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Abstract
Three-dimensional protein structures usually contain regions of local order, called second-

ary structure, such as α-helices and β-sheets. Secondary structure is characterized by the

local rotational state of the protein backbone, quantified by two dihedral angles called ϕ and

ψ. Particular types of secondary structure can generally be described by a single (diffuse)

location on a two-dimensional plot drawn in the space of the angles ϕ and ψ, called a Rama-

chandran plot. By contrast, a recently-discovered nanomaterial made from peptoids, struc-

tural isomers of peptides, displays a secondary-structure motif corresponding to two
regions on the Ramachandran plot [Mannige et al., Nature 526, 415 (2015)]. In order to

describe such ‘higher-order’ secondary structure in a compact way we introduce here a

means of describing regions on the Ramachandran plot in terms of a single Ramachandran
number,R, which is a structurally meaningful combination of ϕ and ψ. We show that the

potential applications ofR are numerous: it can be used to describe the geometric content

of protein structures, and can be used to draw diagrams that reveal, at a glance, the fre-

quency of occurrence of regular secondary structures and disordered regions in large pro-

tein datasets. We propose thatRmight be used as an order parameter for protein geometry

for a wide range of applications.

1 Introduction
Many three-dimensional protein structures consist of regions of local order called secondary
structure [1]. Consequently, the study of secondary structure has occupied a crucial role in
structural biology [1–9]. A key insight from this study is the recognition that the conformation
of a protein backbone near a given amino acid residue can be specified largely by two dihedral
angles, called ϕ and ψ, as shown in Fig 1(a) (a third angle, ω, usually takes one of two values,
defining trans and cis conformations [5, 6]). Ramachandran and co-workers deduced that pep-
tide backbones inhabit only certain regions of dihedral angle (ϕ, ψ) configuration space [10].
Plots drawn in terms of this configuration space are called Ramachandran plots [1, 9, 11, 12],
and they are among the most important innovations in structural biology, enabling immediate
assessment of the geometric nature of protein structures [13–15].
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In general, residues that comprise particular protein secondary structures, such as α-helices
and β-sheets, correspond to distinct, localized regions on the Ramachandran plot; see Fig 1(b).
However, the possibility of secondary structure built from more than one rotational state, i.e.
more than one region on the Ramachandran plot, was introduced in 1951 by Pauling and
Corey. They proposed a ‘pleated sheet’motif in which protein residues alternate between right-
and left-handed forms of the α-helix. While not yet seen in nature, simulations indicate that α-
pleated sheets can form as kinetic intermediates in unfolding processes [17–20]. More generally,
a broad range of protein structures could in principle be built from polypeptide motifs possess-
ing two rotational states [21, 22]. In the non-natural world, protein-mimetic polymers do form
large-scale stable structures that simulation indicates harbor a secondary-structure motif built
from more than one rotational state. The peptoid nanosheet [23] is a molecular bilayer that pos-
sesses macroscopic extent in two dimensions. It is made from peptoids, structural isomers of
peptides. The nanosheet is flat because its constituent peptoid polymers are linear and
untwisted, properties that result from the fact that backbone residues along each polymer alter-
nate between two twist-opposed rotational states [16]. This secondary-structure motif, called a
S-strand, corresponds to two regions on the Ramachandran plot, as shown in Fig 1(c).

To describe this structure and its possible generalizations it is convenient to be able to describe
regions on the Ramachandran plot with a single number, so that the state of each residue along a
polymer backbone can be compactly described. The desire for such a description is the motiva-
tion for this paper. We introduce in Section 2.1 a structurally meaningful combination of ϕ and ψ
that we call the Ramachandran number,R. Given a way of describing regions of the Ramachan-
dran plot in terms of one number instead of two, one can then draw diagrams that give insight
into protein geometry that is difficult to obtain by other means. In Section 2.2 we show thatR
can be used to assess in a compact manner the geometric content of protein structures, and can
be used to draw diagrams that reveal at a glance the frequency of occurrence of regular secondary
structures and disordered regions in large protein datasets. We also suggest thatRmay be useful
in the analysis of intrinsically-disordered proteins, whose three-dimensional structures are less
well understood than those of globular proteins [9, 24–26]. We conclude in Section 3.

Fig 1. The Ramachandran plot is an important way of describing protein secondary structure. (a) The state of a residue within a peptide
(top) and a peptoid (bottom) can be largely specified by the two dihedral angles ϕ andψ. (b) Regular protein secondary structures, such as α-
helices and β-sheets, correspond to single diffuse regions on a plot drawn in terms of ϕ andψ, called a Ramachandran plot (see Methods). (c)
Peptoid Σ-sheets [16] harbor a secondary-structure motif in which backbone residues alternate between two regions on the Ramachandran plot. In
order to describe each region in terms of a single number, so that the state of each residue in a backbone can be compactly indicated, we describe
in this paper the development and properties of a structurally meaningful combination of ϕ andψ that we call the Ramachandran number,R.
[Panel (a) was adapted from an image found onWikimedia Commons (link) by Dcrjsr (CC BY 3.0 (link)). The contours in (b) and (c) represent
regions within which 70% of a secondary structure resides; see Section 4.1.].

doi:10.1371/journal.pone.0160023.g001
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2 Results and Discussion

2.1 One possible Ramachandran number
One physical factor that suggests a compact way of describing the Ramachandran plot is the
sense of residue twist implicit in the plot, which changes sign as one crosses the negative-slop-
ing diagonal; see Fig 2(a). Structures whose backbones occupy the bottom left-hand triangle of
the Ramachandran plot have a right-handed (dextrorotatory or D) sense of twist, while struc-
tures in the top right-hand triangle have a left-handed (levorotatory or L) sense of twist [1, 16]
(note that the terms ‘L’ and ‘D’ are also independently used to distinguish between distinct
amino acid enantiomers [27–30]). This observation suggests an indexing system that proceeds
from the bottom left of the plot to the top right of the plot. To gain insight into how this should
be done, we built protein backbones with dihedral angles chosen from designated regions of
the Ramachandran plot. We examined the behavior of the end-to-end distance Re of polymers
built in this way (the polymer radius of gyration behaves similarly). This behavior is shown in
Fig 2(a) and 2(b). The shapes of the contours of Re suggest an indexing system that proceeds in
a sweeping fashion across the Ramachandran plot, as shown in Fig 2(c), so that Re changes as
slowly as possible. Proceeding in this manner one moves from structures having one sense of
twist to structures having the opposite sense of twist, with the degree of compactness of the
backbone varying only in a gradual fashion. Thus the indexing system suggested graphically in
Fig 2(c) is sensitive both to the twist state and the degree of compactness of the polymer back-
bone, allowing one to distinguish, for example, compact α-helices from extended β-sheets, or
nearly twist-free β sheets from twisted loop regions.

To construct such an indexing system we take the Ramachandran plot axes to have the
range [−λ/2, λ/2) where λ = 360° [1, 11, 13, 15]. We divide the plot into a square grid of (360°
σ)2 sites, where σ is a scaling factor that is measured in reciprocal degrees. We shall show that it
is straightforward to make σ large enough that the error incurred upon converting angles from
structures in the protein databank to Ramachandran numbers and back again is less than the
characteristic error associated with the coordinates of structures in that database.

Fig 2. Physical trends within the Ramachandran plot suggest a way of describing regions of it with a single number. (a) First, the sense of
residue twist changes from right-handed (‘D’) to left-handed (‘L’) as one moves from the bottom left of the Ramachandran plot to the top right.
Second, contours (colored) of end-to-end polymer distance Re (here calculated for a 20-residue glycine) have a negative slope, resulting in the
general trend shown in panel (b). Panel (c) indicates one method of indexing the Ramachandran plot so as to move from the region of right-handed
twist to the region of left-handed twist with Re changing as slowly as possible. This method provides the basis for the construction of the
Ramachandran number,R.

doi:10.1371/journal.pone.0160023.g002
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Given a choice of grid resolution σ, we define the integer-valued Ramachandran number

R
Z
ð�;cÞ � �0b e þ l0 c0b e; ð1Þ

in which the coordinates
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correspond to a clockwise rotation by 45°, a shift, and a rescaling of the original coordinates ϕ
and ψ (see Section 4.2), and the parameter
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In these relations the symbol bxemeans the integer closest to the real number x, i.e. b2.49e = 2
and b2.51e = 3. Combined as a single expression, Eqs (1)–(4) read
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The integer-valued Ramachandran number runs between R
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dent on σ, which makes R
Z
a difficult value to intuitively grasp. Therefore, for ease of plotting,

we define the real-valued, normalized, Ramachandran number
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which is a value that is practically invariant of σ. Given that ϕ, ψ 2 [−λ/2, λ/2) or [−180, 180),
the ranges of R

Z
andR are respectively ½R

Z;min;RZ;maxÞ and [0, 1).
The closest approximations to the original coordinates ϕ and ψ that may be retrieved from

R
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are [31]
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where bxe is the largest integer smaller than the real number x, and α%β is the remainder
obtained upon dividing the integer α by the integer β. Eqs (6) to (8) define our mapping of the
dihedral angles to the Ramachandran number, i.e. ð�;cÞ ! R

Z
!R, and the subsequent

approximate recovery of those angles, R
Z
! ð~�; ~cÞ. We show in Section 4.3 that this recovery

can be done to within the characteristic precision of the protein databank.
By ‘slicing’ across the Ramachandran plot we group together structures that might be rela-

tively distant in dihedral angle space, the more so as we approach the negative-sloping diagonal
(nearR = 0.5). One consequence of this grouping is that the set of structures described by a
small interval ofR displays a distribution of properties, such as end-to-end distance, as shown
in Fig 3(a). The mean of this distribution gives rise to a smoothly-varying trend, but the vari-
ance of this distribution is nonzero, and is largest nearR = 0.5. Some unavoidable structural
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coarse-graining therefore occurs upon going from the Ramachrandran plot to the Ramachan-
dran number. Despite this drawback, we shall show thatR can function as an order parameter
for protein geometry, in large part because the Ramachandran plot is in general relatively
sparsely occupied: many hypothetical structures that possess distinctly different structural
properties but that would be assigned similar Ramachandran numbers simply do not arise in
the protein world. Consequently,R can resolve the major classes of protein secondary struc-
ture, such as the α and βmotifs; see Figs 3(b) and 4.

2.2 Properties and uses ofR
The indexing system defined by Eqs (6) and (1) collapses the Ramachandran plot into a single
line, the Ramachandran numberR. As shown in Fig 4, this number can act as an order param-
eter for types of polymer secondary structure. Given such an order parameter, we can then
draw diagrams that reveal the abundance and spatial connectivity of different forms of second-
ary structure within polymers.

In Fig 5 we show four different molecular structures described in terms of (a) spatial config-
urations, (b) the Ramachandran plot, (c) a histogram (bar code or ‘R-code’) ofR-values, and
(d) a plot ofR versus residue number (the structure of the coiled coil was deduced by a number
of authors, Ramachandran among them [32–35]). TheR-code of panel (c) can be regarded as
a way of assaying the residues of a protein by geometry, much as gel electrophoresis, which
results in similar-looking pictures, is used to tell apart macromolecules by their size and charge.
The plot ofR versus residue number in panel (d) reveals the spatial connectivity of distinct
ordered domains. It shows the distinct segments of secondary structure (α-helix and β-sheet)
and loop regions in the proteins, and shows that the peptoid S-strand’s residues alternate
between twist-opposed rotational states. This representation makes clear that the two

Fig 3. Potential pathologies ofR are avoided by the sparse occupancy of the Ramachandran plot. (a) We
constructR by slicing across the Ramachandran plot, which can cause points distant in dihedral angle space to be
grouped together, the more so as we approach the negative-sloping diagonal (nearR = 0.5). This grouping can be
inferred by superposing the standard deviation (error bars) in polymer end-to-end distance on top of the mean
value (smooth line) for hypothetical structures built from the relevant part of the Ramachandran diagram. (b)
However, many structures distant in dihedral angle space but close inR do not arise in proteins; the
Ramachandran diagram is in general relatively sparsely occupied. Consequently,R can resolve the major types of
protein secondary structure, which can be inferred from the fact that lines parallel to the negative-sloping diagonal
(marked), along whichR varies only slowly, can touch each region of known secondary structure (colored)
individually. This sensitivity allowsR to function as an order parameter for protein geometry. [Data in (a) were
calculated for a 5-residue peptoid;R values are shown at discrete intervals of 0.01.].

doi:10.1371/journal.pone.0160023.g003
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rotational states of the S-strand motif are incorporated within a single type of secondary struc-
ture; the Ramachandran plot alone does not distinguish between that outcome and the alterna-
tive, that the two rotational states exist within two distinct types of secondary structure.

R can be used to compactly describe the abundance of secondary structure types with large
protein datasets, as shown in Fig 6. There we show histograms ofR (‘R-codes’) for proteins
belonging to distinct SCOP classes [36]. These diagrams identify a number of trends within
this dataset. As expected, proteins belonging to classes ‘a’ and ‘b’ are rich in α-helical (R
�0.36) and β-sheet (R�0.52) regions, respectively. More surprisingly, α-helical regions are
abundant in all protein classes, even in the ‘all-β’ class ‘b’. Loop regions (R�0.62) are also
prominent; loops connect regions of ordered secondary structure. TheR-code also highlights
the symmetry of the peptoid backbone about the twist-free regionR�0.5 (panel (b)).

R can also be used in a time- and space-resolved way, as shown in Fig 7. Here we show the
results of molecular dynamics simulations of the peptoid nanosheet [16, 23], which reveal the
existence of the S-strand secondary structure motif in which residues possess two distinct rota-
tional states. A time series of theR-code of the bilayer (panel (b)) shows the emergence of the
S-strand motif within molecular dynamics simulations via a breaking of the initially-imposed
molecular symmetry. In panel (c), we show the geometric state of each residue in one peptoid
as a function of time, revealing the emergence of the S-strand structure and the subsequent
fluctuations of individual residues on a nanosecond timescale.

Such time- and space-resolved analysis of polymer backbones may be useful for the analysis
of intrinsically disordered proteins (IDPs), whose backbone conformations are heterogeneous
in space and time [9, 24–26]. Insight into the behavior of IDPs can likely be obtained by track-
ing the state of every residue of a protein as a function of time, which can be done withR in

Fig 4. The indexing system defined by Eqs (6) and (1) collapses the Ramachandran plot into a single line, the Ramachandran
numberR. This number can act as an order parameter to distinguish secondary structures of different geometry, as shown (the overlap
between distributions exists in the original Ramachandran plot representation; see Fig 3(b)). Top:R interpolates between regions of
right-handed and left-handed twist, with polymer extension Re varying smoothly throughout.

doi:10.1371/journal.pone.0160023.g004
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the simple manner shown in Fig 7(c). Presenting similar data using the conventional Rama-
chandran plot would require a movie or a complex three-dimensional figure.

3 Conclusions
The Ramachandran plot is a central element of structural biology. We have introduced here a
way of describing regions of the Ramachandran plot in terms of a single Ramachandran num-
ber,R, which is a structurally meaningful combination of ϕ and ψ. The are many possible ways
of constructing such a number, and the one we have chosen is sensitive to the local twist state
and degree of compactness of a polymer backbone. Given the ability to describe a two-dimen-
sional space with a single number, one can draw diagrams that furnish insight into polymer
structure that is difficult to obtain through other means. For instance, we have shown thatR
can be used to describe the geometric content of protein and protein-inspired structures, in a
space- and time-resolved way, and can be used to draw diagrams that reveal at a glance the fre-
quency of occurrence of regular secondary structures and disordered regions in large protein
datasets. We speculate thatRmay also be useful in analyzing the behavior and evolution of

Fig 5. Four ways of looking at secondary structure: a) Molecular configurations; b) Ramachandran plot; c) Histogram (R-code) of
Ramachandran numbers; and (d)R as a function of residue number (for the Σ-sheet we have chosen a single polymer). Panel (c) provides a
compact assay-by-geometry of the residues within molecular structures, while panel (d) shows that one can useR to identify the spatial connectivity of
domains of secondary structure within a polymer.

doi:10.1371/journal.pone.0160023.g005
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Fig 6. (a)R-codes for the SCOP protein dataset reveal at a glance several geometric properties of the set.
Each column represents a histogram of the indicated protein class, normalized so that the largest value is
unity. A feature common to all classes is the prominence of α-helices (R�0.36). Another common feature is
the presence of loops that connect ordered secondary structure (R�0.62). Moreover, α-helical regions are
prominently visible in ‘all-β’ proteins. (b) TheR-code for a peptoid nanosheet shows two dominant rotational
states, which coexist within a single secondary structure (see Figs 5 and 7).

doi:10.1371/journal.pone.0160023.g006

Fig 7. (a) Molecular dynamics simulations of the peptoid nanosheet [16, 23] show the existence of the Σ-strand
secondary structure motif, within which residues possess two distinct rotational states (colored red and blue in the
bottom-right-hand cutaway). (b) A time series of theR-code of the bilayer shows the emergence (to the right of the
vertical dotted line) of the Σ-strand motif within molecular dynamics simulations. Polymers in these simulations
were initially fully extended, and adopted the Σ-strand motif upon relaxation of their backbone constraints. (c)
Geometric state of each residue in one peptoid as a function of time, revealing the emergence of the Σ-strand
structure and the subsequent fluctuations of individual residues on a nanosecond timescale.

doi:10.1371/journal.pone.0160023.g007

A Ramachandran Number for Proteins

PLOS ONE | DOI:10.1371/journal.pone.0160023 August 4, 2016 8 / 14



intrinsically-disordered proteins (IDPs), important to e.g. the study of diseases [37]. Such pro-
teins are less well-characterized than globular proteins [1]. IDPs spend substantial amounts of
time in unfolded or disordered conformations [9, 24–26], but may harbor local or transient
regions of structure such as α-helices [38]. The Ramachandran number described here may be
a useful complement to existing bioinformatics metrics for IDP sequences [39] for understand-
ing the behavior of these proteins in simulations [40–44] and experiments [45–48]. More gen-
erally,Rmay be useful as an order parameter for polymer geometry for a wide range of
applications.

4 Methods

4.1 Obtaining polymer (protein/peptide/peptoid) statistics
The contours in Figs 1b and 3b describe the distribution of secondary structures in a Rama-
chandran plot, while Fig 4 represent histogram distributions of secondary structures on the
Ramachandran line. To obtain statistics on all secondary structures (excepting the polyproline
II helix; see below), a protein structure database was obtained from the Structural Classification
of Proteins or SCOPe (Release 2.03) [36] that contains proteins with no more than 40%
sequence identity (downloaded from http://scop.berkeley.edu/downloads/pdbstyle/pdbstyle-
sel-gs-bib-40-2.03.tgz). Secondary structural elements such as α-helices, 310-helices and β-
sheets were identified using the DSSP algorithm [49–51].

The statistics for polyproline II helices (used to generate the green distributions in Figs 3b
and 4) were obtained from segments within 16,535 proteins annotated by PolyprOnline [52] to
contain three or more residues of the secondary structure.

Fig 6a representsR-codes for entire classes of proteins. We utilized the SCOP classification
system and the individual proteins from each class were extracted from the SCOP dataset
described above. Altogether, there were 8560 proteins that were amenable to analysis from this
database.

The distribution for the S-sheet on a Ramachandran Plot (Fig 1c) and in anR-code (Figs 5
and 6b) were obtained from a 50 nanosecond interval of a molecular dynamics trajectory [16].
Fig 7(b) and 7(c) describes a trajectory of the same system before and after the symmetry-
enforcing backbone restraints were lifted. This process was part of a molecular dynamics equil-
ibration step used in Ref. [16].

The end-to-end distances for glycine peptides of 20 residues (Fig 2(a)) and 5 residues (Fig 3
(a)) were generated using the PeptideBuilder library [53] and analyzed using BioPython [54].

4.2 Coordinate transformation used to obtainR

Eqs (6)–(8) were obtained by rotating the Ramachandran plot so that contours of constant
polymer extension Re (see Fig 2) lie roughly horizontal in the new coordinate representation.
To this end we define

�0

c0

 !
� sffiffiffi

2
p 1 �1

1 1

 !
�

c

 !
þ lsffiffiffi

2
p 1

1

 !
; ð9Þ

so that ϕ0 and ψ0 are obtained by rotating the original coordinate system (ϕ, ψ) clockwise by
45°, shifting the resulting coordinates linearly (so that the new coordinates are non-negative),
and rescaling the result by the grid resolution σ. Fig 8(a) shows graphically this transformation.
Indexing the new coordinate system according to Eq (1) corresponds to the counting system
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shown in Fig 8(b). To undo the transformation Eq (1) approximately we compute

~�0 ¼ R
Z
% l0; ð10Þ

~c0 ¼ R
Z
=l0b c: ð11Þ

We then insert Eqs (10) and (11) into the equations ~�0 � ð~� � ~c þ lÞs= ffiffiffi
2

p
and

Fig 8. (a) Coordinate transformation applied to the Ramachandran plot in order to compute the
Ramachandran numberR. A rotation, shift, and rescaling of ϕ andψ results in a representation in which
horizontal cuts run roughly along contours of polymer extension; see Fig 2. (b) The indexing system defined
by Eq (1), where bold numbers are those that fall on the original Ramachandran plot.

doi:10.1371/journal.pone.0160023.g008

Fig 9. Dihedral angles converted to Ramachandran numbers can be recovered only approximately,
but the error incurred during this back-mapping can be mademuch smaller than the standard error
(typically 1Å) associated with structures in the protein databank. Here we show the root-mean-squared-
deviation (RMSD) in dihedral angles (a) and in protein α-carbon spatial coordinates (b) generated upon taking
8560 protein structures obtained from SCOP [36], converting their dihedral angles to Ramachandran
numbers, and recovering approximately those dihedral angles using Eqs (7) and (8). The parameter σ
indicates the grid resolution used to calculate R; see Eq (1).

doi:10.1371/journal.pone.0160023.g009
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~c0 � ð~� þ ~c þ lÞs= ffiffiffi
2

p
, and solve these for the closest approximations ~� and ~c to the original

angles ϕ and ψ. The results are Eqs (7) and (8).

4.3 Recovering dihedral angle values from the Ramachandran number
It is convenient to be able to retrieve from the Ramachandran number a good approximation
to the dihedral angles used to calculate it. This can be done for a range of choices of grid resolu-
tion σ. We took 8560 protein structures obtained from SCOP [36]; see Section 4.1. For a given
protein we took the dihedral angles associated with each residue, and used these to compute
the 3D protein structure (given values of the ω dihedral angle). We carried out the conversion
from dihedral angles to Ramachandran number, defined by Eq (1), and from this used Eqs (7)
and (8) to obtain an approximation to the original dihedral angles. We used these approximate
angles (with the original values of the ω dihedral angle) to compute the 3D structure of the pro-
tein. We then calculated the root-mean-squared deviation (RMSD) between the original and
recovered sets of angles and heavy-atom positions, shown in Fig 9. For a range of values of grid
resolution σ we find these RMSD values to lie well within the 1Å characteristic of the protein
databank. For the calculations done in this paper we took σ = 105 reciprocal degrees.
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