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Abstract: In this article, we report the preparation and structural features of Fe-Pd powder alloys
formed by galvanic replacement, annealing and selective dissolution of iron via acid treatment.
The alloys were studied by the X-ray diffraction phase analysis, Mössbauer spectroscopy, scanning
electron microscopy, and energy-dispersive spectroscopy. The Fe@Pd core–shell particles were
obtained by a galvanic replacement reaction occurring upon treatment of a body-centered cubic (bcc)
iron powder by a solution containing PdCl42− ions. It was found that the shells are a face-centered
cubic (fcc) Pd(Fe) solid solution. HCl acid treatment of the Fe@Pd core–shell particles resulted in
the formation of hollow Pd-based particles, as the bcc phase was selectively dissolved from the
cores. Annealing of the Fe@Pd core–shell particles at 800 ◦C led to the formation of fcc Fe-Pd solid
solution. Acid treatment of the Fe-Pd alloys formed by annealing of the core–shell particles allowed
selectively dissolving iron from the bcc Fe-based phase (Fe(Pd) solid solution), while the fcc Fe-rich
Fe-Pd solid solution remained stable (resistant to acid corrosion). It was demonstrated that the phase
composition and the Fe/Pd ratio in the alloys (phases) can be tailored by applying annealing and/or
acid treatment to the as-synthesized Fe@Pd core–shell particles.

Keywords: core–shell particles; Fe-Pd alloys; galvanic replacement; selective dissolution; hollow
particles; Mössbauer spectroscopy

1. Introduction

Particulate materials of different morphologies based on noble metals exhibit proper-
ties promising for practical applications. Pd-, Au- and Pt-based materials attract a lot of
attention, as indicated by a large number of publications on their preparation and proper-
ties [1,2]. Noble metals are promising for electrocatalysis [3], electrochemical biosensors [4],
energy conversion/storage devices, and fuel cells [5]. Separate particles of noble metals
and porous materials are obtained [6]. The cost of the noble metals is a factor significantly
limiting their large-scale application [7,8]. Alloying with base metals allows reducing
the consumption of the noble metals. Studies show that the catalytic activity of alloys
containing inexpensive (base) metals can be higher than that of the pure (unalloyed) noble
metals [6,9].

Among a variety of noble metal-based particles and porous alloys, Fe-Pd alloys are
of particular interest. The Fe-Pd alloys show the following functional properties: catalytic
activity [10,11], magnetic shape memory (for the Fe70Pd30 composition) [12], surface-
enhanced Raman scattering [13], and hydrogen absorption (Pd-rich alloy) [14,15]. Fe/Pd
particles showed an electrocatalytic effect when compared with Pd [16]. The properties of
Fe-Pd alloys depend on their composition and structural characteristics [17–20].

The Fe-Pd alloys can be prepared by different methods. A porous PdFe alloy was
fabricated through one-step mild dealloying of a PdFeAl ternary source alloy in NaOH
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solution [21]. Thin films of Pd were obtained by the selective dissolution of iron in HCl
solution from Fe75Pd25 films deposited on a gold-coated silicon oxide substrate [13,22]. In
ref. [20], a Fe-Pd alloy was formed by combining electrodeposition and selective dissolu-
tion. Pd/Fe wire electrodes were prepared via a galvanic replacement reaction between
tetrachloropalladate (PdCl42−) and a Fe wire [23]. Fe-Pd alloy particles were obtained by
reducing a mixture of iron and palladium compounds by sodium borohydride [24,25]. In
ref. [26], monodisperse FePd particles were prepared by polyol reduction of palladium
acetylacetonate and thermal decomposition of iron pentacarbonyl. It was shown that
particles of Fe35Pd65 can be obtained via the thermal decomposition of metal–organic
compounds of iron and palladium [27]. The Fe-Pd alloys can also be produced by physical
methods. For example, Fe@Pd, Fe@Pt, and Fe@Au core–shell particles supported by silicon
carbide were prepared by plasma sputtering deposition [28].

Galvanic replacement is a promising method of the formation of metallic coatings
and preparation of core–shell structures [29–33]. This method is quite simple from the
technological perspective. In this process, particles/objects of less noble metals of different
sizes and morphologies are used as templates to tailor the structural characteristics of the
resultant materials enriched with a more noble metal. The selective dissolution of less noble
metals from the binary alloys obtained by galvanic replacement allows forming hollow
particles and porous materials. In this manner, porous Au, Pt, Pd, Ru, Cu and Ni can be
produced by dissolving a less noble metal from the corresponding alloys.

Fe-Pd powders have been obtained by galvanic replacement reaction starting from iron
nanocubes as templates [16]. To the best of our knowledge, no study has been conducted
on the formation of Fe-Pd alloys by galvanic replacement reaction using micrometer-sized
iron templates. These templates are widely available as commercial powders. In the
present work, we investigated the morphological and phase transformations occurring
upon galvanic replacement of iron by palladium, annealing of the products and selective
dissolution of iron from the synthesized powder alloys. The goal of the study was to trace
the structural evolution in the synthesized alloys and determine factors responsible for the
structural changes.

2. Materials and Methods

Fe@Pd core–shell microparticles were synthesized by galvanic replacement reaction.
Carbonyl iron (99.9%, “SyntezPKZh”, Dzerzhinsk, Russia) was used as a reactant and
a template.

The iron powder was placed in a solution of PdCl2 in HCl acid for 3 min. Then, the
solution was filtrated, and the residue was washed with deionized water several times
and dried at room temperature. The concentration of PdCl2 in solution was selected such
that ensured a Fe/Pd atomic ratio in the product of galvanic replacement of 4:1 upon full
reduction of palladium ions.

The product of galvanic replacement was annealed in vacuum at 800 ◦C for 30 min.
Acid treatment of the as-synthesized core–shell particles and annealed powders was

conducted in 35% HCl solution.
X-ray diffraction (XRD) patterns of the samples were recorded using a D8 ADVANCE

diffractometer (Bruker AXS, Karlsruhe, Germany) with Cu Kα radiation. The crystallite
sizes and the lattice parameters of the phases were calculated in TOPAS 4.2 software (Bruker
AXS) by conducting Rietveld refinement of the experimentally recorded profiles.

Mössbauer spectroscopy (MS) was carried out on a NP 255/610 spectrometer (Bu-
dapest, Hungary) with a 57Co(Rh) source.

The morphology of the particles was studied by scanning electron microscopy using a
S-3400 N microscope working at 30 kV (Hitachi, Tokyo, Japan). The elemental analysis of
the alloys was carried out using an energy-dispersive spectroscopy (EDS) unit (NORAN
Spectral System 7, Thermo Fisher Scientific Inc., Waltham, MA, USA) attached to the
microscope. The initial iron particles and the synthesized core–shell particles were mounted
into resin and polished to observe their cross-sectional structure.
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3. Results and Discussion
3.1. Structural Characterization of the Iron Powder

The particles of the iron powder used in the present work had a spherical shape
(Figure 1a). The structure of the particles was revealed by etching their polished cross-
sections by a HNO3-C2H5OH mixture. The multiple layers form an onion structure, each
shell consisting of nanosized particles (Figure 1b). The XRD peaks of the powder (Figure 2)
are those of body-centered cubic (bcc) iron (α-Fe). The peaks are significantly broadened.
The crystallite size of iron was calculated to be 10 ± 1 nm. The lattice parameter of iron
was determined to be 2.868 ± 0.001 Å, which is close to the lattice parameter of pure iron
(PDF card 6-696).
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Figure 1. Morphology (a) and internal structure (b) of the carbonyl iron particles.
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The phase transformations in the Fe-Pd materials obtained in the present work (based
on results of the XRD analysis) and the lattice parameters of the phases are presented in
Table 1.

Table 1. Phases (as determined by X-ray diffraction) and their lattice parameters (Å) of the Fe-Pd
alloys described in the present work. The lattice parameter of pure metallic palladium is 3.890 Å,
pure metallic bcc iron—2.867 Å (bcc—body-centered cubic, fcc—face-centered cubic). Atomic radius
of iron is 126 pm. Atomic radius of palladium is 137 pm.

Powder Bcc Fe Bcc Fe(Pd)
Solid Solution Fcc Pd

Fcc Pd(Fe)/
Fcc Fe-Rich Fe-Pd
Solid Solution *

Fe powder +
2.868 ± 0.001 - - -

Fe@Pd core–shell particles - +
2.873 ± 0.002 - +

3.879 ± 0.002

Hollow Pd-based particles - - +
3.889 ± 0.001 -

Product of annealing of Fe@Pd
at 800 ◦C - 2.875 ± 0.001 - (#) 3.773 ± 0.001

Product of annealing of Fe@Pd at
800 ◦C after acid treatment - - +

3.889 ± 0.001
+

(#) 3.773 ± 0.001

* Data related to the Fe-rich Fe-Pd solid solutions are marked (#).

The Mössbauer spectrum of the carbonyl iron powder can be described as a super-
position of two sextets (Table 2, Figure 3). The first sextet is due to the presence of α-Fe
(Figure 3, green line). The parameters of the second sextet (Figure 3, blue line) suggest that
it can originate from “disordered” α-Fe (the presence of multiple defects in the crystalline
lattice of α-Fe), which agrees well with the results of XRD and microscopy investigations of
the structure of this powder.

Table 2. Parameters of the Mössbauer spectra of the Fe-Pd powder alloys *.

Powder State of Iron Area Fraction, % δ, mm s−1 Bhf, T ∆, mm s−1

Fe powder
α-Fe 71 0.005 33.22 0.001

disordered
α-Fe 29 0.086 27.50 −0.02

Fe@Pd
core–shell particles

α-Fe 71 0.005 33.23 0.002

Fe3+ 4 0.287 - 0.64

disordered
α-Fe 25 0.116 28.14 −0.03

Hollow Pd-based
particles Pd(Fe) 100 0.154 - -

Product of annealing
of Fe@Pd at 800 ◦C

α-Fe 51 0.001 33.38 0.007

Fe-Pd solid
solution 46 0.135 34.15 −0.02

Fe3+ 3 0.323 - 0.84

Product of annealing
of Fe@Pd at 800 ◦C
after acid treatment

Fe-Pd solid
solution (I) 43 0.138 35.40 −0.02

Fe-Pd solid
solution (II) 57 0.164 32.94 0.01

* δ is the isomer shift reflecting the chemical neighborhood of the resonant nucleus, Bhf is magnetic hyperfine field,
∆ is a measure of the distortion of the nearest neighborhood with respect to a cubic one.
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3.2. Formation of Fe@Pd Core–Shell Particles by Galvanic Replacement

In order to deposit palladium on the surface of iron particles, a galvanic replacement
reaction was carried out. This reaction occurred upon treatment of the iron particles by
PdCl2 solution in HCl acid. The following scheme describes the chemical processes upon
galvanic replacement:

PdCl42− + 2e→ Pd0 + 4Cl−

Fe0 → Fe2+ + 2e

Fe + PdCl42− → Pd0 + Fe2+ + 4Cl−

On the XRD pattern of the product of galvanic replacement, broadened reflections
with positions close to those of metallic palladium (face-centered cubic (fcc) phase) are
detected, along with reflections of α-Fe (Figure 4). The lattice parameter of the fcc phase
was calculated to be 3.879 ± 0.002 Å (Table 1), which is lower than the lattice parameter of
pure palladium (3.890 Å, PDF card 46-1043). This can be explained by the dissolution of
iron in the palladium lattice (formation of Pd(Fe) solid solution) during the deposition of
palladium on the iron surface (the atomic radius of iron is smaller than that of palladium).
The crystallite size of the fcc was determined to be 7 ± 1 nm. The crystallite size of the bcc
phase of the product of galvanic replacement was 11 ± 1 nm (did not change relative to
the untreated iron powder). The lattice parameter of the bcc phase (2.873 ± 0.002 Å) was
increased relative to pure iron (Table 1).

The electron microscopy images of the product of galvanic replacement show that
a layer is formed on the surface of the iron particles (Figure 5a,b). This layer consists of
separate submicron particles. The product of galvanic replacement is Fe@Pd core–shell
particles, in which the core is Fe-based and the shell is Pd-based. It should be noted that
some shells are not continuous and have orifices in them, which is typical for particles
obtained by this method. The EDS analysis (Figure 5c) shows that the Fe/Pd atomic ratio in
the product of galvanic replacement is close to 4:1, which indicates a nearly full reduction
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of palladium ions present in the solution by metallic iron. In Figure 5d, cross-sections of
the core–shell particles are shown. The presence of shell is clearly visible in the image.
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Figure 4. XRD pattern of the Fe@Pd core–shell particles obtained by galvanic replacement reaction.

In the Mössbauer spectrum of the core–shell particles, two sextets are present cor-
responding to α-Fe (green line) and α-Fe with a “disordered” structure (blue line), as
discussed in Section 3.1 (Figure 6). In addition, a doublet is present (red line), which can be
related to the presence of Fe3+. The presence of this doublet can be due to the formation of
a small amount of the oxide phase during the preparation of the sample. A similar effect
was earlier observed in ref. [34].
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Figure 5. (a,b) Morphology of the Fe@Pd core–shell particles obtained by galvanic replacement
reaction, different magnifications, (c) energy-dispersive spectroscopy (EDS) of the Fe@Pd core–shell
particles obtained by galvanic replacement reaction, (d) cross-section of the core–shell particles
(concentration of Pd in point 1 is higher than in point 2, as determined by EDS).

3.3. Selective Dissolution of Iron from the Fe@Pd Core–Shell Particles: Formation of Hollow
Palladium Particles

Upon treatment of the Fe@Pd core–shell particles by HCl solution, iron was selectively
dissolved. On the XRD patterns of the product of acid treatment, only reflections of
palladium are seen (Figure 7). The crystallite size of the palladium is 11 ± 1 nm. The
lattice parameter of palladium is 3.889 ± 0.001 Å, which is close to the lattice parameter of
pure palladium.



Materials 2022, 15, 3571 8 of 15

Materials 2022, 15, x FOR PEER REVIEW 7 of 15 
 

 

Concentrations: Fe–81.3%, Pd–18.7% (at.) 

(c) 

 
(d) 

Figure 5. (a,b) Morphology of the Fe@Pd core–shell particles obtained by galvanic replacement re-
action, different magnifications, (c) energy-dispersive spectroscopy (EDS) of the Fe@Pd core–shell 
particles obtained by galvanic replacement reaction, (d) cross-section of the core–shell particles (con-
centration of Pd in point 1 is higher than in point 2, as determined by EDS). 

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.92

0.94

0.96

0.98

1.00

R
el

at
iv

e 
Tr

an
sm

is
si

on

Velocity, mm/s 
 Figure 6. Mössbauer spectrum of the Fe@Pd core–shell particles obtained by galvanic replacement

reaction: dots—experimental data, black line—spectrum represented as a superposition of two sextets
(green and blue lines) and a doublet (red line).

Materials 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

Figure 6. Mössbauer spectrum of the Fe@Pd core–shell particles obtained by galvanic replacement 
reaction: dots—experimental data, black line—spectrum represented as a superposition of two sex-
tets (green and blue lines) and a doublet (red line). 

3.3. Selective Dissolution of Iron from the Fe@Pd Core–Shell Particles: Formation of Hollow Pal-
ladium Particles 

Upon treatment of the Fe@Pd core–shell particles by HCl solution, iron was selec-
tively dissolved. On the XRD patterns of the product of acid treatment, only reflections of 
palladium are seen (Figure 7). The crystallite size of the palladium is 11 ± 1 nm. The lattice 
parameter of palladium is 3.889 ± 0.001 Å, which is close to the lattice parameter of pure 
palladium. 

30 40 50 60 70 80

 
IN

TE
N

SI
TY

 (a
.u

.)

2θ (degrees)

Pd

 
Figure 7. XRD pattern of the product of acid treatment of Fe@Pd core–shell particles (hollow parti-
cles of a Pd-based alloy). 

The electron microscopy images show that the acid treatment of the core–shell parti-
cles leads to the formation of hollow particles of palladium (Figure 8a,b). While the lines 
of the iron phase are absent from the XRD profile of the hollow particles, the analysis 
conducted by EDS shows the presence of iron (Figure 8c). The Fe/Pd atomic ratio in the 
shells was found to be equal to 1:32. 

The Mössbauer spectrum of the hollow particles is a broad singlet with an isomer 
shift of 0.15 mm s−1 (Figure 9), which is close to the isomer shift of iron dissolved in palla-
dium (0.17 mm s−1) [35]. This indicates the presence of iron dissolved in palladium (the 
formation of Pd(Fe) alloy hollow particles). 

Figure 7. XRD pattern of the product of acid treatment of Fe@Pd core–shell particles (hollow particles
of a Pd-based alloy).

The electron microscopy images show that the acid treatment of the core–shell particles
leads to the formation of hollow particles of palladium (Figure 8a,b). While the lines of the
iron phase are absent from the XRD profile of the hollow particles, the analysis conducted
by EDS shows the presence of iron (Figure 8c). The Fe/Pd atomic ratio in the shells was
found to be equal to 1:32.

The Mössbauer spectrum of the hollow particles is a broad singlet with an isomer
shift of 0.15 mm s−1 (Figure 9), which is close to the isomer shift of iron dissolved in
palladium (0.17 mm s−1) [35]. This indicates the presence of iron dissolved in palladium
(the formation of Pd(Fe) alloy hollow particles).
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3.4. Phase and Structural Evolution of the Fe@Pd Particles upon Annealing

The Fe-Pd phase diagram is rather complex [36,37]. There exist two intermetallic
compounds (FePd and FePd3) in the system. Above 800 ◦C, the metals are fully mutually
soluble. Below 200 ◦C, FexPd100−x solid solutions of fcc structure form at 0 < x < 10. When
x > 70, solid solutions of bcc structure form.

The electron microcopy investigations showed that the product of annealing of the
core–shell Fe@Pd particles at 800 ◦C consists of dense particles 1–4 µm in size (Figure 10).
The XRD pattern of the annealed powder showed the peaks of a bcc phase and a fcc
phase (Figure 11). The latter shifted to higher angles relative to their positions on the
pattern of the core–shell particles (Figure 4). The crystallite size of the metals increased
after annealing: the crystallite size of the bcc phase was 68 ± 18 nm, while that of the fcc
phase was 64 ± 19 nm. The lattice parameter of the bcc phase was 2.875 ± 0.001 Å in the
annealed powder. The calculated lattice parameter of the fcc phase was 3.773 ± 0.001 Å,
which is smaller than the lattice parameter of metallic palladium (Table 1). A significant
reduction in the lattice parameter of the fcc phase can be explained by the formation of a
Fe-Pd solid solution during annealing of the Fe@Pd core–shell particles. The concentration
of palladium in this solid solution is ≈49 at %, as calculated using Vegard’s rule. The
formation of a solid solution with a close lattice parameter was described in [38] for a fcc
structure of Fe50Pd50 composition. Thus, it can be concluded that annealing of the Fe@Pd
core–shell particles activates diffusion and induces the formation of a Fe-rich fcc solid
solution with a composition close to Fe50Pd50.
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Figure 11. XRD pattern of the powder alloy obtained by annealing of the Fe@Pd core–shell particles
(Fe-Pd is a Fe-rich solid solution).
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The Mössbauer spectrum of the alloy obtained by annealing of the Fe@Pd core–shell
particles shows two sextets (Figure 12). The parameters of one of them are close to those
of α-Fe (green line), but the magnetic splitting is higher. The second sextet (blue line)
has broadened lines, a greater isomer shift and even higher magnetic splitting. These
characteristics suggest that the sextet is due to the presence of a Fe-rich Fe-Pd solid solution.
In the spectrum, a doublet is present (red line), which can be related to the presence of Fe3+

in a low concentration, as noted above.
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3.5. Selective Dissolution of Iron from the Annealed Alloy

The treatment of the annealed powder in HCl solution led to the dissolution of iron
from the bcc phase, as confirmed by the XRD analysis. No reflections of iron were detected
(Figure 13). After HCl treatment, the alloy was composed of a Fe-Pd solid solution with a
lattice parameter of 3.773 ± 0.001 Å (major phase) and metallic palladium with crystallites
of 10± 2 nm (minor phase). The fcc Fe-Pd solid solution formed during annealing remained
stable during the acid treatment (Table 1). The appearance of reflections of palladium is
most likely due to the release of palladium upon the dissolution of iron from the bcc Fe(Pd)
solid solution. The morphology of the particles can be seen in Figure 14a. The overall
composition of the system changes from the Fe/Pd atomic ratio of 4:1 before the acid
treatment to 1:1 after the acid treatment (Figure 14b). So, the acid treatment leads to the Pd
enrichment of the system as a whole.

The Mössbauer spectrum of the powder after annealing and treatment in HCl solution
(Figure 15) shows two sextets with parameters characteristic of Fe-rich Fe-Pd solid solutions
marked in Table 2 as (I) and (II). This confirms that the solid solution was resistant to acid
treatment and was preserved in the system. It should be noted that the acid treatment of
the as-synthesized Fe@Pd core–shell particles and annealed powder produces different
results. While it is possible to dissolve iron from the as-synthesized core-shell particles
almost fully, the Fe-rich Fe-Pd solid solution formed upon annealing remains stable to the
acid attack.
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