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Complete plastid genome of Lespedeza tricolor (Fabaceae), an endemic shrub
in Korea
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ABSTRACT
Lespedeza tricolor is a species found in the southern province of Korea, thought to be endemic to
Korea. The complete plastid genome of this legume was sequenced in this study. DNA from L. tricolor
was extracted, sequenced, and assembled into the complete plastid genome. We used 18 species of
the family Fabaceae and 77 protein-coding genes to perform phylogenetic analysis. The plastid gen-
ome is 149,038bp in length, with large (82,495bp) and small (18,889 bp) single-copy regions, separated
by a pair of inverted repeat regions (23,827bp). It contains 83 protein-coding genes, eight rRNAs, 37
tRNAs, and two pseudogenes (rpl22 and infA). Our phylogenetic analysis suggests that the genus
Lespedeza is monophyletic and L. tricolor is closely related to L. maritima and L. buergeri. In this study,
we identified the phylogenetic position of L. tricolor and provided the data that can be used in various
ways in future studies.
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The genus Lespedeza Michx. (tribe Desmodieae; subfamily
Papilionoideae; family Fabaceae), which comprises approxi-
mately 60 species, has the distribution of Asia and North
America (Han et al. 2010). Due to their structure and charac-
teristics, these species are used as forage and medicine, or
for ornamental purposes (Cheng et al. 2004; Guan et al. 2013;
Sharma and Rhyu 2015; Somaratne et al. 2019). In South
Korea, 25 species have been recognized (Korea National
Arboretum 2022). Among them, Lespedeza tricolor (Nakai) D.
P. Jin, J. W. Park & B. H. Choi 2019 is an endemic species to
Korea and inhabits the southern province (Jin et al. 2019).
Many suggestions have been made on the taxonomic pos-
ition of L. tricolor, such as, as a variety of L. maximowiczii [¼
var. tricolor Nakai], subspecies of L. buergeri [¼ subsp. tricolor
(Nakai) Hatusima], or a synonym of L. maximowiczii (Hatusima
1967; Akiyama 1988; Jin et al. 2019). Jin et al. (2019) using
microsatellite data analysis showed that although L. tricolor
formed mixed lineages with L. maximowiczii and L. buergeri,
it was a distinct species. To clarify the phylogenetic relation-
ships of L. tricolor and related species, this study aims to
determine the complete plastid genome sequence of L. tri-
color and conduct phylogenetic analysis using 77 plastid pro-
tein-coding gene datasets.

Fresh leaves of L. tricolor were collected from Wando-gun,
Jeollanam-do province, South Korea (34�20025.000N
126�41037.600E) and dried directly with silica gel at room tempera-
ture until DNA extraction. The voucher specimen was deposited
in the herbarium of the Korea National Arboretum (KH; http://
www.nature.go.kr/kbi/plant/smpl/KBI_2001_030100.do, Hee

Young Gil, E-mail: warmishe@korea.kr, voucher number: ESK21-
503). Total genomic DNA was extracted using DNeasy Plant Mini
Kit (Qiagen Inc., Valencia, CA). Next-generation sequencing was
conducted using MiSeq sequencing system (Illumina, Seoul,
South Korea) and a total of 10,049,414 reads were obtained. The
GetOrganelle software was used to select the plastid-like reads,
which were assembled into the complete plastid genome by
Geneious Prime program and the GetOrganelle toolkit (Kearse
et al. 2012; Jin et al. 2020). Gene content and order were anno-
tated using the Geseq tool and Geneious Prime (Kearse et al.
2012; Tillich et al. 2017).

To identify the phylogenetic relationships of subfamily
Papilionoideae, a total of 18 species were used, of which three
species (Acacia ligulata, GenBank accession¼NC_026134;
Erythrophleum ivorense, GenBank accession¼MZ274091;
Ceratonia siliqua, GenBank accession¼NC_026678) were
designated as outgroups. For phylogenetic analysis, 77 pro-
tein-coding genes were aligned using the MAFFT program and
maximum-likelihood (ML) analysis in the software PhyloSuite
(Katoh and Standley 2013; Zhang et al. 2020). The best substi-
tution model was TVMþ FþR2 according to ModelFinder in
PhyloSuite (Zhang et al. 2020). 1000 bootstrap (BS) replications
were performed based on a dataset of protein-coding genes.

The complete plastid genome of L. tricolor (GenBank
accession¼ON227501) is 149,038 base pairs (bp) long, with a
typical quadripartite structure which has components such as
a large single-copy (LSC) of 82,495 bp, a small single-copy
(SSC) of 18,889 bp, and two inverted repeats (IRs) of
23,827 bp. The total GC content was 35.0%, and the GC
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contents of the LSC, SSC, and IR regions were 32.4%, 28.2%,
and 42.2%, respectively. The plastid genome includes 128
genes (83 protein-coding genes, eight rRNAs, and 37 tRNAs)
including 17 genes (six protein-coding genes, four rRNAs,
and seven tRNAs) duplicated in the IR regions. Two genes
(rpl22 and infA) were missed in L. tricolor (Millen et al. 2001;
Jansen et al. 2008; Magee et al. 2010). In addition, the tribe
Desmodieae is known to have no introns within rps12 and
rpl2 (Jansen et al. 2008). This study also confirmed the
absence of introns for these genes in L. tricolor.

The ML trees showed that Papilionoideae were monophy-
letic with high BS support values (100) and L. tricolor was a
sister group of L. maritima and L. buergeri (Figure 1). The
complete plastid genome of L. tricolor will be useful to study
the phylogeny, develop identification markers, and under-
stand the evolutionary history for Lespedeza species.
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