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Equivalence and its invalidation between
non-Markovian and Markovian spreading
dynamics on complex networks
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Epidemic spreading processes in the real world depend on human behaviors and, conse-
quently, are typically non-Markovian in that the key events underlying the spreading
dynamics cannot be described as a Poisson random process and the corresponding event
time is not exponentially distributed. In contrast to Markovian type of spreading dynamics for
which mathematical theories have been well developed, we lack a comprehensive framework
to analyze and fully understand non-Markovian spreading processes. Here we develop a
mean-field theory to address this challenge, and demonstrate that the theory enables
accurate prediction of both the transient phase and the steady states of non-Markovian
susceptible-infected-susceptible spreading dynamics on synthetic and empirical networks.
We further find that the existence of equivalence between non-Markovian and Markovian
spreading depends on a specific edge activation mechanism. In particular, when temporal
correlations are absent on active edges, the equivalence can be expected; otherwise, an exact
equivalence no longer holds.
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isease or virus spreading on complex networks, because of

its broad relevance to health care, social, economical, and

political sciences as well as information technologies, has
been an active area of research on contemporary network science
and engineering!-8. Traditional models of spreading dynamics on
networks are memoryless Markovian in the sense that, for all
individuals in the network, both contracting a virus and reco-
vering from it are viewed as a Poisson process. The time interval
between two successive contracting events and that between two
adjacent recovery events follow an exponential distribution with
a constant rate—the arrival rate of the respective Poisson pro-
cess. Associated with the exponential distribution is the mem-
oryless property: any future waiting time does not depend on the
previous waiting time. This property fits with that of a mem-
oryless Markovian process as, what matters in order to predict
the future is the current state, not the history of the process. The
Markovian assumption greatly facilitates the development of
mathematical theories of spreading process on complex
networks>’ through, e.g., a mean-field type of analyses’*-11 of
the standard  susceptible-infected-susceptible  (SIS)  or
susceptible-infected-recovered (SIR) process. There has been
increasing empirical evidence and modeling effort that the
occurrences of contacts associated with human activities are
non-Markovian temporal processes with a heavy tailed inter-
event time distribution!2-33, A Markovian description of net-
work spreading dynamics is thus ideal and provides only an
approximate picture of the real world.

The past decade has witnessed a growing interest in non-
Markovian spreading dynamics on complex networks34->C. The
failure of the Markovian framework in describing human inter-
actions in relation to disease spreading was noted quite early, and
it was found that the deviation from the exponential distribution
of the inter-event time to being heterogeneous can impede
spreading®®. A non-Markovian SIR model with arbitrary time
distributions of infection and recovery was solved through the
approach of dynamical message passing>’. It was also found that
a heavy-tailed waiting time distribution can slow down the pre-
valence decay®®. An SIR model with fixed recovery time but with
a heavy-tailed infection time distribution was studied with the
finding that temporal heterogeneity in the contact process can
significantly suppress epidemic spreading®). A relatively sig-
nificant alteration of the outbreak threshold was reported for
non-Markovian type of SIS infection events and certain equiva-
lence between non-Markovian and Markovian models through
redefining the effective infection rate was pointed out*2. Two
basic dynamical rules governing a non-Markovian type of SIS
spreading process were uncovered*>. More recently, a method
was proposed to estimate the effective infection rate for non-
Markovian type of spreading dynamics?’.

A common theoretical tool to deal with network spreading
dynamics is mean-field analysis. The earlier version of the mean-
field theory assumed that all nodes in the network are regarded as
statistically equivalent’. To account for the non-homogeneous
nature of real world networks, a heterogeneous mean field theory
was developed in which the nodes with the same degree are
considered as equivalent!. A more systematic approach to fully
capturing the network topology was articulated—the so-called
quench mean-field approximation!®!l, To take into account
dynamic correlations, the method of pairwise approximation can
be exploited®!-># which centers about analyzing the evolution of
the states of nodal pairs. An approximate master equation theory
can lead to more accurate theoretical predictions and can be
reduced to the pair-wise approximation theory and the mean field
theory through proper approximations®. A mean-field analysis
based on the pair approximation for non-Markovian SIR
dynamics on networks was recently developed*>46:48,

Our work is motivated by two considerations. The first con-
cerns about the development of a general theoretical framework
to deal with non-Markovian processes. In particular, in spite of
the previous studies, a comprehensive framework to analyze and
understand the full dynamical evolution of non-Markovian
spreading processes is still lacking. Especially, in the existing lit-
erature on network spreading dynamics, Markovian or non-
Markovian, a central focus has been on the final steady state of
the system, with the transient dynamics leading to the final state
largely ignored. In nonlinear dynamical systems, transient beha-
viors have been recognized as relevant as or even more important
than the final state. For example, transient chaos arises commonly
in nonlinear dynamical systems and is typically more ubiquitous
than attractors (final states)’. In ecological systems, transient
dynamics have been long recognized as the main source on which
empirical observations rely and are thus a key driving force of
natural evolution®’-%1. For non-Markovian type of network
spreading dynamics, we lack a theory to describe both transient
dynamics and final steady state. The second motivation is that,
since Markovian spreading processes, while ideal, are amenable to
rigorous mathematical analyses and thus often afford a complete
understanding of the detailed underlying dynamics, it is of great
interest to uncover conditions under which a non-Markovian
process is equivalent to or can be approximated by a
Markovian one.

In this paper, we articulate a first-order mean field theory for
SIS dynamics with non-Markovian infection and recovery pro-
cesses. We define the probability density function of state age of
node (or of edge) and derive the corresponding partial differential
equations that govern the evolution of the density functions. We
demonstrate that the theory can predict well both the transient
behaviors and the steady states of non-Markovian spreading on
synthetic and empirical networks. A key finding is that the edge
activation rule determines whether there is an equivalence
between non-Markovian and Markovian SIS dynamics, and we
show that a specific type of activation rule can lead to an exact
equivalence. For non-Markovian processes that are not equivalent
to Markovian ones, a relatively large infection density of the
whole network makes the process closer to being Markovian.
With the ability to analyze transient dynamics, the developed
theoretical framework not only leads to a picture of the entire
evolution process of non-Markovian spreading dynamics,
but also results in a deeper understanding of the conditions
under which a non-Markovian process is equivalent to a
Markovian one.

Results

Non-Markovian spreading dynamics on complex networks. In
the classical, Markovian SIS model, a node in a network can be in
the susceptible or infected state. An infected node can pass on the
virus to any of its susceptible neighbors at certain transmission
rate and return to the pool of susceptible nodes at a fixed recovery
rate. Because of the Markovian and memoryless nature of the
model, transmission of disease and recovery of nodes both are
Poisson processes, i.e., both the infection and recovery time are
exponentially distributed. In contrast, in a non-Markovian epi-
demic process with memory, neither the infection nor the
recovery time follows an exponential distribution. Instead, such
distributions are typically “fat-tailed” due to the highly hetero-
geneous nature of various human behaviors!2-33,

For a non-Markovian epidemic process, the infection and
recovery rates are generally time dependent. To gain insights into
defining these rates, we begin with a key quantity: the infection
age (or susceptibility age) 7 of a node, which is the time elapsed
from the birth of its current state, ie., an infected state or a
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susceptible state, to the current time ¢. If a node becomes infected
at time t — 7 and has not recovered by time ¢, its infection age at
time ¢ will be 7. An infected node decays spontaneously into the
susceptible state after a random time 7 whose probability
distribution is Y..(7), indicating that the infected node will
recover during the infinitesimal infection age interval (7, 7+ d7)
with the probability y,..(7)dr. Similarly, the activation age (or
non-activation age) x of an edge can be defined, where the active
edges host statistically independent stochastic infection processes
of the same distribution y;,(x). That is, the probability that an
active edge transmits the disease during the infinitesimal active
age interval (k, k + dx) is y;,(x)dx. If a susceptible node has more
than one active edge, an infection process will take place
independently along each active edge.

The time dependent recovery and infection rates can then be
evaluated*3#7 based on the distributions ¥,.(7) and yindx). In
particular, if an event has not taken place by a time since the
process was initiated, it will take place in the next time interval
with a conditional probability. The recovery and infection rates
are thus given by, respectively,

uclr) = 420 0
and
() = 325, @

where W, (1) and Wi(x) are the corresponding survival
probabilities. Especially,
+o00

Veee(?) = Ve (')A’ (3)

is the probability that the infected node will not recover before the
infection age 7 and

T

+00

ine (1) = Vine (k') dK’ (4)

JK
is the probability that the active edge never transmits the disease
in the range of the active age from 0 to x. Substituting ¥,..(7) and
Yi.(x) into Egs. (1) and (2), we obtain

T

\Prec(T) = eifo Wpec(T')d’ (5)
and
\Finf(K) =e jo Wine (') di’ (6)

The recovery and infection time distributions can thus be
expressed, respectively, as

T

Wrec(T) = wrec(T)37 .ﬁ; wrec(f')d‘r’7 (7)
and

Vit ) = @l o 0 ®
In the special case of memoryless Markovian model, the temporal
processes follow the Poisson statistics, where the distributions are
exponential with their respective constant rate.

For epidemic spreading on a network, there are various
mechanisms to activate edges. We focus on the two basic
mechanisms to generate active edges*>*’. In general, an
undirected edge can be regarded as being equivalent to two
directed edges in the opposite directions, and a directed edge with
starting node j and ending node i is denoted as i < j. For the first
mechanism (type-I), which is the same as rule 1 in ref. 43, one
defines a directed link i < j as an active edge when node j is an
infected node and node i is susceptible. If an active edge i<j

transmits the disease, the healthy node i will turn into the infected
state and the edge i< j will become non-active. For the second
mechanism (type-1I), which is the same as that in ref. 47, a
directed link i < is defined as an active edge when node j is an
infected node regardless of the state of node i. Once the active
edge i < j transmits the disease, node i will turn into the infected
state if it is susceptible, or nothing happens to node i if it is
already infected. At the same time, the active edge i< j will
become a new active edge with active age x = 0. Figure 1 shows
the cases in which the active age of an active edge is zero. In the
special case of non-Markovian process where y;,dx) follows an
exponential distribution and the infection rate wij,dx) is a
constant independent of time, the SIS models constructed
according to the two respective mechanisms are equivalent.

First-order mean-field theory for non-Markovian spreading.
To describe the full dynamical evolution of non-Markovian epi-
demic spreading on networks, we articulate a theoretical frame-
work based on the approach of first-order mean-field analysis.
Specifically, we begin by defining I(7; t) and S{t; t) as the
probability density functions that node i stays in the infected and
susceptible state aged 7 at time ¢, respectively*8, The probability of
node i being in the infected state aged from 7 to 7+ dr is thus I(t;
t)dr. In the time interval (¢, t+ df), node i returns to the sus-
ceptible state with probability w,..(7)dt and the probability that
the state of the node remains unchanged is 1 — w,e(7)dt. After
the infinitesimal time interval d¢ has elapsed, the age of node i
and that of the active edge i < j both will increase by the amount
dt. We thus have dt =dr=dx. At time ¢+ dt, the probability
density function that node i still remains in the infected state aged
7+ dr is given by

L(t+drt+dt) = [1 — w,(7)d7]L(75t). 9)
This difference equation can be rewritten as a partial differential
equation:

0 0

(5 + &)L‘(T? t) = —wrec(T)(73 ). (10)

Since the infected node i with infection age ranging from 0 to +co
can switch into the susceptible state of age zero insofar as there is
a recovery, the probability density function that node i returns to
the susceptible state aged 7=10 is

S;(0;t +dt) = /0+0<? W (T (T3 t)dr. (11)

To describe the time evolution of S{(7; t), we assume that the ages

of two connected nodes are uncorrelated. The probability density

function that node i in the susceptible state of age 7 is infected by

node j at time t can be written as @; ;(z; t). During the time

interval (¢, t + dt), the susceptible node i aged 7 is infected by its
N

neighbors with the probability ° a;®,._;(r;t)dr, where N is the
=

network size and a;; is the ijth element of the network adjacency
matrix. We thus get the partial differential equation governing the
evolution of S;(7; t) as

(% + %) Si(r:t) = =Si(1;1) ;:21 a®,(rt). - (12)

Since a susceptible node i with any susceptibility age ranging from
0 to 4o can be infected and switches into the infected state aged
zero as a result of the infection process, the probability density
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Type-l edge activation mechanism
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Fig. 1 Two mechanisms to activate edges. For the first mechanism (type-I),
there are two cases in which the state age of an active edge is set to zero: a
the event is driven by the generation of infected node, b it results from the
generation of an susceptible node. For the second mechanism (type-II),
there are four independent scenarios for setting zero the age of an active
edge: ¢, d the event occurs because of the generation of an infected node, e,
f it is caused by the transmission of the disease. Blue dashed and red solid
circles represent susceptible and infected nodes, respectively. Purple
dashed and orange solid arrows denote nonactive and active edges,
respectively. Each state transition takes place in an infinitesimal time
interval dt or dx, where dr=dx

function that node i enters into the infected state aged 7=0 is

+00 N
L,(0;t + dt) = / Si(7;1) Y ay®; j(z;)dr. (13)
0 j=1

For different activation mechanisms of active edges, namely, type-
I and type-II, the forms of ®; (z;t) are different. For type-I
mechanism, once an infected node j and a susceptible node i
appear on both ends of an edge, the directed edge i< j will be
activated or, equivalently, the edge will enter into an active state
aged x=0. Ignoring the dynamical correlation between any
pairwise nodes, the age of the active edge is determined by the
smaller age of the connected nodes, min(7, 7'), where 7 and 7’ are
the susceptibility age of node i and the infection age of node j,
respectively. We thus have

+00
O, i(7;t) = /0 Wipe[min(z, 7)]L(7'; t)d, (14)

where w;,[min(z, 7')] is the infection rate of the active edge
whose age is equal to the smaller one of the end nodes.

For type-II mechanism, the age of the active edge i < j depends
on the infected node j only, and we have

;. i(r; t):/0 OO17(1’)11.(1’;t)d1/, (15)

where the infection rate #(7) of the infected node j aged T satisfies

the integral equation

o0 = [ 0 Wit — T)AT + Yine(0).

The solution of Eq. (16) can be written as
0-+ioo oy
’1(1,) _ / ll/inA (S) eSTdS,
0—ico 1-— l//inf(s)
where . ((s) is the Laplace transform of y;,d(7):

+o00

Ye(T)e dr

(16)

(17)

(18)

Supplementary Fig. 1 in Supplementary Note 2 presents the
analysis of (1) for type-II edge activation mechanism.

Equations (10) and (12) govern the time evolution of non-
Markovian SIS spreading dynamics in general, with the boundary
conditions given by Egs. (11) and (13). The state transition
processes can be described as the probability flows between the
infected and susceptible states determined by the functions I,(t; t)
and S;(1; t), as well as those within each state. A schematic
illustration of the various probability flows is shown in Fig. 2. The
initial conditions for Eqs. (10) and (12) are the initial probability
distributions of each node:

I(1;0) = p;(7)

1Apinf (S) =

(19)

and

§i(7;0) = x;(7), (20)

where p;(1) and y,(7) are the probability densities of the ages of
node i being in the infected and susceptible state, respectively.

Transient behaviors. To test the power of our mean-field theory
to predict transient behaviors in non-Markovian processes, we
carry out Monte Carlo simulations*”62 of SIS dynamics on dif-
ferent types of networks (see “Methods” for details). To be gen-
eral, in the simulations, we set y;,d(x) and y,..(7) to be the long-
tailed, Weibull type of distribution as

% K1 )

. (k) = e A
Yinf ( ) ﬁl ( ﬁ )

I

(1)

and
= B (yont =)™
Pr “Br
where (aj, ar) are the shape parameters and (f;, fr) are scale
parameters. A smaller value of the shape parameter and/or a
larger value of the scale parameter corresponds to more extensive
heterogeneity of the age distribution.

Figure 3 shows, for three different types of networks, the
evolution of the infected density of the entire network over time,
where the density value predicted by the mean-field theory is

Viee(T) ) (22)

N
calculated with I(¢) = > I,(¢)/N. Initially, 1% of the nodes are
i=1

randomly chosen to be the infection seed and their infection ages
are all zero. A small o value for which the distribution y;,¢(x) is
strongly heterogeneous will lead to a large-scale disease outbreak,
due mainly to the small mean infection time. In Fig. 3a—c, the
Monte-Carlo simulation results and the theoretical predictions
for the type-I activation mechanism are presented for Erdos-
Rényi (ER) random, Barabasi-Albert (BA) scale-free, and
Hamsterster networks, respectively. The Hamsterster network is
a real-world social network in the human society®3. Figure 3d-f
shows the comparison results of the temporal evolution of the
infected density for processes with type-II activation mechanism.
The mean-field predictions of the time evolution are generally in
good agreement with those of non-Markovian type of SIS
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Fig. 2 Schematic representation of probability flows. Each illustration is divided into blocks of width dz — O, and the area of each block represents the
probability that node i is in the corresponding state aged from 7 to 7+ dz. @ Two distributions, /(z; t) and Si(z; t), of node i at time t. b Each block losses

N N
probability @e.(2)Ii(z; )dz or S;(7;t) 3 a;®;_;(7;t)dr and converges to fgoowm(r)l,-(r; t)dr and fg‘”s,(r; t) > a;®;_;(r;t)dr, respectively. € Each block
= =

moves one step to the right, and the empty blocks S;(0;t 4 dt) and /,(O;t + dt) are filled with the probabilities fgmwrec(r)l,-(r; t)dr and

0

Random network

Scale-free network

N
S (151) >-a;®;_;(t;t)dz, respectively. d The distributions /(z; t 4 dt) and S(z; t +dt) at time t 4 dt
=

Hamsterster network

10}a Lb

Type-| edge activation
mechanism

1(t)

LC

Type-Il edge activation
mechanism

2 .3, 8.5
5

6
6

Fig. 3 (Color online) Comparison of time evolution between simulated and theoretical results. Panels in the first and second rows (a-c and d-f),

respectively, are for the type-I and type-Il mechanisms. The three columns from left to right are for ER random, BA scale-free, and Hamsterster networks,
respectively. In all panels, the solid symbols represent the results of simulations which are averaged over 100 realizations for random and scale-free

networks, and over 400 realizations for the Hamsterster network. The open symbols represent the results of theoretical solutions obtained from Egs. (10)-(13).
The symbols diamonds, circles, triangles, and stars correspond to @y = 0.5, 1, 2, 4, respectively. The random and scale-free networks have size N =104 and
mean degree (k) 10, and the Hamsterster network has N = 2426 and (k) ~ 13.7. The insets in panels a, d show the extinction process with a; = 4. Other

parameters are =1, ar=2, and fr=0.5

spreading dynamics on random (homogeneous), scale-free
(heterogeneous), and Hamsterster (real-world) networks.
However, in some cases (e.g., a; = 4 for ER random networks),
there are some discrepancies between the predictions from the
first-order mean-field theory and the simulation results [c.f,
insets in Fig. 3a, d], due to the exclusion of any dynamical
correlation. For a more accurate description of non-Markovian
spreading processes, the dynamical correlation in the evolution of
states of connected nodal pairs must be taken into account. To

meet this challenge, we articulate a second-order mean field
approach and show that it is capable of predicting the simulation
results more accurately than the first-order theory, even for
extreme situations where the disease decays rapidly [e.g., the a; =
4 case in Supplementary Fig. 2¢, d]. The second-order theory
indicates that, in general, dynamical correlation such as temporal
correlation between active edges can significantly affect the
accuracy of the mean-field analysis (see Supplementary Fig. 2 and
Supplementary Note 3 for details). Due to the limitation of
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computational feasibility, we have tested the predictions of the
second-order mean field theory for homogeneous networks. To
extend the study to heterogeneous networks is currently infeasible
due to the extreme high computational complexity required to
treat all possible nodal pairs separately.

We further investigate the effects of infection time
distribution and degree distribution on the transient time in
Supplementary Notes 4 and 5, respectively. For a certain
network topology and a given edge activation mechanism, a
larger value of the shape parameter a; leads to a longer
transient phase. Intuitively, a narrower distribution of the
infecting activities makes it easier for the system to reach a
final steady state. (Supplementary Fig. 3 displays results on
transient time versus «;). For fixed values of the structural and
dynamical parameters, random networks lead to longer
transients, due mainly to the lack of hub nodes that can act
as “super-spreaders”. We find that a smaller value of the
power-law exponent and a larger value of the lower-cutoff
degree can lead to a shorter transient lifetime, indicating
that hub nodes in a scale-free network can expedite spreading
processes of the non-Markovian type. Supplementary Fig. 4
presents systematic results on the transient lifetime versus
the values of the power-law exponent and the lower-cutoff
degree.

Equivalence between non-Markovian and Markovian spread-
ing. To establish the conditions under which an equivalence
between non-Markovian and Markovian type of SIS spreading
dynamics arises, we analyze the steady-state behavior. For non-
Markovian type of SIS spreading dynamics for t — oo, we define
the following asymptotic probability density functions:

Ii(z) = lim I(z;1), (23)
$i(r) = tl“floo Si(31), (24)
IH](T) - 1111’1 (Du—]( ) (25)

t—400

From Egs. (10) and (12), we obtain the differential equations for
the probability density functions in the steady state as

dI,(7)

? - rec( )j( ) (26)

o
I
/—\

(27)

N
(7) 2, 2y

In the steady state, the probabilities that a node is newly infected
and that a node recovers are equalll, so we have

ji(o) = Si(o)'

In the steady state, the probabilities that node i is in the infected
state and in the susceptible state are, respectively,

I = / I(7)dr
0

~ +OO ~
S = / S;(1)dr.
0

For type-I activation mechanism, we can obtain a relation
between the probabilities of node i being in the infected and
susceptible state as

(28)

(29)
and

(30)

1
I Z eff ( N ~) (31)
2. al;
j=1
or
L SO
7_ N ~+ z; eff N ~)’ (32)
b A Z a;l; Sl 21 a;l;
= =
where the effective recovery rate is
1
Ot = o> 33
T 1) )

9(7) is the inverse of the function Q(7) given by

T +o0
(1) = 8,5 / / Wglmin(t', )W, ()drdr”,  (34)
0 0

and 9(0) is the nth derivative of 9(1) at r=0 and A% is defined
as

N = 1/[8.59(0)]. (35)

The procedure to derive Eqgs. (31) and (32) is detailed in Sup-
plementary Note 1.

For type-II activation mechanism, the relation between the
probabilities can be obtained as

1 effS E azj j?

where A is the effective 1nfect10n rate with the specific form

ba= [ ¥ (37)

Substituting Eq. (17) for 17(1‘) into Eq. (37), we have

/ l//mf 1//rec )_
Aett = 2mi — Uip(s) 57

Where 1l/mf f() vjmf(r) STdT’ 1l/rec _/0 1//rec ) _STdT’
and Cis a contour that encloses the entlre Re(s) > 0 region?2:64
(see Supplementary Note 2 for details).

Under what conditions can one expect the non-Markovian SIS
dynamics to reduce to Markovian dynamics in the steady state?
To address this question, we note that the equivalence requires
that the non-Markovian steady-state equations be written*247 in
the form of Eq. (36), or

(36)

(38)

Aeff S

-

(39)

MZ”

)

j=1

For non-Markovian SIS spreading dynamics with type-II
activation mechanism, such an equivalence does exist.

However, for processes with type-I activation mechanism,
because of the high-order terms (n>2) in Eq. (32), in general an
equivalence to Markovian dynamics cannot be expected. None-
theless, under certain conditions, an approximate equivalence can
arise. In particular, if both 9MW(0) and 9(0)(n=2) have a finite

value, a large value of Z a;I. will dominate the right-hand side of

i

Eq. (32), making the hlgh—order terms 725 9" (0)(1/21 13 ])

negligibly small. The approximation depends on the local nodal
properties, which is typically valid locally for large degree nodes and
high infected density of neighboring nodes. For the small-degree
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nodes, the high-order terms in Eq. (32) can no longer be neglected.
In general, the validity of the approximation for the whole network
depends not only on the infection density but also on the network
structure, and the approximate equivalence holds if the small-
degree nodes are not abundant in the network. If there is an
appreciable fraction of small-degree nodes in a strongly hetero-
geneous network, the approximate equivalence would fail. Other-
wise, the effective infection rate can be approximated as
A = Mg (40)
Furthermore, when the infection process is Markovian regardless of
whether the recovery process remains non-Markovian or Marko-
vian, there exists an equivalence between non-Markovian and
Markovian types of SIS dynamics with the following equality (see
Supplementary Note 1):
der = N (41)
For non-Markovian SIS dynamics which can be equivalent to
Markovian dynamics, the outbreak threshold is given by®

1
ff
.

max

(42)

where Ap.c is the maximum eigenvalue of the network
adjacency matrix. For processes with type-I mechanism where
there is no equivalence between non-Markovian and Markovian
dynamics, it is generally difficult to identify a relevant
parameter to characterize the phase transition associated with
disease outbreak.

To test when an equivalence between non-Markovian and
Markovian spreading processes arises, we focus on the effects of
the infection time distribution on the stationary infected density
with both types of edge activation mechanisms. We first consider
the case of type-II mechanism. We set a;=0.5, 1, 2, 4, ag =2,
and Br=0.5 and adjust A by changing B; through Eq. (37).
Figure 4 shows the simulation results on random, scale-free and
Hamsterster networks, which are the same as the networks in Fig.
3. It can be seen that, regardless of the network structure, the
stationary infected density agrees well with both the result from
Markovian process simulation and the analytical solution of the
Markovian dynamics from Eq. (39) or (36). The theoretical
thresholds calculated from Eq. (42) on random, scale-free, and
Hamsterster networks are 0.096, 0.040 and 0.020, respectively,
which are quite close to the simulated values of the threshold in
Fig. 4. (Supplementary Fig. 5 in Supplementary Note 6 provides a
comparison of stationary probability density distribution between
simulation and theoretical prediction).

We now turn to the type-I case. For a; = 1, the distribution
of infection time is exponential, making the underlying non-
Markovian process completely equivalent to a Markovian
process with the effective recovery rate . and effective
infection rate A. given by Eqs. (33) and (41), respectively.
Indeed, we find that, as A is increased, or, equivalently, as f;
is decreased, the infected density for the non-Markovian
process with type-I activation mechanism agrees with the
theoretical value of the corresponding Markovian process
(Supplementary Fig. 6 in Supplementary Note 7 shows the
results). For a;#1, the exact equivalence breaks down.
However, under certain conditions, an approximate equiva-
lence can still be expected. To obtain the approximate
equivalence, we analyze the effect of higher-order terms in
Eq. (31) for non-Markovian process with type-I activation
mechanism. For simplicity, we assume that y,..(7) is from

Random network
10fa

0.8 -

04+

0.2r =/ Markovian simulation

Markovian theory

0.0 - -
10lb Scale-free network

0.6 -

0.4

0.0 & .
10LC Hamsterster network

0.6 -

0.4

00 A 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

et

Fig. 4 Demonstration of equivalence. Comparison of stationary infected
density with type-Il activation mechanism between non-Markovian and
Markovian processes for a random b scale-free, and ¢ Hamsterster
networks which are the same as the networks in Fig. 3. Solid, dashed,
dotted, and dot-dashed curves represent the results for @y =0.5, 1, 2, 4,
respectively, and the triangles and circles correspond to simulation results
from the Markovian process and the analytical solutions, respectively.
Other parameters are ag =2 and fir =0.5

Eq. (22) but yi,¢(7) is a Beta distribution:

1 o—171 _ \y-1
Bo.y) K (1—x) (43)
with 0 =1. We have
Yine (1) = y(1 — )7, (44)

where 0<x<1 and wi,(x) =y/(1 — k). Especially, Eq. (44)
turns into a uniform distribution ¥, dx) =1(0<x<1) for y=1.
We set ag=0.5, 1, 2, 4 and Br=0.5, and adjust 9(0) by
changing the value of y. From Egs. (34), (31) and (44), for a fixed
value of ag, the proportional relationship among all 9()(0)
can remain invariant through a proper modification in the value
of y. In particular, an increase in the value of 6 multiplying y
will result in an increase in the value of w;,{(7) by 0 times. As a
result, every value of Q(7) will increase by the same factor 6. For
Vn>0, the quantity 9(0) will decrease by the factor of 6,
making the proportional relationship unchanged. From Eq. (40),
we obtain the approximate effective infection rate as Aegr= y/8etr.
Figure 5 demonstrates a significant deviation in the stationary
infected density, when its values are relatively small, of the
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Fig. 5 Demonstration of approximate equivalence. Shown are the stationary
infected density with type-| activation mechanism for a random, b scale-
free, and € Hamsterster networks, which are the same as the networks in
Fig. 3, for fr = 0.5. Solid, dashed, dotted, and dot-dashed curves represent
the results for ag = 0.5, 1, 2, 4, respectively. Triangles and circles denote
the results from the Markovian process and its analytical solution,
respectively. An approximate equivalence arises in the regime of large
infected density

non-Markovian process from that of the Markovian process with
the effective infection rate A However, as the values of Ao and I
are increased, the results for the non-Markovian process
gradually converge to those for the Markovian process. For a
large value of ag, the values of 9m(0) for n=>2 are reduced,
decreasing the gap between the results from the non-Markovian
and Markovian processes. Simulation results on strong hetero-
geneous networks also verify these results (see Supplementary Fig.
7 in Supplementary Note 8 for details).

Discussion

Disease or virus spreading dynamics in networked systems in the
real world are non-Markovian in that the temporal sequences of
the occurrences of the key events underlying the spreading pro-
cess do not follow a Poisson distribution. The non-Poisson
behaviors make mathematical analyses of the spreading dynamics
difficult, hindering their understanding. It is desired to develop a
theoretical framework for non-Markovian spreading dynamics on
complex networks. An issue of interest concerns about the inter-
relation between non-Markovian and Markovian dynamics.
Especially, while Markovian spreading processes with the Poisson
characteristic are not a true reflection of real world situations,
rigorous analyses and a relatively comprehensive understanding

of the underlying dynamics are possible, as demonstrated in the
past two decades>’. A curiosity driven and practically significant
question is then under what conditions will a non-Markovian
process be equivalent to a Markovian one. And, if such an
equivalence does not exist, to what extent can a non-Markovian
process be approximated by a Markovian one? In spite of pre-
vious work on non-Markovian spreading dynamics on complex
networks343537:39-48 " these issues have not been addressed
satisfactorily, which motivated our current work.

We have developed a first-order mean field theory to solve
both the transient phase and steady states of non-Markovian, SIS
type of spreading dynamics. The theory can be used to assess
accurately the difference between non-Markovian and Markovian
dynamics, for any network structure. A finding is that, whether
there is an equivalence between non-Markovian and Markovian
processes depends on the specific edge activation mechanism.
There are situations where non-Markovian SIS type of dynamics
cannot be understood in terms of equivalent Markovian
dynamics. We have identified one generic condition under which
a complete equivalence between non-Markovian and Markovian
processes holds: absence of any temporal correlation on active
edges. When the correlation cannot be ignored due to the
influence of susceptible nodes on active edges, the equivalence no
longer holds. However, an approximate equivalence may still hold
for the whole network, depending on the infection density and
the network structure. We have found that, in the regime of
relatively large infected density, a non-Markovian process can be
approximated by a Markovian one for heterogeneous networks if
small-degree nodes are not abundant in the network. All these
findings were enabled by the theory developed in this paper.

While we have focused on non-Markovian, SIS type of
spreading dynamics, a hope is that our mean-field theory can be
extended to other types of dynamics such as SIR spreading or
even cascading processes. Our work suggests the importance of
accurately identifying the edge activation mechanisms responsible
for spreading processes in the real world, which are key to
determining whether an equivalence to Markovian dynamics
exists so as to gain a deeper understanding of the underlying
spreading process. Besides the two edge activation mechanisms,
other types of edge activation mechanisms have been studied in
the literature. For example, rule 2 in ref. 43 prescribes that the age
of an active link is solely determined by the age of the infected
node, which bears certain similarity but not identical to type-II
edge activation studied in this paper. For this edge activation
mechanism, an equivalence between non-Markovian and Mar-
kovian processes holds (see Supplementary Note 9 and Supple-
mentary Figs. 8-10 for details). The issues of dynamical
correlation and network communicability®® are also critically
important to non-Markovian spreading dynamics, for which a
theoretical framework, e.g., a higher-order mean field framework,
is lacking. An interesting question is whether the equivalence
holds in the higher-order mean field framework or in a transient
process. For example, when the system is in transient, the dis-
tribution of the state age varies with time, making invalid
dimension reduction in the analysis of the infection and sus-
ceptible probabilities. At the present, it is not feasible to deter-
mine whether there is an equivalences between non-Markovian
and Markovian processes in the transient regime.

Methods

Random number generation. Taking y;,{(x) for example, its survival probability
distribution is expressed as W, (k) = [ :x Y,e(k)dx’. In order to obtain a random
number «, we generate a random number p uniformly distributed between zero and

one and solve the equation

Fine (k) = p- (45)

8 | (2019)10:3748 | https://doi.org/10.1038/s41467-019-11763-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

For the Weibull distribution in Eq. (21) and the Beta distribution in Eq. (44), the
value of « is given by

k=P (ln}))l/“' (46)

and

k=1-p'7, (47)

respectively. We calculate the elapsed time 7 with the distribution y,..(7) in a
similar way.

Simulation method. In a network, each infected node or active edge is marked
with an event-time defined as the absolute time when the infected node will recover
or when the active edge will transmit the disease. The event-times of susceptible
nodes and non-active edges are set as +oco. All nodes and edges are assigned to a
min-heap according to their event-times. Once the event-time of a node or an edge
has changed, its position will be shifted in the min-heap instantaneously. Thus, the
event-time of the node or edge at the root must be minimum. At each step, it is
only necessary to make the node or edge at the root of the min-heap recover or
transmit the disease®?, respectively.

For an infected node located at the root, meaning that the recovery event of
the node will occur first among all the events including recovery and disease-
transmitting events in the network, we update the absolute time ¢ to the event-
time of the node and let the node recover. The event-time of the node then turns
into +eco. This recovery event will lead to state changes of some edges connected
to the node. If some edges become active, we assign them new event-times x + ¢,
where « is a random number generated from the distribution y;,(x) and ¢ is the
current absolute time. The new event-time means the active edge will transmit
disease at the absolute time « + ¢. If some edges become non-active, their event-
times become +-oo.

If an active edge is located at the root, i.e., the disease transmission event of the
edge will occur first among all the events, we update the absolute time ¢ to the
event-time of the edge, and then let the edge transmit disease. This transmission
event can lead to a series of state changes of some nodes or edges and,
consequently, the event-times of the new active and non-active edges are renewed
to k4 t and +-oo, respectively. In addition, the event-time of a new infected node
will be updated to 7+ t, where 7 follows the distribution (7).

Data availability
The source data underlying Figs. 3-5 and Supplementary Figs. 2-9 are provided as a
Source Data file.

Code availability
C++ code to reproduce the data in the main text and the Supplementary Information is
available at https:/github.com/fengmi9312/Codes-for-NCOMMS-19-00777.

Received: 9 January 2019 Accepted: 30 July 2019
Published online: 23 August 2019

References

1. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free
networks. Phys. Rev. Lett. 86, 3200 (2001).

2. Pastor-Satorras, R. & Vespignani, A. Epidemic dynamics and endemic states
in complex networks. Phys. Rev. E 63, 066117 (2001).

3. Vespignani, A. Predicting the behavior of techno-social systems. Science 325,
4252428 (2009).

4. Vespignani, A. Modelling dynamical processes in complex socio-technical
systems. Nat. Phys. 8, 32-39 (2012).

5. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A.
Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).

6. Domenico, M. D., Granell, C., Porter, M. & Arenas, A. The physics of
spreading processes in multilayer networks. Nat. Phys. 12, 901-906 (2016).

7. Wang, W,, Tang, M,, Stanley, H. E. & Braunstein, L. A. Unification of
theoretical approaches for epidemic spreading on complex networks. Rep.
Prog. Phys. 80, 036603 (2017).

8. Nematzadeh, A., Ferrara, E., Flammini, A. & Ahn, Y.-Y. Optimal network
modularity for information diffusion. Phys. Rev. Lett. 113, 088701 (2014).

9. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and
Control (Oxford University Press, Oxford, 1992).

10. Van Mieghem, P., Omic, J. & Kooij, R. Virus spread in networks. IEEE/ACM
Trans. Net. (TON) 17, 1-14 (2009).

11. Van Mieghem, P. The n-intertwined SIS epidemic network model. Computing
93, 147-169 (2011).

13.

14.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Barabasi, A.-L. The origin of bursts and heavy tails in human dynamics.
Nature 435, 207-211 (2005).

Stouffer, D. B., Malmgren, R. D. & Amaral, L. A. Comment on Barabasi.
Nature 435, 207 (2005). arXiv preprint physics/0510216 (2005).

Vazquez, A. et al. Modeling bursts and heavy tails in human dynamics. Phys.
Rev. E 73, 036127 (2006).

Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel.
Nature 439, 462-465 (2006).

Gonzélez, M. C,, Hidalgo, C. A. & Barabaési, A. L. Understanding individual
human mobility patterns. Nature 453, 779-782 (2008).

Song, C., Koren, T., Wang, P. & Barabiési, A. L. Modelling the scaling
properties of human mobility. Nat. Phys. 6, 818-823 (2010).

Eagle, N., Macy, M. & Claxton, R. Network diversity and economic
development. Science 328, 1029-1031 (2010).

Hu, Y., Zhang, J., Huan, D. & Dj, Z.-R. Toward a general understanding of the
scaling laws in human and animal mobility. Europhys. Lett. 96, 38006 (2011).
Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many
cities: universal patterns in human urban mobility. PLoS ONE 7, e37027
(2012).

Lenormand, M., Huet, S., Gargiulo, F. & Deffuant, G. A universal model of
commuting networks. PLoS ONE 7, e45985 (2012).

Goh, S., Lee, K., Park, J. S. & Choi, M. Y. Modification of the gravity model
and application to the metropolitan Seoul subway system. Phys. Rev. E 86,
026102 (2012).

Simini, F., Gonzélez, M. C., Maritan, A. & Barabési, A. L. A universal model
for mobility and migration patterns. Nature 484, 96-100 (2012).

Saramaiki, J. et al. Persistence of social signatures in human communication.
Proc. Natl Acad. Sci. 111, 942-947 (2013).

Simini, F., Maritan, A. & Néda, Z. Human mobility in a continuum approach.
PLoS ONE 8, ¢60069 (2013).

Ren, Y., Ercsey-Ravasz, M., Wang, P., Gonzélez, M. C. & Toroczkai, Z.
Predicting commuter flows in spatial networks using a radiation model based
on temporal ranges. Nat. Commun. 5, 5347 (2014).

Zhao, Z.-D., Huang, Z.-G., Huang, L., Liu, H. & Lai, Y.-C. Scaling and
correlation of human movements in cyber and physical spaces. Phys. Rev. E
90, 050802(R) (2014).

Yan, X.-Y., Zhao, C,, Fan, Y., Di, Z.-R. & Wang, W.-X. Universal predictability
of mobility patterns in cities. J. R. Soc. Interface 11, 20140834 (2014).
§c’epanovié, S., Mishkovski, 1., Hui, P., Nurminen, J. K. & Yla-Jadski, A. Mobile
phone call data as a reginal socio-economic proxy indicator. PLoS ONE 10,
0124160 (2015).

Pappalardo, L. et al. Returners and explorers dichotomy in human mobility.
Nat. Commun. 6, 8166 (2015).

Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of
randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600
(2016).

Zhao, Y.-M., Zeng, A., Yan, X.-Y., Wang, W.-X. & Lai, Y.-C. Unified
underpinning of human mobility in the real world and cyberspace. New J.
Phys. 18, 053025 (2016).

Yan, X.-Y., Wang, W.-X,, Gao, Z.-Y. & Lai, Y.-C. Universal model of
individual and population mobility on diverse spatial scales. Nat. Commun. 8,
1639 (2017).

Kenah, E. & Robins, J. M. Second look at the spread of epidemics on networks.
Phys. Rev. E 76, 036113 (2007).

Vazquez, A, Racz, B., Lukacs, A. & Barabasi, A.-L. Impact of non-poissonian
activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702

(2007).

Iribarren, J. & Moro, E. Impact of human activity patterns on the dynamics of
information diffusion. Phys. Rev. Lett. 103, 038702 (2009).

Karrer, B. & Newman, M. E. ]. Message passing approach for general epidemic
models. Phys. Rev. E 82, 016101 (2010).

Iribarren, J. & Moro, E. Branching dynamics of viral information spreading.
Phys. Rev. E 84, 046116 (2011).

Min, B, Goh, K.-I. & Vazquez, A. Spreading dynamics following bursty
human activity patterns. Phys. Rev. E 83, 036102 (2011).

Min, B., Goh, K.-I. & Kim, I.-M. Suppression of epidemic outbreaks with
heavy-tailed contact dynamics. Europhys. Lett. 103, 50002 (2013).

Van Mieghem, P. & van de Bovenkamp, R. Non-markovian infection spread
dramatically alters the susceptible-infected-susceptible epidemic threshold in
networks. Phys. Rev. Lett. 110, 108701 (2013).

Cator, E., van de Bovenkamp, R. & Van Mieghem, P. Susceptible-infected-
susceptible epidemics on networks with general infection and cure times. Phys.
Rev. E 87, 062816 (2013).

Bogund, M., Lafuerza, L. F., Toral, R. & Serrano, M. A. Simulating non-
markovian stochastic processes. Phys. Rev. E 90, 042108 (2014).

Jo, H.-H., Perotti, J. I, Kaski, K. & Kertész, J. Analytically solvable model of
spreading dynamics with non-poissonian processes. Phys. Rev. X 4, 011041
(2014).

| (2019)10:3748 | https://doi.org/10.1038/s41467-019-11763-z | www.nature.com/naturecommunications 9


https://github.com/fengmi9312/Codes-for-NCOMMS-19-00777
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Georgiou, N, Kiss, I. Z. & Scalas, E. Solvable non-markovian dynamic
network. Phys. Rev. E 92, 042801 (2015).

Kiss, I. Z., Rost, G. & Vizi, Z. Generalization of pairwise models to non-
markovian epidemics on networks. Phys. Rev. Lett. 115, 078701 (2015).
Starnini, M., Gleeson, J. P. & Boguna, M. Equivalence between non-markovian
and markovian dynamics in epidemic spreading processes. Phys. Rev. Lett.
118, 128301 (2017).

Sherborne, N., Miller, J., Blyuss, K. & Kiss, I. Mean-field models for non-
markovian epidemics on networks. J. Math. Biol. 76, 755-558 (2018).
Valdano, E., Ferreri, L., Poletto, C. & Colizza, V. Analytical computation of the
epidemic threshold on temporal networks. Phys. Rev. X 5, 021005

(2015).

Valdano, E., Fiorentin, M. R., Poletto, C. & Colizza, V. Epidemic threshold in
continuous-time evolving networks. Phys. Rev. Lett. 120, 068302

(2018).

Rand, D. A. in Advanced Ecological Theory: Principles and Applications (ed.
McGlade, J.) 100-142 (Wiley, Hoboken, NJ, USA, 1999).

Keeling, M. J. The effects of local spatial structure on epidemiological
invasions. Proc. R. Soc. Lond. B Biol. Sci. 266, 859-867 (1999).

Keeling, M. J. & Rand, D. A. in From Finite to Infinite Dimensional Dynamical
Systems (eds Robinson, J. C. & Glendinning, P. A.) 5-57 (Springer, Germany,
2001).

Eames, K. T. & Keeling, M. ]. Modeling dynamic and network heterogeneities
in the spread of sexually transmitted diseases. Proc. Natl Acad. Sci. USA 99,
13330-13335 (2002).

Gleeson, J. P. High-accuracy approximation of binary-state dynamics on
networks. Phys. Rev. Lett. 107, 068701 (2011).

Lai, Y.-C. & Tél, T. Transient Chaos - Complex Dynamics on Finite-Time
Scales. 1st edn (Springer, New York, 2011).

Hastings, A. & Higgins, K. Persistence of transients in spatially structured
ecological models. Science 263, 1133-1136 (1994).

Hastings, A. Transient dynamics and persistence of ecological systems. Ecol.
Lett. 4, 215-220 (2001).

Hastings, A. Transients: the key to long-term ecological understanding?
Trends Ecol. Evol. 19, 39-45 (2004).

Hastings, A. Timescales and the management of ecological systems. Proc. Natl
Acad. Sci. USA 113, 14568-14573 (2016).

Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412
(2018).

Gibson, M. A. & Bruck, J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A. 104,
1876-1889 (2000).

Hamsterster full network dataset - KONECT (2017). http://konect.uni-
koblenz.de/networks/petster-hamster.

Van Mieghem, P. Performance Analysis of Communications Networks and
Systems (Cambridge University Press, Cambridge, UK, 2009).

Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J. & Faloutsos, C.

Epidemic thresholds in real networks. ACM Trans. Info Sys. Secu. 10, 1
(2008).

66. Estrada, E., Hatanoe, N. & Benzi, M. The physics of communicability in
complex networks. Phys. Rep. 514, 89-119 (2012).

Acknowledgements

This work was supported by the National Natural Science Foundation of China under
Grants No. 11575041, No. 11975099 and No. 61673086, the Natural Science Foundation of
Shanghai under Grant No. 18ZR1412200, and the Science and Technology Commission of
Shanghai Municipality under Grant No. 18dz2271000. YCL would like to acknowledge
support from the Vannevar Bush Faculty Fellowship program sponsored by the Basic
Research Office of the Assistant Secretary of Defense for Research and Engineering and
funded by the Office of Naval Research through Grant No. N00014-16-1-2828.

Author contributions

M.F. and M.T. designed research; M.F. performed research; S.-M.C., M.T., and Y.-C.L.
contributed analytic tools; M.F., S.-M.C., M.T., and Y.-C.L. analyzed data; M.F.,, M.T.,
and Y.-C.L. wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11763-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

| (2019)10:3748 | https://doi.org/10.1038/s41467-019-11763-z | www.nature.com/naturecommunications


http://konect.uni-koblenz.de/networks/petster-hamster
http://konect.uni-koblenz.de/networks/petster-hamster
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1038/s41467-019-11763-z
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Equivalence and its invalidation between non-�Markovian and Markovian spreading dynamics�on�complex networks
	Results
	Non-Markovian spreading dynamics on complex networks
	First-order mean-field theory for non-Markovian spreading
	Transient behaviors
	Equivalence between non-Markovian and Markovian spreading

	Discussion
	Methods
	Random number generation
	Simulation method

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Additional information




