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Abstract

Background: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal
or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle.
Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked.

Methodology and Findings: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide
gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly
for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes
from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods
including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene
activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown
functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the
newly identified genes.

Conclusion and Significance: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells
enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells
progressing normally through the cell division cycle. This group of genes may contain future targets for drug development
and treatment of human disease.
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Introduction

Our studies of histone gene regulation have fostered a long term

interest in events occurring in G1 phase and G1/S phase transition

of the cell cycle [1–5]. This interest culminated in human genome-

scale microarray experiments presented here. Human genome

activity was examined in the early minutes of a new cell cycle in

continuously cycling cells. Our approach was to conduct these

studies in cells progressing naturally through the cell cycle with the

goal of discovering genes whose G1 phase activity may not have been

previously observed due to synchronization methods used.

To study events occurring in the cell division cycle, it is essential

to be able to obtain synchronous populations of cells. Researchers

have used different methods to achieve this goal. The most

common technique used in the past was serum starvation [6],

which arrested cells by limiting growth factors and other nutrients

essential for cell growth in culture media. Although the response to

serum does result in cells re-entering the cell cycle, it also results in

a prominent wound-healing response [7]. The complex nature of

the serum response means that distinguishing cell cycle genes from

those involved in wound healing is very difficult. Other methods

that attempt to avoid the serum response involve use of drugs to

arrest cells at a definite stage of the cell cycle. Several methods that

block cells in S phase include the DNA synthesis inhibitors such as

aphidicolin, an inhibitor of DNA polymerase b [8], hydroxyurea

[9], an inhibitor of ribonucleotide reductase [10], and excess

thymidine which inhibits deoxycytidine deaminase. Other meth-

ods arrest cells in mitosis with drugs such as nocodazole [11] and

colchicine [12] which have been used to disrupt the formation of

the mitotic spindle by inhibiting microtubule polymerization,

blocking the cells in G2/M, prior to entry into mitosis. All of these

methods stress the cells and therefore alter the cellular response

under investigation.

Our interest in studying events occurring in G1 and early S

phase led us to develop a robotic mitotic shake-off apparatus.

Since serum starvation blocks cells in G0 and they reenter the
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cycle in late G1 upon readdition of serum to the growth medium

[13,14], any regulatory events occurring early in G1 of

continuously cycling cells are missed. Similarly, nocodazole-

blocked cells seemed inappropriate for our purposes. Since gene

knock-out and knock-down studies of G1 and G1/S regulators

have presented a complicated picture of regulation of entry into a

new cycle [15–19], an alternative synchronization method such as

mitotic selection might add to our understanding of gene

regulation in this part of the cell cycle.

Here we describe a new approach to an old technique, mitotic

selection, described years ago [20,21]. We have improved upon

the approach significantly with new ideas and instrumentation. We

have also validated the technique of mitotic selection using the

latest experimental technologies. Our large-scale automated

technique allows significant insights into a key window of the cell

division cycle not afforded by other commonly used approaches

for synchronizing mammalian cells [9,11,12]. The use of a fully

automated mitotic shake-off machine to obtain synchronous

populations of normally cycling cells without the use of drugs is

described. We show data utilizing immunocytochemistry, flow

cytometry and microarray technology to prove that mitotic cells

selected by mitotic shake-off enter the next cell cycle normally,

without activating stress response genes. Because of the powerful

tools available to study regulatory activities at the molecular level,

mitotic selection is an ideal method to obtain synchronous

populations of cells for the study of early events in the cell cycle.

This approach has enabled the identification of new candidate

genes involved in regulation of early G1 of the cell cycle.

Results

We wanted to examine gene activity in early G1 phase of the

cell cycle in human cells moving naturally from mitosis into a new

cell cycle. Most of what is known about G1 phase regulation came

originally from studies utilizing cells synchronized by serum

starvation, contact inhibition, thymidine blocks or drugs [18].

Overexpression and gene knock-out or knock-down of potential or

known regulators has demonstrated that most cyclins, cdks and

inhibitors are not essential for viability or for G1/S phase

transition in normally cycling cells [18]. It has become increasingly

clear that transition from quiescence into late G1 phase is not the

same as transition from mitosis into early G1 of a new cell cycle

[18]. Moreover, mitosis to G1 phase transition in cells not

continuously cycling (i.e., cells released from blocks in S or G2/M

transition) may differ in genome-wide transcriptional activity.

Thus, we took a different experimental approach, mitotic

selection, to identify potential growth regulators in the first two

hours of G1 in continuously cycling HeLa cells.

Collection of Mitotic Cells by Selective Detachment
We used an automated mitotic shake-off machine to collect

mitotic cells [3]. This procedure takes advantage of a physical

phenomenon, that in late mitosis as cells prepare to divide, they

round up and their attachments to the growth substrate are

loosened. Vigorous shaking of the growth flask releases mitotic

cells from the growth substrate into the culture medium, allowing

selection of mitotic cells. Of the cells tested in our lab for mitotic

selection, HeLa and CHO cells are perfectly suited for mitotic

selection. These cells exhibit morphology that includes regular cell

margins and spacing patterns when examined by the light

microscope.

Mitotic cells were collected every 10 minutes into 250 ml-

conical tubes and stored on ice. Since microtubule polymerization

is inhibited at temperatures below 4uC [22], cells may be held in

late telophase of mitosis on ice for short periods [21]. Before

collecting mitotic cells, pre-experimental clearing shakes are

performed to get rid of non-adhering and/or dead cells. Cells

are then pelleted, resuspended in CO2-adapted media and

returned to standard growth conditions. Ten to fifteen minutes

after plating, the cells exit mitosis and proceed into a new cell

cycle.

Correlation of Cell Synchrony by BrdU Uptake and FACS
Analysis

Post-mitotic pairs of CHO cells, 1 hour after plating are shown

in Figure 1A. Cytoplasmic bridges at the conclusion of cytokinesis

are visible between some of the pairs of daughter cells.

Bromodeoxyuridine (BrdU) incorporation is used to detect S

phase entry and as these cells are in early G1 of the cell cycle, no

BrdU incorporation is detected. Figure 1B shows microscopic

fields of HeLa cells fixed at the indicated time after mitotic

selection. S-phase cells incorporating BrdU and exhibiting

fluorescent nuclei were counted in 8–10 fields for each time point

and the results are shown graphically in Figure 1B. A very low

number of cells enter S phase prior to 5 hours, indicating that cells

prior to this time point are in G1 phase of a new cell cycle. The

data presented in this figure reproduces the observations of others

who have used manual or partially automated applications of the

shake-off method [21,23].

We also examined cell synchrony in mitotically selected cell

populations by flow cytometry of propidium iodide (PI) labeled

cells. Figure 1C shows an analysis of mitotically selected HeLa cells

at different time points after plating, as they progress into a new

cell cycle. At 0 hour (mitotic cells harvested by shake-off and

directly analyzed), two populations of cells are present with either

G1 (2N) or G2/M DNA content (4N). This likely results from cells

in late telophase undergoing cell division during the moments

under analysis (over 70%) and entering G1, while the cells which

have not yet completed cytokinesis show 4N DNA content (less

than 30%). At 1–3 hrs, nearly 100% of the cells are in G1 as

evident by one DNA peak showing 2N DNA content. Cells enter S

phase from 5–9 hrs. The right shift in the 2N peak becomes a

shoulder in 7 hour and 9 hour samples and is indicative of cells in

S phase of the cycle. The data shown here are evidence that these

cell populations obtained by mitotic selection remain synchronized

over the time course of our experiments.

Correct Genomic Histone Gene Activity in the Cell Cycle
in Mitotically Selected Cell Populations

We then examined the synchrony of mitotically selected cells by

obtaining the gene expression profiles of the replication-dependent

histone genes. The temporal regulation of expression of the histone

gene family is well characterized [24]. Histone genes are classified

as replication dependent and replication independent, with the

replication-dependent (RD) genes undergoing up-regulation at the

G1/S boundary of the cell cycle [2,25–29]. Replication-indepen-

dent histone (RI) genes show low, constitutive levels of expression

across the cell cycle.

We used human genome-scale microarray analyses of RNA

samples obtained from populations of cells progressing into the cell

cycle after mitotic selection. The two genome scale microarray

experiments are referred to here as shake 1, which includes RNA

samples collected over a period of fourteen hours after mitotic

selection at intervals of two hours (8 slide arrays) and shake 2, where

samples were collected in fifteen-minute intervals over a period of

two hours after mitotic selection (9 slide arrays). Thus, shake 1

examines gene activity from mitosis to the midpoint and beyond of

Early G1-Regulated Genes
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S phase. Shake 2 is a close examination of the first two hours of G1.

In a study that was published previously [5], a genome-scale

analysis identified cell cycle-regulated genes in the human genome

by identifying those genes with common expression patterns.

RNAs were collected from HeLa cells synchronized by three

different methods including double thymidine block, thymidine-

nocodozole block, and mitotic selection. Those genes (.850)

showing regulation in the cell cycle common to all three datasets

were identified as cell cycle regulated genes [5]. This collaborative

study included our total RNA samples which were obtained from

cells synchronized by the mitotic selection technique, which we are

identifying as shake 1.

Here, we examined the expression of the replication-dependent

histone genes in our datasets from shake 1 and shake 2. Note that

replication-dependent genes do not produce polyadenylated mRNA

and are not in standard EST collections, but were deliberately

included on these arrays. Figure 2A profiles the histone gene activity

in shake 1. The RD histone gene activity shows 7–8 fold upregulation

of these genes (e.g. hist1h1c, hist1h2am, hist1h2bf, hist1h3d, and hist1h4c)

at the expected time, 6 hours and beyond, when the cells are

entering S phase of the cell cycle. The replication-independent genes

such as h2afx and h2av show a relatively constant expression profile

across all time points (0 to 14 hours). Figure 2B includes expression

data from shake 2 which includes most of the histone genes shown in

Figure 2A (shake 1). All of the RD histone genes on the shake 2 arrays

show no evidence of upregulation as expected for cells in early G1

phase. Upregulation of the RD genes does not occur at this early

point in the cell cycle, which spans from telophase through early G1.

The RD histone gene expression data observed in shake 2 correlates

very well with histone gene activity observed in the early time points

of shake 1, i.e., 0 h and 2 h (compare Figure 2A and B). To identify

specific cDNAs of interest for gene activity profiles shown in

Figures 2–5, more information is provided in the Materials and

Methods section.

Figure 1. Synchrony in cells collected by mitotic selection. (A) Synchronous population of CHO cells 1 hour after mitotic selection. Images are
displayed in grayscale for DAPI and BrdU uptake (Bromodeoxyuridine) and together as two-color overlay (cyan for DAPI and red for BrdU). The post-
mitotic bridge between mitotic doublets is indicated by white arrow. Images were captured using a deconvolution microscope. Each image is a
projection of 10 optical sections comprising a total thickness of 2.5 micrometer from the middle of the cell. Identical results are observed with HeLa
cells [4]. (B) Entry into S phase by cycling HeLa cells. BrdU uptake by HeLa cells obtained by mitotic selection. 1R9 h indicate time after plating of
mitotically selected cells. Graph shows percentage of cells incorporating BrdU at different time points after mitosis. A minimum of 300 cells were
counted for each time point from at least eight fields of vision on the fixed slides. (C) FACS analysis of cells selected by mitotic shake-off. Mitotic HeLa
cells were collected, plated and then harvested at specific time points. The cells were stained with propidium iodide (PI-A) and analyzed by FACS.
BrdU incorporation in Figure 1B and FACS analysis were done in parallel. Each experiment was repeated twice.
doi:10.1371/journal.pone.0003943.g001

Early G1-Regulated Genes
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No Induction of Mechanical Stress Genes by Mitotic
Selection

Since our goal was to examine gene activity in early G1 of

normal, unperturbed cycling cells, it was important to inspect the

activity of genes which might be activated by stress, in particular,

mechanical stress, in cells obtained by mitotic shake-off. In the

analyses presented in Figure 3, we examined the activity of genes

identified by other investigators in the scientific literature as stress

response genes, which might be activated by mitotic shake-off. We

analyzed those genes identified as activated by shear force [30],

cyclic pressure [31], hydrostatic pressure [32] and mechanical

stress [33]. These genes include NF-kB (nuclear factor kB), jun, sod3

(superoxide dismutase 3) and cycs (cytochrome c). Figure 3A (shake

1) and 3B (shake 2) profile the relative change in gene expression of

these stress genes [30–33] across the 14 hour time period of shake 1

and the first two hours of G1 phase (shake 2). None of these

mechanical stress genes show significant upregulation in gene

expression by mitotic selection. These data indicate that the

mitotic selection method is a stress-free system as it does not

activate the mechanically-induced genes. Shake 2 results are

particularly important, since these gene arrays profile gene activity

every 15 minutes from collection of late telophase cells by shake-

off through the first two hours of G1 phase.

No Activation of Serum-Response Genes by Mitotic
Selection

To validate the comparison of our gene profiles for early G1

phase to the many studies involving the restriction point later in

G1, we examined the set of genes identified as being activated in

response to serum stimulation [7]. Figure 4(A,B) shows the relative

Figure 2. Gene expression profile of human histone genes on human genome-scale (29,000 genes) arrays. (A) The data shown here is
from shake 1 (14 h). (B) Data from shake 2 (2 h). Refer to the text for detailed description of the experiment. The bars on the left separate the
replication-dependent (RD) histone gene family from replication-independent (RI) histone genes. RD genes upregulation is indicated by a yellow color.
Gray squares represent spots on the array with poor quality that were not considered in the analysis and did not make it to the final cluster image.
The data presented here (A and B) is from two independent experiments, using two different sets of mRNAs and microarray slides. The color scale at
the bottom indicates fold induction or repression in gene expression. The signal is a direct measure of relative abundance of mRNA sample from
control and experimental samples. The gene symbols and accession numbers displayed are generated from SMD and S.O.U.R.C.E online tool. Gene
symbols are represented close to the cluster image. The accession numbers (Acc. N.) are displayed far right to the image.
doi:10.1371/journal.pone.0003943.g002
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activity of those genes identified in the previous microarray studies

of the effect of the serum response in our two experimental sets of

RNA. All of the genes identified as activated in the serum

response, with the exception of CTGF, show no significant

upregulation in gene expression in our datasets. The analysis of

genes identified as stress-response genes in the serum starvation

experiments [7] shows clearly that these genes are not activated by

mitotic shake-off. This demonstrates that the mitotic shake-off

technique is a reliable method of achieving cell synchrony without

activating stress response genes. This method allows for examina-

tion of cell cycle events in cells progressing normally into a new cell

cycle.

Identification of Genes Up- or Down-Regulated in Early
G1

Our analysis of genome activity over the first two hours of a new

cell cycle (shake 2) was based upon 9 gene arrays. Total RNA was

isolated every 15 minutes from 0 time (late telophase) to 2 hours

after mitotic selection. RNAs from populations harvested at these

time points were hybridized to slides containing 29,000 gene

targets. Our goal for this study was to identify those genes whose

activity was the most highly variable over the two hour period of

early G1.

Our statistical analyses of this large dataset (9 slides643,000

cDNAs) identified the two hundred genes whose activity was the

most variable over the two hour period examined. This list is

available as a supplementary data (supplementary Table S1). The

genes on the list are rank-ordered in terms of relative variability,

with fos showing the highest variability over the first two hours of

G1 phase of any of the 29,000 genes on the arrays. Conversely,

cyr61 is 193 and 196 in the rank order. Comparison of the two

different cyr61 cDNAs on different parts of the slide array which

hybridized to the same RNA is an example of the intentional

redundancy of these arrays and serves as internal control for the

hybridizations. The list of 200 genes contains known cell cycle and

other growth regulatory genes, as well as many others whose

products and functions are unknown.

A small number of these genes with highly variable expression

in the first 2 hours of G1 phase were selected from supplementary

Table S1 and are presented in Figure 5A as gene expression

profiles based upon intensities relative to the reference set of RNAs

Figure 3. Gene expression profile of some mechanical stress-
induced genes. The data included is from (A) shake 1 and (B) shake 2
experiments. The microarray analysis was performed as in Figure 2, but
using genes identified in stress-response studies [30–33].
doi:10.1371/journal.pone.0003943.g003

Figure 4. Expression profile of serum-response genes. The data
from array experiments (A) shake 1 and (B) shake 2 were analyzed as in
Fig. 2 for genes identified in serum-response experiments [7].
doi:10.1371/journal.pone.0003943.g004
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(from asynchronous HeLa cells). In this group, c-fos, egr1 and ccna2

gene products are known growth regulators. Transcription factors,

c-Fos and the early growth response protein 1, show up-regulation

in early G1 in our study and have variously been shown to play

roles in cell growth, proliferation, differentiation and tumorigenesis

[34–36]. Cyclin A2, showing down-regulation in the earliest time

points of G1, is important in S phase regulation, in complex with a

cdk, and is active until mitosis [18]. Cyr61 is upregulated in our

study and is a product of a growth factor-inducible immediate

early response gene which promotes proliferation and adhesion

[37]. This gene was recently shown to be one of the most variable

genes in a study of the initial 12 hours of mouse embryonic stem

cell variation [38]. ATF3 is also a transcription factor with known

activities in proliferation as well as in physiological stress response

[39] and is up-regulated at the mid-point of our experiment.

EGFR, epidermal growth factor receptor, is involved in signaling

events in cell proliferation and cancer [40]. CTGF is a growth

factor (connective tissue growth factor) involved in signaling events

involved in cell growth and maintenance. MYADM, myeloid-

associated differentiation marker is a membrane protein implicat-

ed in differentiation and cancer [41]. TCEB3, transcription

elongation factor B (SIII), polypeptide 3 (110 kDa), is part of the

protein complex which activates elongation by RNA polymerase II

[42]. The remaining two genes, whose activity is profiled in

Figure 5A, hybridized to cDNAs identified as hypothetical proteins

or EST and are unknown, as are 47% of the genes on the list of

200.

Verification of the variable gene expression we observed in the

array experiment shake 2 was obtained for several genes by real-

time quantitative RT-PCR. Our goal was to examine the overall

pattern of mRNA levels normalized to a constitutively expressed

gene (actin), which was shown to not vary in previous studies [5].

Figure 5B displays the data from amplified RNA generated using

total RNA from shake 2. Similar results were observed when

using total RNA with no amplification step (data not shown).

Specific primers for c-fos, atf3, tceb3 and a hypothetical protein were

used to quantitate the relative amounts of RNA in the 9

experimental samples from shake 2. The results are presented

graphically. The profile of gene activity for these genes is directly

comparable to that observed in Figure 5A, (compare profile

below each graph) validating the results of our analysis

(supplementary Table S1).

In addition, Tables S2 and S3 contain supplementary data

which list the 100 genes from our genome-scale analysis which

have the highest relative gene activity on any of the 9 experimental

array slides (Table S2), or the 100 genes in the human genome

with the lowest relative gene activity at any time point in shake 2

(Table S3). Not surprisingly, some of the genes in the list of 200,

whose relative expression is the most variable over first two hours

of G1, are on Tables S2 or S3. Among the genes listed in Table

S1, Table S2, or Table S3 are known growth regulators, as well as

unknown proteins which could be important G1 regulators.

Discussion

Studies of events occurring after the restriction point, through

release of cells from growth factor limitation, are the source of

much of our knowledge about regulatory proteins in G1 phase of

the cell cycle (for a review see reference 14). Knowledge of events

occurring after mitosis and before the R point in mammalian cells

has come primarily from cells blocked, then released, in S phase or

at G2/M by inhibitory drugs [8–12].

Figure 5. Gene activity during the first 2 hours of G1 phase in HeLa cells. (A) Expression profile of selected G1-regulated genes out of the list
of 200 (see supplementary Table S1). The data shown here is derived from mRNAs collected at 15 min intervals over the first 2 hours after plating, in
early G1. The analysis performed here is as in Fig. 2. For more information on how these genes were identified, refer to the methods section. (B)
Quantitative RT-PCR analysis of candidate RNAs in synchronously growing cells in early G1 by real-time amplification (BioRad). The graph generated
represents normalized mRNA levels of each gene under study relative to actin and the bar below each graph outlines the array expression patterns of
candidate genes shown in (A). The values on the Y-axis are arbitrary and are the results of normalizing to a-actin RNA levels in the same sample. Refer
to (A) for comparison – yellow represents high and blue low level of expression. Gene symbols are shown, (*) (**) hypothetical protein, (Acc. N.)
accession number.
doi:10.1371/journal.pone.0003943.g005
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We used a well-characterized human cancer cell line in which

Rb and p53 are inactivated, but genes involved in cell cycle

progression, DNA replication, chromosome segregation and cell

adhesion show appropriate activity in the cell cycle [5,43]. Our

goal in the studies reported here was to obtain a synchronous

population of naturally cycling cells with which to examine gene

activity of the human genome in early G1 of the cell cycle. We

attempted to establish other human cell lines for these shake-off

experiments, including U2OS cells, but were unsuccessful. The

success of these experiments depends upon the ability to collect a

synchronous population of cells, all in late telophase of mitosis. For

human cells growing attached to a growth substrate, early events

include adhesion to the growth substrate, production and

activation of G1 cyclins, and preparation for entry into S phase

of a new cell cycle. Intuitively, it is obvious that growth regulators

of the earliest moments of a new cell cycle may be important

regulators of cell growth and proliferation in normal as well as

tumor cells. Therefore, we used microarray technology to identify

the human genes whose activity is the most highly varied in G1 of

the cell cycle with the hope that this group of genes may contain

future targets for drug development and treatment of human

disease.

Methods which involve limitation of growth factors and use of

drugs alter cellular events upon re-entry into the cell cycle once the

block is removed. For example, cells synchronized using

aphidicolin or mimosine show highly elevated levels of checkpoint

regulatory proteins, p53 and p21, and these elevated protein levels

persist even after the cells are released from the block [44]. Also,

cells synchronized by thymidine and/or hydroxyurea show higher

expression levels of cyclins A and B1 in S and G2 phases than in

mitotically selected cells progressing normally through the cell

cycle [45]. The downstream effects of the elevated levels of

important regulatory proteins on cellular signal pathways are likely

to be significant. And as others have shown, entry into the cell

cycle after serum starvation involves the wound healing response,

which greatly complicates interpretation of the changes in gene

activity as cells progress out of G0 into late G1 [7].

In our studies presented here, we used current traditional

methods to show cell synchrony and normal cell cycle progression:

BrdU uptake by S phase cells, and FACS. In addition, we

examined the datasets generated from our genome-wide study of

gene expression in HeLa cells obtained by mitotic selection. These

microarray studies involved more than 29,000 human genes

arrayed on glass slides which contained a total of 43,000 targets

[5]. In these studies, we examined three particular sets of genes to

study synchrony as well as stress gene activity in mitotically

selected cell populations. First, to examine synchrony of the cell

populations, we examined replication-dependent and replication-

independent histone gene activity in the two experimental sets of

gene arrays. Replication-dependent histone gene expression is

tightly regulated in the cell cycle. This family of genes is up-

regulated at the G1/S boundary, and down-regulated in mid S-

phase [46]. Figure 2 shows the gene expression profile of the

replication-dependent genes in a time-series experiment (shake 1)

that spans a period of 14 hours after plating mitotic cells. The

dataset shows that the upregulation of these replication-dependent

genes occurs 6 hours after plating, which coincides with G1/S

transition in HeLa cells [4], at the time the cell commits to S

phase. The replication-dependent histone genes whose activity is

shown in Figure 2 represent all the classes of histone proteins

present in the nucleosome core complex. The replication-

independent histone genes are not up-regulated at G1/S phase

transition, but are expressed at relatively low and constitutive

levels throughout the cycle [47,48]. In the second time-series array

experiment (shake 2), we show that neither replication-dependent

or -independent histone genes present on the human gene arrays

vary in activity over the first 2 hours of G1 (Figure 2B), verifying

both synchrony and expected temporal patterns of histone gene

activity.

Next, we examined stress-response gene activity among those

known genes which could be considered pertinent to our selection

method, gene products associated with mechanical stress.

Researchers have identified genes activated under various types

of mechanical stress [31–33,44]. Examination of the stress-

response gene datasets from the array experiments clearly shows

there is no association between stress-response gene activity and

the mitotic shake-off method, either in the early time period

(2 hours) following selection (shake 2) or throughout the first

14 hours of a new cell cycle (shake 1). We then examined a set of

well-characterized genes that were identified as being activated in

serum starved cells, in response to serum stimulation [7]. With the

exception of CTGF, this gene set did not show any significant

increase in gene activity in our experiments (Fig. 4A, B). We

suggest that CTGF upregulation is probably not indicative of

cellular stress activity. CTGF is a growth factor and one possible

explanation to its upregulation late in early G1 (shake 2) is likely

due to its involvement in signaling pathways essential for cells to

progress in the cell cycle, and particularly beyond G1. The exact

role of CTGF in the cell cycle is not completely understood. One

study showed that use of anti-sense approach against CTGF

reversed angiotensin II-induced renal hypertrophy by releasing

renal cells from angiotensin II-induced G0–G1 arrest [49]. In

contrast, CTGF was shown to be a mediator of diabetic

nephropathy by inducing re-entry into G1 phase [50]. Further,

CTGF is an important regulator of fibroblast proliferation in

connective tissue in late G1 and into S phase [51]. Clearly the

function of CTGF is dependent on cell type or disease state, and

our microarray data in unperturbed synchronized cells shows that

further experiments are needed to elucidate the function of CTGF

in G1 and whether it is required for progression into a new cell

cycle.

In contrast to the histone genes, the stress response genes, and

genes activated in starved cells upon serum addition to the growth

medium, a set of genes was identified as having high variation in

activity in early G1 of the cell cycle. We have identified the 200

most highly variable genes among the 29,000 genes represented on

the arrays, showing up- or down-regulation over the 2 hours of

early G1 phase (see Table S1). Many genes identified here are

known to be involved in proliferation and/or cell cycle regulation

(cyclin A2 [52], epidermal growth factor receptor [40], early

growth response 1 [34,35] and fos [36]) and show variation in gene

activity in expected up- or down- patterns over the time period

examined in early G1. However, a number of genes identified in

our studies have not been previously characterized and functions

of their putative products are not known.

In Figure 5, we showed the gene activity profiles of several

known and unknown genes whose activity is highly variable over

the two hour time period examined. We verified the accuracy of

gene activities produced by hybridization to cDNA arrays for

several of these genes by real-time RT-PCR of both total and

amplified RNAs, using the original RNA samples from the shake 2

experiment. Taken together with the gene activity profiles of the

families of genes which serve to validate both the temporal window

of the cell cycle we examined and the stress-free method by which

we synchronized cells, the G1-regulated genes identified here

should provide new information and understanding of important

events occurring early in the cell cycle.
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In summary, we have shown here that the mitotic shake-off

technique is a reliable method to study cell cycle events,

particularly those occurring early in a new cell cycle. As we have

demonstrated, this is a relatively stress-free system. The limitation

of the use of this approach is that many cell types, those which

attach too tightly to the growth substrate, or alternatively, those

which do not shake off in a predictable fashion due to lack of

adhesion to the growth surface, can not be synchronized by this

technique. Our selection method spans a window of 10 minutes,

and ensures that most of the selected cells enter S phase within a

relatively short period where over 95% of the selected cells reenter

the cell cycle synchronously. We have included data obtained by a

variety of experimental methods to show synchrony of the cell

populations, ranging from genome-wide scale microarray analyses

to FACS analysis of DNA content of the cell populations, proving

the merit of the technique. We have also identified a number of

potential G1 regulators which may play essential roles in cell cycle

progression, normal growth and proliferation, as well as

tumorigenesis. We are currently using mitotic selection to obtain

cells for the examination of subcellular localization of interesting

proteins, and are searching for new regulators of the cell cycle,

primarily those essential for progression into and beyond the G1

phase of the human cell division cycle.

Materials and Methods

Cell culture, mitotic selection and FACS analysis
Prior to the time of the mitotic selection experiment, cells are

grown to the appropriate density in a humidified chamber at

37uC, 5% CO2. At the time of the experiment, the flasks are

removed from the growth incubator and placed inside the

temperature-regulated chamber (37uC), on the vibration platform.

A motor under the control of a computer chip vibrates the

platform for 15 seconds at 10-minute intervals. After each

vibration, cells detached from the flasks were collected and stored

on ice. Thus, we select cells detaching from substrate during the

previous 10 minutes. The intensity/force of shaking can be

adjusted based upon the cell type. HeLa or CHO cells were

cultured in 75 cm2 flasks. HeLa cells were grown in Dulbecco’s

Modified Eagle Medium, 10% fetal bovine serum and 1% MEM

non-essential amino acids (Sigma M7145). CHO cells were grown

in McCoy’s 5A medium supplemented with 10% calf serum.

Penicillin-streptomycin (Gibco-BRL) at 1% is added to the culture

media. For FACS analysis, the cells were harvested at indicated

times after mitosis. Cells were stained with propidium iodide as

described by others [53]. Briefly, cells were trypsinized, washed

twice in PBS, followed by fixation in 70% ethanol on ice for a

minimum of 2 hours. Cells were washed 2 additional times in PBS,

and then stained for 30 min at 37uC in 50 mg/ml PI solution

containing 200 mg/ml RNase A and 0.1% Triton-X-100. Samples

were stored at 4uC until analysis on BD Biosciences FACSCanto

in the Flow Cytometry core lab at the College of Medicine. A

minimum of 10,000 cells was counted and analyzed with BD

Biosciences FACSDiva Software.

BrdU incorporation
HeLa cells were cultured as described above. For bromodeoxy-

uridine (BrdU) incorporation, the cells were pulse-labeled with the

BrdU agent (BrdU labeling and detection kit, Roche Molecular

Biochemicals/Boehringer Mannheim) for 30 min before harvest at

the designated time post-mitotically. Cells were fixed with 70%

ethanol in glycine (15 mM, pH 2.0) for 20–30 min at 220uC, and

then washed 3 times with PBS. Fixed cells were prepared for

immunocytochemistry as described earlier [4,54]. Briefly, cells

were incubated with primary antibodies for detection of the BrdU

agent, and then washed for 10 min with PBS. Secondary antibody

(from BrdU kit) incubation was for 40 min. Cells were washed

again and counterstained with DAPI at room temperature for

10 min and mounted in Vectashield (Vector Laboratories). For

Figure 1A, images were captured with an Olympus IMT-2, Delta

Vision (Applied Precision) deconvolution microscope with a 606
objective lens. For Figure 1B, images were captured using QFM

inverted microscope.

Microarray analysis
Mitotic cells were collected using mitotic shake-off. Total RNA

was prepared using ULTRASPEC RNA isolation system (Biotecx,

Houston, TX). Reference RNA was prepared from asynchro-

nously growing HeLa cells using TRIzol (Invitrogen). For cDNA

synthesis and microarray hybridization, refer to Whitfield et al.

[5]. Herein, we used the Stanford Microarray Database (SMD)

(http://genome-www5.stanford.edu//) to analyze, sort and cluster

microarray raw data. For data retrieval, the normalized ratio of

mean intensities from the experimental and control samples was

considered. The genes selected for analysis were chosen using their

corresponding clone IDs. Gene names and accession numbers

displayed in all figures were generated from the SMD online

analysis software, and accession numbers were further verified

using the S.O.U.R.C.E online tool (http://genome-www5.stan-

ford.edu/cgi-bin/source/sourceSearch). Two shake-off experi-

ments were used in these analyses, shake 1, which was conducted

over 14 hours and samples collected every 2 hrs, and shake 2 which

was conducted over 2 hours and samples collected every

15 minutes. A previous paper [5] utilized RNA samples from

shake 1, from double-thymidine blocked cells, and from thymidine-

nocodozole blocked cells and compared data from all three

synchronization methods to identify cell cycle regulated genes

common to all three experimental sets. Here we analyze changes

in gene expression over the course of shake 1 and shake 2 to identify

G1-regulated genes, producing data sets unique to this analysis.

The data discussed in this manuscript have been deposited in

NCBI’s Gene Expression Omnibus [55,56] and are accessible

through GEO Series accession number GSE12473 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE12473)

Gene Ontology (GO) Analysis
UniGene mRNA accession numbers, representative of identi-

fied genes, were generated from Clone IDs using SOURCE

(http://source.stanford.edu), and Gene Ontology analysis was

conducted using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) [57]. Briefly, SOURCE-generated

list was uploaded and subsequently converted to DAVID IDs

using the Gene Functional Classification tool (http://david.abcc.

ncifcrf.gov/gene2gene.jsp). GO biological process annotations

were analyzed using the Functional Annotation Tool. GO

biological process terms that were at least 2-fold enriched and

had a false discovery rate of less than 10% are shown in Table S4.

G1-regulated Genes and Statistical Analyses
Our interest was not in the cyclic expression of genes during the

cell cycle, but rather examining the variability of expression. To

discover the genes presenting the most variable expression we used

as our basic measure the logarithm (base 2) of ratio of

experimental to control normalized intensities. We calculated the

standard deviation of the log2 ratio of these intensities amongst the

nine times (0, 15, 30, 45, 60, 75, 90, 105, and 120 minutes) at

which expression was determined for each spot on the array. We
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then ordered these standard deviations and focused on those genes

with the highest variability.

Real Time RT-PCR
Microarray data was confirmed using either total or amplified

RNAs from original samples. Total RNAs were amplified using

MessageAmpTM aRNA Kit (Ambion) per instructions of the

manufacturer. RNA samples were quantified by UV absorbance

spectrophotometry at 260 nm, or NanoDropH (ND-1000 spectro-

photometer) and were stored in RNase-free water at 270uC. The

aRNAs were run on 1.25% agarose gel to check integrity and

correct size of the synthesized aRNA products as determined by

ethidium bromide staining. For reverse transcriptase (RT) -

reaction, equal amounts (250 ng) of total RNA or 1 mg of aRNA

from each sample were used. First strand cDNA synthesis was

done in 20-ml reaction containing a random hexamer, dNTPs at

10 mM, and RT enzyme (New England Biolabs) at 15 units and

standard buffer. The cycle was 65uC for 5 minutes, ice (2–

5 minutes), 25uC for 10 minutes, 37uC for 45 minutes, 85uC for

5 minutes and 4uC for 10 minutes. One-tenth (2 ml) of the cDNA

reaction volume was amplified in 25-ml reactions containing the

SYBR Green mix and each primer set designed to amplify

specifically the transcribed region of the candidate genes, or a-

actin (see below) using the BioRad iCycler iQ real-time PCR

detection system. The cycles were 95uC for 5 minutes, (95uC for

15 seconds, 55uC for 30 seconds, 72uC for 30 seconds) repeated

40 times, 95uC for 1 minute and 55uC for 1 minute, followed by a

cycle of an increment increase of 0.4uC repeated 100 times for

melt curve data collection and analysis. a-actin primers were used

to verify changes in experimental RNAs across the time points and

a-actin was chosen because it is not regulated in the HeLa cell

cycle [5]. To rule out contamination, all amplified reactions were

run on 1.25% agarose gel to ensure the presence of one unique

product and running at the appropriate molecular weight DNA

marker. Primer sequences are as follows:

fos (forward primer) 59 AGA TTG CCA ACC TGC

TGA AGG AGA 39;

fos (reverse primer) 59 TGG ATG ATG CTG GGA

ACA GGA AGT 39;

tceb (forward primer) 59 AGA AAT CAC ACA AGG

CCC TCT CCA 39;

tceb (reverse primer) 59 TTT ACC TTG GGC AAC

AGG TCT CCT 39;

hypothetical protein (forward primer) 59 TCG TAT GCA

GAA TCT GTG GGA GCA 39;

hypothetical protein (reverse primer) 59 TGG TCT GGG

CTT GAG GTT CAT CAT 39;

atf3 (forward primer) 59 TCA AGG AAG AGC TGA

GGT TTG CCA 39;

atf3 (reverse primer) 59 CTT CTT GTT TCG GCA

CTT TGC AGC 39;

a-actin (forward primer) 59 GTG CGT GAC ATT AAG

GAG AAG 39;

a-actin (reverse primer) 59 GAA GGT AGT TTC GTG

GAT GCC 39.

Supporting Information

Table S1 List of 200 highly variable genes (Shake 2). Genome-

scale analysis of G1-regulated genes. The identified genes are

presented using their corresponding clone IDs. Gene names and

accession numbers displayed in all tables were generated from the

SMD online analysis software (http://genome-www5.stanford.edu/

), and accession numbers were further verified using the

S.O.U.R.C.E online tool (http://genome-www5.stanford.edu/cgi-

bin/source/sourceSearch). The full data is available online (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE12473)

Found at: doi:10.1371/journal.pone.0003943.s001 (0.25 MB

DOC)

Table S2 List of 100 genes with highest expression at any time

point (Shake 2). Genome-scale analysis of G1-regulated genes. The

identified genes are presented using their corresponding clone IDs.

Gene names and accession numbers displayed in all tables were

generated from the SMD online analysis software (http://genome-

www5.stanford.edu/), and accession numbers were further verified

using the S.O.U.R.C.E online tool (http://genome-www5.

stanford.edu/cgi-bin/source/sourceSearch). The full data is

available online (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE12473)

Found at: doi:10.1371/journal.pone.0003943.s002 (0.13 MB

DOC)

Table S3 List of 100 genes with lowest expression at any time

point (Shake 2). Genome-scale analysis of G1-regulated genes. The

identified genes are presented using their corresponding clone IDs.

Gene names and accession numbers displayed in all tables were

generated from the SMD online analysis software (http://genome-

www5.stanford.edu/), and accession numbers were further verified

using the S.O.U.R.C.E online tool (http://genome-www5.

stanford.edu/cgi-bin/source/sourceSearch). The full data is

available online (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE12473)

Found at: doi:10.1371/journal.pone.0003943.s003 (0.14 MB

DOC)

Table S4 GO analysis. Gene ontology analysis of G1 genes (see

supplemental Table S1). Columns represent GO ‘‘biological

process’’ category, number of genes under that category (# of

Genes), representation in percent (%) to total number of genes

(127, output of DAVID analysis), p-value, fold enrichment and

false discovery rate (FDR,10). For further information see

methods section.

Found at: doi:10.1371/journal.pone.0003943.s004 (0.05 MB

DOC)
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