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Abstract
Evaluate whether texture analysis associated with machine learning approaches could differentiate between malignant and 
benign lymph nodes. A total 18 patients with lung cancer were selected, with 39 lymph nodes, being 15 malignant and 24 
benign. Retrospective computed tomography scans were utilized both with and without contrast medium. The great differ-
ential of this work was the use of 15 textures from mediastinal lymph nodes, with five different physicians as operators. First 
and second order statistical textures such as gray level run length and co-occurrence matrix were extracted and applied to 
three different machine learning classifiers. The best machine learning classifier demonstrated a variability of less than 5% 
among operators. The support vector machine (SVM) classifier presented 95% of the area under the ROC curve (AUC) and 
89% of sensitivity for sequences without contrast medium. SVM classifier presented 93% of AUC and 86% of sensitivity 
for sequences with contrast medium. Texture analysis and machine learning may be helpful in the differentiation between 
malign and benign lymph nodes. This study can aid the physician in diagnosis and staging of lymph nodes and potentially 
reduce the number of invasive analysis to histopathological confirmation.
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Introduction

In patients with suspected lung cancer, lymph node staging 
in the mediastinum is crucial due to the impact on manage-
ment and prognosis [1]. Lung cancer staging is performed 
through the tumor nodes metastasis (TNM) system [2], 
where the size and position of the primary tumor (T), the 
presence and location of compromised lymph nodes (N), 
and the presence of distant metastases (M) are evaluated.

Approximately 30% of patients with pulmonary cancer 
presents mediastinal involvement at the time of diagnosis. 
This involvement may affect ipsilateral lymph nodes, con-
tralateral lymph nodes or direct tumor invasion. The major 
difficulty is determining which patients need to proceed with 

an invasive investigation, and which are consider reactionary 
or benign lymphadenopathy [3].

Imaging modalities such as computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET-CT) can potentially identify malignant 
involvement in mediastinal lymph nodes. CT has the advan-
tage of being more widely available, its images are easily 
interpreted, as well as less sensitive to motion artefacts [4]. 
In CT scan diagnosis, the increase in the diameter of medi-
astinal lymph nodes leads to a further investigation [1]. In 
addition, lymph node enhancement to intravenous contrast 
may be another criterion used as a predictor of malignancy. 
To confirm the involvement of suspected lymph nodes, biop-
sies are performed for histopathological analysis [3]. There 
is also the possibility to utilize the extraction of quantitative 
features from radiological images to aid the diagnosis. Those 
features can provide more information within studied struc-
tures not always visible to the clinician’s eye [5].

In this context, image processing and classification meth-
ods could be used to assess the diagnosis based on image 
evidence [2]. Since its introduction [6], texture features have 
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been used in many classification problems associated with 
different imaging methods.

Based on the above evidence and many other published 
papers [5], texture features have the potential to aid diagnos-
tic decisions. In this context, a set of texture features were 
used and applied to different classifiers based on machine 
learning. The main objective was to evaluate whether texture 
analysis associated with machine learning approaches could 
differentiate between malignant and benign lymph nodes. 
The great differential of our study was that 15 texture fea-
tures were extracted from mediastinal lymph nodes, with 
five different physicians as operators. In addition, the inter 
variability of operators who selected the regions of inter-
est was evaluated. The gold standard was tissue sampling 
extracted through surgery in a cohort of selected patients 
with confirmed lung cancer.

Material and methods

This retrospective study initiated with the collection of 
computed tomography examinations at a medical school, 
between June of 2019 and May of 2020. The local institu-
tional ethics committee approved this study (CAAE number: 
15612619.6.1001.5411) according to country regulations. 
The patient selection used the following inclusion criteria: 
(1) patients who underwent CT exams on the same equip-
ment and performed surgery or mediastinoscopy and biopsy 
of mediastinal lymph nodes in within a maximum period of 
ten days between them. In the case of multiple lymph nodes, 
the largest within each station was selected. (2) Lymph node 
with a short diameter greater than 12 mm. (3) All lymph 
node diagnosis were confirmed by histopathological analy-
sis, here used as gold standard confirmation. In addition, 
the following exclusion criteria were adopted: (4) patients 
who had surgery before CT acquisition and (5) patients with 
lymph nodes compromised by CT artifacts.

All CT examinations included the chest and the upper 
abdomen. CT was performed with a multiple-row detector 
CT scanner GE Optima 660, 64 channel (General Electric, 
USA). All CT multiphase scans were acquired from the same 
equipment. The acquisition parameters were: collimation, 
64 × 0.625 mm; 120 kVp, modulation mAs with 10.0 stand-
ard deviation; rotation time, 0.75 s; reconstruction thickness, 
2 mm; increment, 1 mm; pitch, 1.0; field of view, 35 cm; 
pixel size, 0.7227 × 0.7227  mm2 and matrix, 512 × 512. All 
patients had exams with and without sequences with con-
trast medium; iodixanol contrast agent was injected intra-
venously at weight-adjusted doses according to body mass. 
After injection, CT was performed with a 40 s delay.

Tissue sampling was obtained through surgery (thora-
cotomy, video assisted thoracoscopy or mediastinoscopy) 
with complete lymph node resection or with sampling from 

nodal stations 2 (upper paratracheal—right/left), 4 (lower 
paratracheal—right/left), and 7 (subcarinal).

Five operators (physicians), with more than 15 years of 
experience, including one radiologist and four thoracic sur-
geons, selected the patients and analyzed all CT examina-
tions, in axial orientation. They individually selected each 
region of interest where texture features were extracted. A 
total of 18 selected patients (mean age 54.5 years, range 
age from 34 to 66 years), being 9 male and 9 female, were 
enrolled in this study. After resection and histopathological 
analysis, 39 lymph nodes were adequate for analysis, being 
15 malignant and 24 benign.

The steps of extracting statistical textures and classifica-
tion with machine learning were performed in two different 
software, Matlab (steps 1 to 4) and Orange Canvas (steps 5 
to 7). A summary of the main steps performed throughout 
the methodology are presented below:

1. After selecting inclusion and exclusion criteria, DICOM 
images were read in Matlab;

2. Radiologists selected the most appropriate slices for 
lymph node visualization;

3. Regions of interest (ROI) were positioned within each 
of the included lymph nodes;

4. From each ROI, 15 different statistical textures were 
extracted;

5. Textures were assessed for their ability to distinguish 
between the two groups using the Gini index and Gain 
Ratio, selecting the five best features;

6. Three different Machine Learning classifiers were used;
7. Results were demonstrated according to the ROC curve 

and classification indexes.

Feature extraction

Texture extractions were performed using Matlab software 
R2017a. We selected CT slices with the largest lesion diam-
eter. In order to achieve the best classification, we compared 
images acquired with and without contrast medium. Each 
operator individually positioned the regions of interests 
(ROI) of 10 × 10 pixels, contained within 80% of the inner 
lymph node area. Figure 1 demonstrates the selected lymph 
nodes in CT axial slice without contrast medium (a); CT 
axial slice with contrast medium (b); CT axial slice without 
contrast medium and ROI positioned (c); CT axial slice with 
contrast medium and ROI positioned (d). Since operators 
positioned each ROI individually, all our results of classifi-
cation include mean and standard deviation.

A selection of 15 statistical texture features were used 
including first-order statistical features such as mean, stand-
ard deviation, minimum and maximum intensity, skewness, 
and kurtosis [7]. Also, second-order statistical methods 
such as gray level co-occurrence matrix (GLCM) [8], gray 
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level run-length (GLRL), and wavelet’s transform [9] were 
utilized.

Machine learning classification

Orange Canvas® software processed all texture features with 
different methods of machine learning: Stochastic Gradient 
Descent (SGD), Naive Bayes (NB) [10], and Support Vector 
Machine (SVM) [11, 12].

Stochastic Gradient Descent (SGD) Stochastic is a 
standard algorithm to optimize complex functions itera-
tively. SGD has been used as an optimization method for 
unconstrained problems, but can be utilized for classification 
problems as well. SGD performs iteratively over the training 
examples updating the model parameters with each itera-
tion and it approximates the true gradient through a single 
training example. SGD was used with the Hinge loss clas-
sification function, with constant learning rate of 0.01 and 
50 iterations [13, 14].

Naive Bayes (NB) is a classification method based on 
Bayes’ theorem and the maximum posterior hypothesis. This 
method assumes that the effect of an attribute on a given 
class is independent of the other attributes. The classification 
searches for the maximum probability for each variable to 
be assigned to the correct class [10, 15].

Support Vector Machine (SVM) is a classification method 
that uses input–output training data from two classes. SVM 
algorithm establishes the equation of a hyperplane that 
divides the training data leaving all points of the same class 
on the same side while maximizing the minimum distance 
between either of the two classes and the hyperplane. SVM 
was used with the Radial basis function kernel, with numeri-
cal tolerance = 0.001; cost = 1.0; regression loss epsilon = 0.1 
and iteration limit = 100″ [11, 16].

All three methods used the 15 textural features with an 
F10-fold cross-validation method. The training set was 
composed of 70% of all the input data and the test with the 
remaining 30%. Gain ration and Gini index were used to 
rank all features according to their correlation with each 

Fig. 1  Example of ROI positioning within selected lymph nodes 
in CT axial slices. CT axial slice without contrast medium (a). CT 
axial slice with contrast medium (b). CT axial slice without contrast 

medium and ROI positioned (c). CT axial slice with contrast medium 
and ROI positioned (d)
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class [17, 18]. Thus, we selected the five features that 
achieved the highest scores for classification within each 
machine learning classifier and each operator.

To determine how efficiently the model classified our 
groups (malignant and benign lymph nodes) we utilized 
parameters such as the area under Receiver Operating Char-
acteristic curves (AUC), accuracy (CA), F-score (F1), preci-
sion, and sensitivity.

Results

Among the 18 patients and 39 lymph nodes available for 
analysis, 15 were malignant and 24 benign evidenced by 
the gold standard, the histopathological analysis after tis-
sue sampling. All three classifiers presented the same five 
best features for classification in each operator (E_soma_
bior3.3_1, Evbior3.3_1, Edsum4_1, Ed_hafigure 1ar_1, 
Eh_bior3.3_1). All those features are related to Wavelet’s 
transforms with numbers related to scale and wavelet filters 
of the decomposition. Those five best features achieved the 
best Gain Ratio and Gini index, regardless of exams with 
and without contrast.

Gain Ratio and Gini index selected which features dis-
tinguish with higher precision, sensitivity and the area 
under the Receiver Operating Characteristic curves the data 
between both patient groups. Table 1 demonstrates, for the 
two best machine-learning classifiers (SVM and SGD), the 

area under the ROC curve (AUC), accuracy (CA), F-score 
(F1), precision and sensitivity for lymph nodes extracted 
in CT slices without contrast for the five operators. Table 2 
demonstrates the same parameters for CT slices with con-
trast medium.

In order to determine the optimal cutoff value for both 
sensitivity and specificity, we performed a plot of ROC 
curves for the best classification methods (SVM—Support 
Vector Machine; NB—Naïve Bayes; and SGD—Stochastic 
Gradient Descent). Figure 2 demonstrates the results without 
the contrast medium and Fig. 3 demonstrates the results with 
the contrast medium for all the five operators (A–D).

Discussion

This study includes some limitations. The whole study was 
carried out with data obtained from one computed tomog-
raphy of a single institution and all our data was obtained 
retrospectively. Although the results are promising, a full 
clinical trial with prospective cases from different institu-
tions would be necessary to consolidate the method. Due 
to increasing innovation and development in new diagnos-
tic equipment, the cost and quantity of radiological exams 
increases every day, requiring optimization procedures. 
Therefore, researchers worldwide are frequently looking 
for algorithms to minimize these costs and assist physi-
cian in streamlining radiological procedures, especially for 

Table 1  Test results of the SGD and NB classifiers for the five operators with images obtained without the contrast medium

AUC CA F1 Precision Sensitivity
SVM / SGD SVM / SGD SVM / SGD SVM / SGD SVM / SGD

Operator 1 0.95/0.91 0.90/0.91 0.89/0.91 0.90/0.91 0.90/0.91
Operator 2 0.98/0.85 0.94/0.89 0.94/0.89 0.94/0.89 0.93/0.89
Operator 3 0.87/0.83 0.90/0.91 0.89/0.91 0.91/0.91 0.90/0.91
Operator 4 0.98/0.93 0.91/0.93 0.91/0.93 0.93/0.93 0.91/0.93
Operator 5 0.96/0.80 0.83/0.84 0.79/0.83 0.86/0.85 0.83/0.91
Mean + Stand-

ard deviation
0.95 ± 0.05/0.88 ± 0.05 0.90 ± 0.04/0.90 ± 0.04 0.88 ± 0.06/0.90 ± 0.04 0.91 ± 0.03/0.91 ± 0.03 0.89 ± 0.03/0.84 ± 0.04

Table 2  Test results of the SGD 
and NB classifiers for the five 
operators with images obtained 
with the contrast medium

AUC CA F1 Precision Sensitivity
SVM / SGD SVM / SGD SVM / SGD SVM / SGD SVM / SGD

Operator 1 0.96/0.75 0.83/0.85 0.79/0.84 0.86/0.85 0.83/0.85
Operator 2 0.92/0.64 0.90/0.79 0.89/0.75 0.91/0.78 0.89/0.79
Operator 3 0.95/0.81 0.88/0.89 0.88/0.89 0.88/0.90 0.88/0.89
Operator 4 0.84/0.75 0.85/0.87 0.84/0.86 0.86/0.86 0.85/0.87
Operator 5 0.98/0.80 0.83/0.84 0.79/0.83 0.86/0.85 0.83/0.84
Mean + Standard 

deviation
0.93 ± 0.05/
0.76 ± 0.07

0.86 ± 0.03/
0.85 ± 0.04

0.84 ± 0.05/
0.84 ± 0.05

0.87 ± 0.02/
0.85 ± 0.04

0.86 ± 0.03/
0.85 ± 0.04
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developing countries. In this sense, Gopinath et al. [19], 
implemented a methodology similar to ours to classify 
benign tumors from thyroid malignancies. Recently, Apos-
tolopaulos et al. [20] employed neural networks to differenti-
ate patients with Covid-19 from normal in X-ray exams. In 
particular, the increase in lymph node size is a nonspecific 
finding that does not allow to know if it is increased by sec-
ondary neoplastic involvement, by infectious/inflammatory 
process or otherwise [1, 3]. Thus, for this staging, it is very 
important to establish whether an enlarged lymph node, 
detected by CT or another diagnostic imaging method, is 
metastatic or not. In this study, the great differential was 
that we tested 15 textures from mediastinal lymph nodes, 
with five different operators selecting regions of interest. We 
presented a classification approach for mediastinal lymph 
nodes based on machine learning and texture features. Our 
cohort included only patients with confirmed lung cancer. To 
establish the gold standard, all our mediastinal lymph nodes 
passed through histopathological analysis.

Our approach was able to differentiate with good sensi-
tivity and area under the ROC curve (AUC) the mediasti-
nal lymph nodes from being malignant and benign. When 
comparing the three classifiers, SVM (95% of AUC) and 

SGD (88% of AUC) presented the best classification per-
formance with images without contrast medium. We also 
observed a small variability among operators. For exam-
ple, for the values of AUC, they varied from 0.87 to 0.98 
in images without contrast medium, and between 0.84 and 
0.98 in images with contrast medium. The five operators 
carefully conducted the selection of patients and the man-
ual positioning of ROIs within lymph nodes. Literature 
reports inter-operator variability lower than 15% [21–23] 
in manual segmentation and ROI positioning. Our results 
presented a variability of less than 5% for AUC and less 
than 5% for sensitivity for the best classifier, demonstrat-
ing low variability among operators.

Another interesting finding was that images with con-
trast medium provided somewhat lower classification scores 
for all machine learning approaches as can be seen when 
comparing Tables 1 and 2. However, not as pronounced as 
those presented by Andersen et al. [24] or discussed by Bay-
anati et al. [25]. We hypothesize that CT sequences without 
contrast medium preserves the texture within structures and 
allows differentiating between malignant and benign lymph 
nodes. However, contrast analysis should not be ruled out 
for diagnosis without further studies.

Fig. 2  ROC curves for the different classifiers (SVM—Support Vector Machine; NB—Naïve Bayes; SGD—Stochastic Gradient Descent) in 
images obtained without contrast medium of all five operators. Operator 1 (a). Operator 2 (b). Operator 3 (c). Operator 4 (d). Operator 5 (e)
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Previous works demonstrated the potential of texture 
analysis associated with machine learning. SVM in associa-
tion with texture features has been successfully used before 
for differentiating benign and malignant solitary pulmonary 
nodules Zhu et al. [16]. Another similar approach to ours 
was proposed by Ye et al. [26], where authors used first and 
second-order statistics features with SVM classifier to differ-
entiate normal-abnormal cyst, and carcinoma-haemangioma 
in liver CT images. They presented accuracy higher than 
95% for all three classifications.

Also, for classifying malignant and benign lymph nodes, 
Andersen et al. [24] presented a method based on texture 
analysis. They used a small number of statistical features 
such as mean image intensity after histogram-based filtra-
tion and achieved 0.834 of AUC. Sigovan et al. [27] uti-
lized the mean apparent diffusion coefficient values from 
diffusion-weighted MRI images to differentiate benign from 
malignant lymph nodes. They found a sensitivity of 90.9% 
and an accuracy of 85%. Another interesting review study 
regarding computer-aided detection for lung nodule differen-
tiation in malignant and benign was provided by Al Moham-
mad et al. [28]. In this review, many studies demonstrated 
that computer-aided detection (CAD) increased detection 

sensitivity and recognized some originally missed nodules 
by radiologists [29, 30].

Bayanati et al. [25] also utilized an approach to differenti-
ate benign and malignant mediastinal lymph. Their approach 
combined textural (GLCM and GLRL) and shape features 
with logistic regression and SVM classifiers. When com-
paring the results of Bayanati et al. [25] with this present 
work, there are some important topics of discussion. We 
utilized more texture features (15 against 6), and three dif-
ferent machine learning classifiers against two [25]. The size 
of our ROI was fixed to decrease the effect of size variation 
in textural features. We utilized both CT sequences with and 
without contrast medium and proved that for every classifier, 
sequences without contrast performs better. In addition, we 
demonstrated small variability among the five operators in 
ROI positioning, since they used only one operator. This 
allowed achieving higher AUC (95%) and sensitivity (89%) 
in comparison to [25] those obtained by the authors, AUC 
(87%) and sensitivity (81%).

The application of computational methods with a high sen-
sitivity and accuracy values could help in staging mediastinal 
lymph nodes in lung cancer patients. In many cases, diagno-
sis based on image evidence would avoid more unnecessary 

Fig. 3  ROC curves for the different classifiers (SVM—Support Vector Machine; NB—Naïve Bayes; SGD—Stochastic Gradient Descent) in 
images obtained with the contrast medium of all five operators. Operator 1 (a). Operator 2 (b). Operator 3 (c). Operator 4 (d). Operator 5 (e)
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imaging acquisitions thus being more beneficial for the 
patients. For example, PET is considered more sensitive than 
CT, and it allows the metabolic assessment of mediastinal 
lymph nodes in patients with lung cancer; however, its poor 
resolution and the potential of false positives diminish its reli-
ability [31, 32]. Another important contribution of this work 
is to reduce the number of invasive procedures. Even when 
a trained surgical team and appropriate equipment are avail-
able, patients who present serious comorbidities that increase 
risk, invasive staging will be contraindicated, and a therapeutic 
decision can be impaired due to imprecise definition of lymph 
nodes involvement.

Still, due to the relatively small number of cases, this work 
initiates the discussion about the use of this method and poten-
tial further research with broader samples. Regardless, several 
works were able to contribute meaningfully to the literature 
in this area, despite the small data set size similar to ours [24, 
33–35].

Conclusion

In conclusion, we developed a method for the classification of 
mediastinal lymph nodes in lung cancer patients. The great dif-
ferential of our approach was that we tested 15 textures, with 
three machine learning methods and five different operators. 
After classification with three machine learning approaches, 
there was a variability of less than 5% on sensitivity among 
operators, for the best classifier. Texture analysis associated 
with machine learning may be helpful in the differentiation 
between neoplastic and benign lymph nodes. They can aid the 
physician in diagnosis and potentially reduce the number of 
invasive analysis to histopathological confirmation.
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