPVT1 patient-specific iPSC line NP0014
(clone c6) [33, 34] and LQTS2 patient-specific iPSC line
NP0011 (clone c8) [35] were provided by Dr. Juergen
Hescheler (University of Cologne), have been deposited
at the European Bank for induced pluripotent Stem Cells
(EBiSC; https://www.ebisc.org/) and are registered at the
online registry for human pluripotent stem cells hPSCreg
(https://hpscreg.eu/) under the names UKKi007-A and
UKKi009-A, respectively.

2) APPLICATION OF CARDIOACTIVE DRUGS
We used a multi-electrode array (MEA) data acquisition sys-
tem (Multichannel Systems) for extracellular field potential
recordings. TheMEAplates contained amatrix of 60 titanium
nitride electrodes (30 µm) with an inter-electrode distance
of 200 µm. MEA plates were sterilized with 70% ethanol
solution and hydrophilized with fetal bovine serum for
30 minutes, washed with sterile water, and then coated with
an ECM gel from Engelbreth-Holm-Swarm mouse sarcoma
(catalog no. E1270; Sigma-Aldrich). Beating spheroids were
plated in differentiation medium on the middle of sterilized
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FIGURE 1. Deep learning based proarrhythmia analysis for cardiac safety pharmacology.
We constructed a dataset from FP recordings of hPSC-CM using MEA system. The dataset
contained 380 samples of 60-second long recordings. Each record was labeled as normal
or abnormal by electrophysiology experts. Using the provided dataset, we trained the
proposed deep architecture composed of CNN and RNN networks that was designed for
binary classification of data. This trained deep CNN-RNN system can be further used for
classification of new FP recordings into normal and abnormal categories specially in
comprehensive in vitro proarrhythmia assay.

matrigel-coated MEA plates for at least 48 hours to allow
proper attachment. On the day of the experiment, the MEA
plates were connected to a head stage amplifier. The record-
ings were performed for 60 seconds at baseline. Samples with
beating frequencies of 70 ± 15 beats per minute (bpm) were
selected for the rest of the experiments and other beating
spheroids with higher or lower rates were excluded due to
heterogeneity of samples and diversity of their normal beating
rates. This initial filtering was applied in order to avoid
the possible interference of diversified beating frequencies
of hPSC-CM in automated arrhythmia detection. In order
to induce arrhythmic-like events and mimic drug-induced
arrhythmia, cardioactive drugs were applied on hPSC-CM
and field potential recordings were performed 5 minutes
after drug application. Verapamil hydrochloride (Sigma-
Aldrich) at concentration range of 100-200 nM, Nifedipine
(Sigma-Aldrich) at concentration range of 50-100 nM, Iso-
proterenol hydrochloride (Sigma-Aldrich) at concentration
of 5 µ M, Propranolol hydrochloride (Sigma-Aldrich) at
concentration of 10 µ M and Sotalol hydrochloride (Sigma-
Aldrich) at concentration range of 100-500 µ M were used.
All recordings were performed at 37◦C. The extracellular
field potentials were sampled at 2 KHz in Cardio2D soft-
ware (V 2.6.2; Multichannel Systems) and saved for further
analysis.

3) DATA PREPARATION
To provide input signals to train and test the model,
we used normal and arrhythmic field potentials recorded
from hPSC-CM. Field potential recordings from 380 exper-
iments were carefully studied and labeled by two electro-
physiology experts. These data were categorized into normal
and arrhythmic based on several parameters such as beating
rates, field potential durations, and polymorphic waveforms,
thus making this labeling process a time-consuming analy-
sis. It has to be noted that the above mentioned parameters
are to a large extend dependent on the cell line of inter-
est [8] including hESC-CM or normal as well as patient-
specific hiPSC-CM. Furthermore, there are a high line-to-line
variability in beating frequencies of differentiated cardiomy-
ocytes. Thus, we tried to establish as much homogeneity as
possible in train and test data by excluding heterogeneous
samples as stated in Section 2. In order to prepare signals
for the classification task, they were initially subjected to
preprocessing steps, i.e., smoothing and windowing.

First, each raw signal was normalized using Min-Max
technique and smoothing using a moving average filter in
BioSppy library [36] to reduce noise. Then, the prepro-
cessed 60-second long signals were windowed into a series of
5-second windows, each started at a particular R-peak and
continued to the fixed length of 5 seconds (Fig. 2).
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FIGURE 2. Splitting a 60-second long recording into a sequence
of 5-second long windows. To split a record, R peaks are detected all over
the recording. Each 5-second long window starts from a particular R point
and continues to the fixed length of five seconds.

B. CLASSIFICATION MODEL
After the preparation phase, the preprocessed data were clas-
sified into normal or arrhythmic using a 2-step deep learning
method. The architecture of the proposed model is shown
in Fig. 3.

In the first step, we employ a specific 1-D CNN architec-
ture that works on the preprocessed data as its input without
employing any predesigned feature such as field potential
duration, beating duration (R-R interval), and beating rate.
The input layer sizewas 5000 that was determined based upon
the number of 5-second long windows sampled at 1 KHz.
The CNN contained 3 layers of convolution each of which
included 16 kernels of size 80. Indeed, each filter (consisting
of 80 trainable parameters) convolves with the sequence of
features obtained in the previous layer (or with the input
sequence for the first convolutional layer). After the convolu-
tional layers which were designated to extract features from
the input signal, one fully-connected layer with the sigmoid
activation function was used to generate the output speci-
fying the probability of arrhythmicity for the corresponding
window (details about the designated model is presented
below).

The second step was allocated to classification of the
whole field potential recording, based on the sequence of
evaluation results obtained on the 5-second long windows.
For this purpose, the well-known Long Short Term Memory
(LSTM) [37], as an RNN architecture, was employed. The
designed network contained one recurrent layer with three
neurons and one fully-connected layer. In fact, the RNN
network can process the sequence of evaluations obtained
on 5-second long windows by CNN in the previous step and
aggregate them to reach the final decision.

To train the proposed model composed of the CNN and
RNN, we used our dataset including both normal and arrhyth-
mic field potential recordings of hPSC-CM that was previ-
ously labeled by electrophysiology experts.

DETAILS OF THE NETWORK ARCHITECTURE
The details of the proposed deep architecture are shown
in Tables 1 and 2. The first part of the model is com-
posed of a 1-D CNN architecture that is applied on the
input layer with size of 5000. This network consists of three
convolutional layers, each had 16 filters with the kernel
size of 80 and finally includes one fully-connected layer.
The activation functions that are performed after convo-
lutional layers, are chosen to be Relu and the activation
function used after the fully connected layer is selected
to be the sigmoid function. Moreover, after each convo-
lution layer and before the activation function, batch nor-
malization [38] is adopted to provide more stable training.
We also use dropout [39] at each convolution layer to improve
the generalization capability of the proposed algorithm.

TABLE 1. The designed CNN architecture.

TABLE 2. The designed RNN architecture.
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FIGURE 3. Representation of the two-step deep learning-based classification model. a) The general architecture of the proposed
method: To classify a field potential recording of hPSC-CM, a primary denoising followed by splitting of the 60-second long recording
into the set of 5-second signals is applied. Each 5-second-long window is fed into the trained CNN (the details of the CNN architecture
was shown in (b)) which produces output results for that window. Then, the sequence of CNN outputs is used as the input for the
trained RNN (its components were presented in (c)). The RNN output determined our final result given the decisions of CNN on the
5-second signals, classifying the 60-second long field potential recording as normal or arrhythmic. Abbreviations: N; Normal and A;
Arrhythmic. b) The CNN architecture that takes 5-second long window as input and provides assessment of that window (probability of
being normal or arrhythmic for 5-second long window). c) The RNN architecture that takes the sequence of 5-second long windows
assessments as the input and provide the final result (probability of being normal or abnormal for 60-second long recording).

The second part of the proposed model is an RNN that
prepares the final output. It consists of one recurrent
layer (LSTM architecture) with three neurons and one
fully-connected layer with the sigmoid activation function.
In addition, batch normalization and dropout are also applied
in the recurrent layer. The activation function in the recurrent
layer is set to Relu.

We use the Adam optimizer for training both CNN and
RNN. The number of epochs is set to be 100. Moreover,
5-fold cross-validation is utilized to tune hyper-parameters of
the proposed model (e.g. the rate of dropout, the kernel size
of convolutional layers, and etc.)

III. PERFORMANCE MEASURES
To evaluate the proposed method, the following performance
measures as the most commonly used measures are utilized:

Accuracy =
#Samplescorrectlyclassified

#Allinputsamples
(1)

Sensitivity =
#Abnormalsamplescorrectlyclassified

#Allabnormalsamples
(2)

Specificity =
#Normalsamplescorrectlyclassified

#Allnormalsamples
(3)

Precision =
#Abnormalsamplescorrectlyclassified
#Allsamplesclassifiedasabnormal

(4)
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F score =
2× recall × precision
recall + precision

(5)

where Accuracy shows the proportion of correctly classified
samples to the whole number of samples. Moreover, Sen-
sitivity indicates the proportion of samples correctly classi-
fied as abnormal to the whole number of abnormal samples.
On the other hand, Specificity shows the proportion of sam-
ples correctly classified as normal to the whole number of
normal samples. Precision denotes the proportion of correctly
classified abnormal samples to the whole number of samples
that are classified as abnormal. Finally, F score shows the
harmonic mean of the Precision and Recall (or Sensitivity).

IV. RESULTS
In this study, we developed a new classification model to
automatically identify normal and arrhythmic field poten-
tial waveforms of human cardiomyocytes differentiated from
hPSC and subjected to cardioactive drugs (Fig. 1).

The healthy hPSC-CM were generated using a small
molecule-based differentiation protocol [40]–[42]. The
spheroids of 30-day old hPSC-CM were plated on the
electrodes of a multielectrode array system and their
field potential recordings were performed (Supplementary
movie 1) [40], [42]. The field potentials recorded from
multi-cellular spheroids of hPSC-CM resembled the sur-
face ECG recorded from the whole heart (Supplementary
Fig. S1) and provided valuable information on the excitability
and functionality of differentiated cardiomyocytes. The field
potential waveform included data on the duration of a beating
cycle (R-R interval), the field potential duration (FPD) which
correlates to repolarization phase of the action potential and
QT interval of ECG, and the field potential rhythmicity
(Supplementary Fig. S2). We also applied some known car-
dioactive drugs with acute effects on healthy hPSC-CM in
order to experimentally mimic arrhythmogenesis and to only
provide raw data for the development of classifier. Therefore,
we are not going to discuss the drug effects in this paper.

We collected a dataset of 380 field potential recordings
obtained from healthy hPSC-CM as well as their cardioactive
drugs experiments to be used in this study. These experi-
ments helped the formation of a large dataset with valuable
information but time-consuming and difficult to be manually
analyzed. Furthermore, the in vitro cardiotoxicity assay using
hPSC-CM and MEA system is a novel approach which lacks
sufficient and appropriate analysis software.

Although efforts have been made to develop analysis
tools [19], [20], to the best of our knowledge, there has not
been any published results on the automatic classification
of field potential recordings from hPSC-CM into normal or
arrhythmic.

These 380 recordings were labeled as normal and arrhyth-
mic waveforms by electrophysiology experts based on pre-
designed metrics such as beating rates and/or FPD (Fig. 4).
The arrhythmic waveforms included long FPD, bradycar-
dia, tachycardia, and polymorphic (Fig. 5). We used 20%
of this dataset as the test set and 80% for training and

FIGURE 4. Labeling of field potential recordings from hPSC-CM at
baseline and when subjected to treatment with cardioactive agents.
N; normal (bpm = 70±15 and FPD = 400±50 ms), A; arrhythmic
(45 ≤ bpm ≤ 100 and FPD ≥ 600 ms).

validation of the classification method. A few record-
ings from patient-specific hiPSC-CM including CPVT1 and
LQTS2were also used as test data to further evaluate the clas-
sification model. The 60s long recordings were windowed to
5s long field potential recordings (Fig. 2). By this method,
we created 7000 5s-long input signals.

Following the training of CNN by these 5s long recordings,
the RNN was trained to aggregate output results of CNN for
each 60s long waveform (Fig. 3). The final trained networks
were saved for further classification of test signals as well
as any other input signal. The results of classification by
deep learning-based classifier on the test data showed the
performancemetrics of 0.83 accuracy (Eq. 1), 0.93 sensitivity
(Eq. 2), 0.70 specificity (Eq. 3), and 0.80 precision (Eq. 4)
on the test dataset. In addition, the F-score as a harmonic
mean of sensitivity and precision (Eq. 5), was also evaluated
to be 0.86.

Therefore, the proposed classification method has resulted
in a considerable performance without using the expert
knowledge for designing the features and the classification
system.

V. DISCUSSION
The CiPA proposes a cardiotoxicity screening schema that
results in a more robust, efficient, and sensitive system avoid-
ing a late drug attrition from the market [14]. The hPSC-CM
constituted a valuable tool for validating in silico reconstruc-
tion of proarrythmic risk throughout the process of drug
development. Therefore, the functional assays representing
the excitability or contractile function of these cells as well as
advanced techniques for data analysis would be an important
complement to CiPA.

The introduction of combined hPSC-CM technology and
MEA system for drug discovery and cardiotoxicity assays
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FIGURE 5. Representative extracellular field potential recordings of
hPSC-CM. A) 5-second long recordings labeled as normal. B) 5-second
long traces labeled as arrhythmic due to the observed phenotypes such
as long FPD, bradycardia, and polymorphic waveforms.

has encouraged many scientists to test this platform and
analyze its output signals [7], [8], [42]–[47]. Especially, this
system is developed to be employed in a high-throughput
drug screening platform with major needs of automated and
sensitive analysis tools. Despite complexity, MEA output sig-
nals received more accurate interpretation by application of
simulation methods to more precisely profile field potentials
with respect to its underlying action potentials [48], thus
providing the basis for more reliable and advanced analysis
of drug toxicity screenings. However, the automation of car-
diotoxicity characterization as proarrhythmic effects is still
missing.

Over the last few years, the majority of analysis tools
were developed for calculating the field potential parame-
ters. Pradhapen and coworkers developed a semi-automatic
software for analysis of field potentials recorded from
iPSC-CM [20]. Their offline software called cardioMD had
correlation analysis and ensemble averaging features which
were used to reliably analyze the field potential durations
and providing an output waveform for the expert to manually
determine various morphology changing signals.

In another approach, the waveforms obtained from
impedance measurements of iPSC-CM were subjected to
a mathematical model (hCAR) for arrhythmic risk assess-
ment [19]. The hCAR model could successfully bridge the
gap between hERG screening system and in vivo QT pro-
longation as well as arrhythmia assessment in preclinical and
clinical studies.

Furthermore, cytotoxic factors could be identified and
rank-ordered using hCAR model. However, it employed

some defined parameters and mathematical equations to
predict proarrhythmia risk, thus limiting the power of anal-
ysis to the proposed features. In contrast, we developed a
deep learning-based analysis tool that is able to use a broad
range of field potential features which resulted in arrhythmia
assessment by monitoring morphological changes rather than
application of any preselected features.

Deep learning based models have shown significant results
and are known as state-of-the-art methods for many tasks of
medical image analysis [25] and biological data analysis [49].

We proposed a two-step deep learning model composed
of CNN and RNN to classify field potential recordings. First
step consists of a CNN that integrates the feature extraction
and classification phases by learning both the representation
and the classifier jointly. It finds the (normal/abnormal) label
for the fixed duration windows of input data. Second step
consists of an RNN that enables the analysis of recordings
with various lengths (>5 seconds). By using RNN, we are
able to process and aggregate the sequence of results obtained
for the small windows (as the output of CNN in the first step
of the model) with no limit on the length of field potential
recordings. Therefore, our model can process raw multielec-
trode array data of various lengths, and do not require to use
predesigned features. Thus, it can overcome the drawbacks
of using predesigned features that restricts the classification
performance to the comprehensiveness and the quality of the
designed features. Using the proposed method, we achieved
83% accuracy to identify normal and arrhythmic waveforms.

Additionally, the performance of the proposed model can
be improved by increasing the size of dataset since the deep
learning methods can show their real capability when they are
trained on large datasets. Moreover, the binary classification
can be easily extended to multi-class classification if larger
datasets are used.

VI. CONCLUSION
The proposed two-step CNN-RNN model provides an effi-
cient, sensitive, and accurate platform for analysis and inter-
pretation of hPSC-CM/MEA datasets which may facilitate
the preclinical cardiac safety pharmacology through CiPA.
In fact, in the proposed method, we do not need any expert
knowledge for predesigning features and the proposed net-
work that is trained end-to-end can work on raw signals. The
proposed deep network was designed to classify the signals
of different lengths using a combination of CNN and RNN
networks.

APPENDIX
The link to the program execution is presented below.

‘‘ https://github.com/zGolgooni/Deep-CNN-RNN-for-iPS-
CMs’’.
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