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A living vector field reveals constraints on galactose
network induction in yeast
Sarah R Stockwell & Scott A Rifkin*

Abstract

When a cell encounters a new environment, its transcriptional
response can be constrained by its history. For example, yeast cells
in galactose induce GAL genes with a speed and unanimity that
depends on previous nutrient conditions. Cellular memory of long-
term glucose exposure delays GAL induction and makes it highly
variable with in a cell population, while other nutrient histories
lead to rapid, uniform responses. To investigate how cell-level gene
expression dynamics produce population-level phenotypes, we
built living vector fields from thousands of single-cell time courses
of the proteins Gal3p and Gal1p as cells switched to galactose from
various nutrient histories. We show that, after sustained glucose
exposure, the lack of these GAL transducers leads to induction
delays that are long but also variable; that cellular resources
constrain induction; and that bimodally distributed expression
levels arise from lineage selection—a subpopulation of cells
induces more quickly and outcompetes the rest. Our results illumi-
nate cellular memory in this important model system and illustrate
how resources and randomness interact to shape the response of a
population to a new environment.
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Introduction

Budding yeast cells (Saccharomyces cerevisiae) can metabolize

galactose by inducing a network of regulatory and metabolic genes,

collectively known as the GAL genes (Fig EV1). When activated by

galactose that has been imported into the cell, Gal3p blocks the

repressor Gal80p from inhibiting the action of the transcription

factor Gal4p. Gal4p, in turn, promotes the transcription of the GAL

genes, including the regulatory genes GAL3, GAL1, and GAL80, the

membrane-bound galactose importer gene GAL2, and the enzymes

GAL1, GAL7, and GAL10 (Bram et al, 1986; Giniger & Ptashne,

1988; Lohr et al, 1995; Bryant & Ptashne, 2003; Abramczyk et al,

2012). The paralogs GAL1 and GAL3 transduce the galactose signal,

acting as positive regulators of the system (Abramczyk et al, 2012),

and the network’s interlocking positive and negative regulatory

feedback loops control induction in the presence of galactose (Lohr

et al, 1995; Acar et al, 2005; Ramsey et al, 2006). Abundant glucose

represses GAL network activation (Nehlin et al, 1991; Johnston &

Carlson, 1992; Bryant et al, 2008).

The GAL network has been an important model system for

metabolism, gene regulation, and now quantitative biology for

most of a century, and the behavior of this network in various

carbon sources at steady state is well understood (Lohr et al,

1995; Braun & Brenner, 2004). However, induction time courses

have revealed that the transient induction dynamics of the GAL

network depend on cellular memory of previous nutrient environ-

ments (Stockwell et al, 2015). Cells previously grown in non-

inducing/non-repressing media like raffinose or glycerol induce

quickly and fairly uniformly (Johnston et al, 1994; Lohr et al,

1995) (Fig EV2). The same is true for reinducing cultures: cells

that have undergone prior galactose induction followed by short-

term, 12-h, glucose repression (Zacharioudakis et al, 2007) before

being switched back to pure galactose (Figs 1, 2, and EV2;

Movie EV1). By contrast, cell populations that have experienced

long-term glucose repression (LTGR) induce the GAL genes after a

long lag, producing a transiently bimodal distribution that, in

population-level experiments, gradually resolves into an entirely

induced population over the course of many hours (Fig EV2)

(Biggar & Crabtree, 2001; Zacharioudakis et al, 2007). The trans-

ducer/enzyme Gal1p is required for the reinduction phenotype

(Zacharioudakis et al, 2007), but the mechanisms and population

biology behind the other memory phenotypes—particularly the

transient bimodality after LTGR—are unknown, in part because

research on GAL memory has largely been based on population-

level measurements or snapshots of a population at a few times.

As we show, such population-level measurements conflate the

effects of growth and induction and mask the potential for

competition between-cell lineages to reshape the composition of

the cell population (Nevozhay et al, 2012).

Results

The key to GAL network memory phenotypes may lie in the levels

of the transducers Gal1p and Gal3p that cells possess when they
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encounter galactose: cells accumulate different amounts of Gal1p

and Gal3p in different nutrient environments (Appendix Table S1).

Cells that already have a small amount of transducer when trans-

ferred to galactose media induce the network quickly and uniformly,

while cells that lack either transducer exhibit a long lag and a

bimodal induction pattern. These observations suggest that initial

concentrations of Gal1p and Gal3p may explain much of the tran-

sient population level. The GAL regulatory feedback loops include

other important components (Fig EV1), such as the galactose

permease Gal2p which dramatically increases galactose uptake

above the low levels provided by a constitutive facilitated diffusion

process (Ramos et al, 1989) and Gal80p which acts as a negative

regulator. However, Gal3p has long been recognized as critical to

induction speed (gal3 mutants take days to induce the network

instead of hours) (Winge & Roberts, 1948; Spiegelman et al, 1950;

Douglas & Pelroy, 1963; Bhat & Hopper, 1991), and Gal1p is respon-

sible for fast, unimodal induction upon reinduction (Zacharioudakis

et al, 2007). Thus, the positive feedback loop between Gal1p and

Gal3p (Fig EV1) may well govern the tempo and mode of GAL

induction. In this scenario, a cell beginning with low concentrations

of Gal1p/Gal3p would increase those proteins slowly, because

neither transducer is abundant enough to ramp up GAL induction

quickly. A cell with a moderate concentration of either protein will

increase GAL expression quickly, because the positive feedback

enables either transducer to accelerate the induction process for

both. Finally, a cell approaching the equilibrium point where

protein synthesis balances decay will begin to plateau and change

protein concentrations slowly.
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Figure 1. Cells induce quickly and uniformly after glycerol (yellow) and reinduction (pink), but variably after a long lag after long-term glucose repression
(blue) producing a transiently bimodal population distribution.
Single-cell time courses for each of the three history conditions for Gal3p-yECitrine and Gal1p-yECerulean. Expression levels have been normalized to an estimated 100%
plateau level (see Materials and Methods). Each thin line corresponds to a single cell tracked over time, and each plot depicts trajectories from thousands of cells. Data points
are spaced every 20 min, and photobleaching is minimal (Appendix Fig S4). Absolute Gal1p-yECerulean fluorescence levels are approximately 10× higher than Gal3p-
yECitrine, reflecting themassive induction of Gal1p. Fluorophorematuration time is expected to be on the order of 30 min. The y-axis represents percent of plateau-level gene
expression (see Materials and Methods). 0% represents the median of the control cell fluorescence levels for a given frame (i.e. no fluorescent proteins).
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To visualize the transient dynamics after the different media

histories, we represent them as flows across a vector field on the

state space of the two transducers, Gal1p and Gal3p (Figs 3 and

EV3). A vector field is a standard tool for analyzing dynamical

systems. It presents an efficient geometric summary of the overall

behavior of a system in terms of key variables. Here, we translate

this tool into a biological reality, generating living vector fields to

summarize our measurements of thousands of individual cells

tracked over time (Fig 1) and giving us a comprehensive view of

their induction dynamics. In these vector fields, each vector illus-

trates how Gal1p and Gal3p concentrations change over a given

time interval. The root of a vector represents the protein concentra-

tions at some time, the direction points toward the concentrations at

the next time point, and the length is proportional to its speed. By

measuring the concentration of Gal3p and Gal1p in a single cell, we

can place it at a particular point in the Gal3p/Gal1p state space

(Appendix Fig S1). Because its movement through this state space

depends solely on its current location and the direction of the vector

field at that location, over time the protein concentrations in the cell

will follow a trajectory described by the arrows starting from that

point until they reach their steady-state levels where the arrow

lengths shrink to zero (Appendix Fig S2). In the absence of noise or

other causal variables, any cell proceeding from that same protein

concentration would trace the same path. In this paper, we

measured Gal3p and Gal1p levels by fusing 2x-yECitrine to Gal3p

and yECerulean to Gal1p (Appendix Fig S3). We used a microfluidic

device (Ferry et al, 2011) to measure GAL network induction at

20-min intervals (Appendix Fig S4) as we switched cells with fluo-

rescently labeled Gal1p and Gal3p proteins to 2% galactose from

each of three conditions: glycerol-history, reinduction, and LTGR

(Appendix Figs S5–S9; Materials and Methods). By binning cells

with similar concentrations of Gal1p and Gal3p, regardless of when

they reached those levels during the experiment, and measuring the

concentrations for these cells 20 min later, we were able to estimate

a vector that described the average change in Gal1p and Gal3p

concentration per unit time starting at that point on the state space

(Appendix Fig S1). While the trajectories of individual cells may not

be completely determined by Gal3p and Gal1p (Appendix Fig S2),

we hypothesize that these two proteins are the most important

factors controlling transient dynamics in this system and so these

average vectors describe its dominant behavior.

The vector field unifies the three memory phenotypes into one

consistent picture of cell behavior. At steady state, glycerol cultures

express detectable Gal3p but no Gal1p, and glucose cultures express

neither (Lohr et al, 1995). After 12 h of glucose repression, reinduc-

tion cultures contain evident Gal1p (Zacharioudakis et al, 2007) but

little Gal3p (this study). The vector field representation illustrates

how these three different initial transducer levels determine induc-

tion lag and population variability. Each of the three history media

places the cells at different initial points in this state space (Fig 4).

The appreciable presence of either transducer—Gal3p or Gal1p—is

sufficient to drive the expression of the entire positive feedback

loop, enabling these cells to ramp up induction quickly (Figs 1 and

2). However, cells that have been subjected to LTGR enter the galac-

tose environment with no transducers to get the feedback loop

going. They must wait for rare molecular interactions to produce a

few molecules of Gal3p so the feedback loop can begin. We call this

process bootstrapping, a colloquialism that refers to accomplishing a

seemingly impossible task starting from the scarcest of resources

(Evans, 1834). We suggest that this bootstrapping is the source of

the long lag that has been observed following LTGR.

Single-cell dynamics on the vector field could also explain the

differences in population-level induction patterns (i.e., unimodal vs.

transiently bimodal) among the three history conditions (Biggar &

Crabtree, 2001; Zacharioudakis et al, 2007) (Fig 1 and Appendix Fig

S4). When only a few molecules of a protein are present in a cell,

stochastic effects can dominate the molecular interactions involving

that protein (McAdams & Arkin, 1997). LTGR-history cells are the

only cases among our conditions where both initial transducer

concentrations are low enough that we might expect stochastic

induction behavior (Fig 4). We hypothesize that when cells are

switched to galactose after LTGR, they must wait for infrequent,

stochastic molecular events to activate the positive feedback loops.

As a result, individual cells would wait widely varying times before

starting induction. This would produce a slow, sticky region of the

Gal1p/Gal3p state space where the concentrations of both proteins

would be near zero and from which cells would slowly escape one

by one while they bootstrap themselves into GAL network expres-

sion. When extrapolated to the population level, this dynamic

would manifest as the slow, transiently bimodal induction pattern

characteristic of LTGR where an initial distribution of uninduced

cells shifts to one that is completely induced. In contrast, in reinduc-

tion and glycerol-history conditions, cells start with appreciable

levels of at least one transducer, placing them outside the putative

sticky region. The dynamics in this fast deterministic regime would

result in a unimodal induction pattern at the population level.

Population measurements (Biggar & Crabtree, 2001;

Zacharioudakis et al, 2007) cannot determine why the uninduced

peak shrinks during the transiently bimodal period following LTGR.

Does the uninduced fraction decrease because most of the cells in it

activate the GAL network, thus switching to the induced fraction? Or

does the fraction of uninduced cells shrink because a subpopulation

of cells in it induces and starts to divide and demographically replace
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Figure 2. Empirical cumulative distributions for each history condition
for Gal3p and Gal1p.
Only cells that started with expression levels below 10% and induced to at least
75%of the plateau level are included (in the glucose condition in particular, most
cells fail to induce). Shaded areas denote 95% confidence intervals from
bootstrapping.
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the rest? Our single-cell time courses clearly illustrate the latter

process: The fully induced population is composed principally of the

descendants of the earliest-inducing cells (Figs 1 and 5A; Movies

EV1 and EV2).

The bootstrapping hypothesis makes a number of qualitative

predictions for induction behavior. It suggests that cells starting in

the region near (0%, 0%) will have long and variable lag times and

that the variability in lag times explains the bimodality of LTGR-

history induction: as individual cells escape from this sticky region,

they leave the uninduced population to join the inducing subpopula-

tion. Since the hallmarks of LTGR memory (length and variability of

lag times) are consequences of the cells’ tenure in the sticky region,

the bootstrapping hypothesis also predicts that once they accumu-

late appreciable levels of transducer and leave the sticky region,

they should lose their memory of LTGR and their induction trajecto-

ries should match those of cells in reinduction and glycerol-history

conditions. We tested these predictions and mapped the memory

region using the empirical vector fields derived from our micro-

fluidic experiments.

The results of our microfluidic experiments fulfilled the predic-

tions of the bootstrapping hypothesis (Fig 1). Lag times after LTGR

were much longer and more variable than after the other two

history conditions (Fig 2; Appendix Fig S10; Appendix Table S2),

and many cells failed to induce. As a result of the long and variable
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Figure 3. Empirical vector fields depicting the flow through the Gal3p/Gal1p state space for the three history conditions.

A–C Vector fields for glycerol (A), reinduction (B), and long-term glucose repression conditions (C). Colored lines are traces of individual cells through the Gal3p/Gal1p
state space and the darkness of the color at a point scales with the number of trajectories that pass through that point. Arrows represent the vector field. The state
space is binned in steps of 6% in each direction, and an arrow summarizes the movement of cells in its bin from one time point to the next (Appendix Fig S1). The
length of the arrow is half the mean velocity of cells, and the shade represents the circular variance (Pewsey et al, 2013) with black indicating consistency in the
direction of displacement and white indicating inconsistency. The vector fields flow toward (100%, 100%).

D Consistency of the vector directions during induction in the three experiments. The color indicates the estimated circular standard deviation of the mean vector
directions for each of the three experiments (see Materials and Methods). The inset shows the region at the corner near (0%, 0%). Once cells leave this corner, the
statistic drops to near zero indicating that cells are moving in a consistent direction regardless of experimental condition—they have lost their memories.
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lag, a small minority of cells induced, grew, and dominated

the population, while others remained quiescent or died, producing

the transiently bimodal induction distribution that others (e.g.

Zacharioudakis et al, 2007) have seen but not explained.

The influence of network induction dynamics on demography

explains another difference between population profiles of GAL

induction after LTGR and other nutrient histories. Following

glycerol or reinduction conditions, the cell population induces

uniformly, producing a single peak in the induction distribution that

moves steadily from uninduced to induced (Figs 1, EV2 and EV3),

producing a graded pattern of movement between peaks. By

contrast, following LTGR, the peak representing uninduced cells

does not shift; instead, it shrinks, while a different peak representing

induced cells grows. This bimodal, non-graded pattern results from

the fact that after LTGR, only a few cells at a time escape from the

sticky region and traverse the middle region of the vector field to

the fully induced peak. The rest of the population stays at the

uninduced extreme of the field.

In the vector field illustrating cells from all three nutrient histo-

ries, the small region around (0%, 0%) was populated almost exclu-

sively by LTGR cells, and their initial trajectories differed markedly

from those in other conditions (Fig 4). Once induction was under-

way, the dynamics were similar in all three histories (Fig 3D and

Appendix Fig S11), which allowed us to map where the cells lose

their memory of previous nutrient conditions (Figs 3D, 4, and EV3).

Cells moved in a consistent direction in the Gal3p/Gal1p state space

and transitioned rapidly from low Gal3p to plateau levels of Gal3p

(Figs 1, 3, and EV3). Their trajectories slowed as they approached

plateau levels of Gal3p, and the flow on the vector field curved

toward the fixed point (100%, 100%). These dynamics suggest an

unstable fixed point around (0%, 0%) and a stable fixed point

around (100%, 100%). The trajectories of Fig 1 and the population

distributions of Fig EV2 show variation in expression levels for both

proteins after most of the population has induced. In all three condi-

tions, over 80% of this variation can be explained by intercell

differences in average expression level, as opposed to fluctuation in

a cell’s measured expression over time (Appendix Table S3). This

suggests that while the trajectories of inducing cells are generally

similar, their final expression plateaus are cell-specific and influ-

enced by other variables.

Although the results from the microfluidic experiments support

the bootstrapping hypothesis, it is possible that other factors could

also contribute to lag time between history conditions. For example,

glucose represses the expression of a large proportion of the yeast

genome, including the GAL genes, and is known to suppress GAL

expression via several different mechanisms (Adams, 1972; Griggs

& Johnston, 1991; Nehlin et al, 1991; Johnston & Carlson, 1992;

Lamphier & Ptashne, 1992; Carlson, 1999). If glucose repression or

its aftereffects linger in LTGR-history cells, this could cause the long

lag we observe under those conditions.

Alternatively, resource constraints could contribute to induction

delays. Gal1p is one of the most highly induced genes in yeast—it is

upregulated 1,000-fold—which makes the GAL1 promoter a useful

tool for genetic engineering (e.g., Fischer et al, 1988; Webster et al,

1988; Brand & Perrimon, 1993; Nevozhay et al, 2009) but also

means that GAL network induction demands a large investment of

resources (Johnston, 1987; Baumgartner et al, 2011). Polymerases,

ribosomes, and carbon building blocks may need to be diverted

from other genes, and a cell must have sufficient energy to build

these proteins. Although cell populations with more energy reserves

adapt as a whole more quickly to galactose (Reiner & Spiegelman,

1947; Spiegelman et al, 1947), cells do not use this “battery” power

to propagate. Instead, when cells are switched from long-term

glucose to galactose, every cell in the population abruptly stops

growing or dividing and remains in stasis for hours (Fig 5B; Movie

EV2). Although they are drowning in galactose, they have no GAL

proteins and are unable to use it. Fueling initial GAL induction via

stored energy/carbon reserves alone may be a formidable effort that

only a few cells are able to muster (Fig 5A). Only the cells that

eventually begin GAL induction ever resume growth in our

0

−10

10

20

30

0 1 2

G
al

3p
 e

xp
re

ss
io

n 
le

ve
l

(%
 o

f p
la

te
au

 le
ve

l)

0 1 2

A B

Gal1p expression level
(% of plateau level)

Gal1p expression level
(% of plateau level)

0.0

0.5

1.0

circular
variance

Figure 4. Cell dynamics near the (0%, 0%) corner.

A Cell trajectories near the (0%, 0%) corner. Circles indicate the mean fluorescence values for each experiment at the time galactose was added.
B The vector field near the (0%, 0%) corner. Circles are as in (A).

ª 2017 The Authors Molecular Systems Biology 13: 908 | 2017

Sarah R Stockwell & Scott A Rifkin A living vector field of the GAL network Molecular Systems Biology

5



observations (Movie EV1). They rapidly outcompete the rest of the

still-starving population, dooming them to demographic oblivion.

The stately population-level picture of a bimodal population resolv-

ing into a unimodal, fully induced one is, in fact, a process of

lineage selection: some cells never manage to induce before they

die, and others only do so too late. By contrast, the cultures that

start with enough Gal3p or Gal1p to begin GAL induction quickly—

and thus use galactose to fuel further GAL induction—pause only

briefly before growth resumes in the new medium (Fig 5B), and the

fully induced population preserves many of the original cell lineages

(Fig 1; Movies EV1 and EV2).

If our resource-constraint hypothesis is correct, then adding a

small amount of glucose to the galactose media should give cells

a boost—extra resources to build their first GAL proteins

(Spiegelman et al, 1947). On the other hand, if lingering glucose

repression were a cause of the induction delay, then glucose in the

induction medium should prolong it. We found that adding 0.15 or

0.30% glucose speeds up GAL network induction (Fig 6 and

Appendix Fig S12): In both mixed-sugar conditions, half the

inducing cells reach 10% of their plateau Gal3p expression levels

within 2.1 h (Fig 6B), while LTGR cells take 6.4 h to reach the

same point (Fig 2).

These results rule out lingering glucose repression as an explana-

tion for the long lag times we observe after LTGR for times beyond

2.1 h. They also point to energy or other resources as important

limiting factors for the successful transition to metabolizing galac-

tose. While the bootstrapping process imposes a lag on GAL activa-

tion when cells have no initial transducers, this process speeds up if

cells can draw upon energy and carbon from the induction media

(Fig 6B). Without usable external energy, cells must fuel induction

using only stored energy reserves and balance this against the need

to live off these reserves in the meantime. Once GAL network induc-

tion is underway, galactose-derived resources become available to

help fuel further induction (Appendix Fig S13). Having other

sources of energy available also gives cells the option whether to

induce the GAL network at all (Escalante-Chong et al, 2015).

Resource constraints alone, however, cannot explain the length

and variability of the delay following LTGR. If they could, then the

timing and variability of GAL network induction after long-term and

short-term (reinduction) glucose repression should be the same: In

both cases, cells would have had at least 12 h in rich glucose

medium to build up their reserves. Or, if 12 h of exposure to glucose

were not enough, reinducing cells should take even longer to

induce, and lag length should be even more variable. In fact, induc-

tion after LTGR takes nearly three times longer than reinduction and

is twice as variable (Fig 2 and Appendix Table S1), so bootstrapping

from initially absent transducers must play a role in lag times and

variability. Conversely, if resource constraints played no role, then

giving the cells extra resources during the critical early-induction

period would have no effect. Instead, induction was faster when we

supplemented cells with glucose. Therefore, both bootstrapping and

resource constraints affect the lag.

Although the process of bootstrapping after LTGR may be

stochastic—because of the small numbers of molecules involved—it

is entirely possible that which cells are successful, or perhaps the

pool of cells that are able to induce at all, is influenced by aspects of

cell state that we did not measure. When induction is easy and fast

because of initially present transducers, there is no starvation

period, and almost any cell can mount the effort required for induc-

tion. When induction is slow and requires surviving starvation,

fewer cells have the energy or carbon reserves to last until they can

bootstrap themselves to the induction level where they can eat

galactose. Resource levels may also speed the bootstrapping process

itself: When we supplemented cells with glucose after LTGR (Fig 6),

they induced more quickly.

Discussion

In a changing environment, cells must constantly adjust their gene

expression to take advantage of the energy sources currently avail-

able to them. Failing to respond properly can be fatal. Most recent

research on how and when yeast cells induce the GAL genes has

focused on how information flows through the regulatory network.

Here, we provide support for an idea first advanced nearly 70 years

ago (Spiegelman et al, 1947) but neglected in recent explorations of

this system: that the availability of cellular resources is an important

additional constraint on GAL induction.

In addition, we offer a unifying explanation of previously docu-

mented cellular memory phenotypes. Others have shown that yeast
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Figure 6. Adding a small amount of glucose speeds GAL network induction.

A Single-cell time courses when cells are moved from long-term glucose repression to a mix of 0.15% glucose/2% galactose (green) or 0.3% glucose/2% galactose (grey).
For both Gal3p and Gal1p, cells initially overshoot their long-term plateau levels.

B Empirical cumulative distributions as in Fig 2 with 95% confidence interval bands. Additional glucose shortens the time until induction, but there is still appreciable
between-cell variation with 0.15% glucose.

C Vector fields as in Fig 3A–C. The vector fields noticeably overshoot then curve back around toward (100%, 100%). The flows on the Gal3p/Gal1p state space are
similar in these mixes and otherwise similar to the conditions in Fig 3.
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populations can induce uniformly or bimodally, quickly or slowly,

depending on their previous nutrient conditions. We tested whether

the Gal1p and Gal3p levels in cells emerging from each of three

nutrient histories could explain the differences among the induction

patterns, particularly the long delay and bimodal distribution

following LTGR. By measuring Gal1p and Gal3p expression levels

in thousands of individual cells and using these to create a living

version of a mathematical construct—a vector field—we estab-

lished that the need to bootstrap the Gal1p/Gal3p positive feed-

back loop from undetectable levels of both transducers

contributes to the long lag times and induction variability that

characterize the LTGR memory phenotype. By tracking gene

expression in individual cells over many hours, we distinguished

between growth and induction effects, demonstrating that the

minority of cells that manage to achieve GAL induction after

LTGR using stored resources come to dominate the population

while other cell lineages are lost.

Activating the GAL network from a repressed state with no initial

transducers requires resources that most cells do not muster and

depends on chance molecular interactions that most cells do not

experience. The minority of cell lineages that overcome these barri-

ers take over the population. The living vector fields synthesize

results from five different nutrient conditions to reveal that GAL

induction behavior depends on whether cells need to bootstrap the

positive feedback loops in the network from initially absent trans-

ducers and that the bootstrapping process is constrained by cellular

resources.

Materials and Methods

Yeast strains

The two yeast strains used in this paper were derived from BY4741

(Baker Brachmann et al, 1998) (his3D, leu2D, met15D, ura3D,
MATa), which is a derivative of S288C. YSR0145 had a Gal1p

C-terminal fusion to yECerulean and a Gal3p C-terminal fusion to

2x-yECitrine.

To make YSR0145, we replaced the GAL1 stop codon with yECer-

ulean-ADH1t-pTEF-SpHIS5-TEFt from pKT101a (from Natalie Cook-

son) which is identical to pKT101 (Sheff & Thorn, 2004) except with

CFP replaced by yECerulean. We used the oligos CGTCTCTAAA

CCAGCATTGGGCAGCTGTCTATATGAATTAggtgacggtgctggttta and

GTTATTATTGCGTATTTTGTGATGCTAAAGTTATGAGTAGtcgatgaa

ttcgagctcg to insert this translational reporter into the yeast genome

(the upper case pairs with the yeast genome and the lower case

pairs with the plasmid). We then made a translational reporter for

Gal3p by inserting 2x-yECitrine from plasmid pSRS001

(Appendix Fig S3) before the stop codon of GAL3 using the oligos

AGTTTCGAAGCCTGCCTTGGGTACTTGTTTGTACGAACAAtacgctgca

ggtcgacggat and CTTTTAATATTTAAAGGTTGTTCCAAGAAGGTGT

TTAGTGttataattggccagtctttt. 2x-yECitrine consists of two copies of

yECitrine connected by a linker sequence, which approximately

doubles the fluorescence intensity of a single yECitrine reporter and

allows detection of Gal3p even at low expression levels.

As an internal control, we constructed YSR0140, an isogenic

strain to YSR0145 without Gal reporter proteins but with an

mCherry (Shaner et al, 2004) nuclear marker to enable us to

distinguish these cells from YSR0145. We constructed strain

YSR0140 by replacing the stop codon of the nuclear-localized NRD1

in BY4741 with mCherry-pTEF-NAT-TEFt (Shaner et al, 2004) using

the oligos GAATATGCTTAACCAACAGCAGCAGCAACAACAACAAAG

Catggtgagcaagggcgagga and TTTTATGTACTATGAGCAAATAAAGGG

TGGAGTAAAGATCatcgatgaattcgagctcg with plasmid pBS35+25. This

plasmid is identical to plasmid pBS35 (https://www.addgene.org/

83797/) except with hph replaced by NAT.

Growth conditions and media

Cells were grown at 30°C in low-fluorescence synthetic dropout

media with complete amino acids and the appropriate carbon

source. For microfluidic experiments, cells were cultured in history

medium (2% glucose for LTGR, 2% galactose for STGR, or 3% glyc-

erol) for at least 10 generations or 24 h, whichever was longer. For

the final 10 generations, cell density was kept at OD600 < 0.15 to

maintain effectively constant sugar concentrations. Following this,

cells were loaded into the microfluidic device according to a

published protocol (Ferry et al, 2011) and grown in history medium

until approximately confluent. We aimed for the majority of cells to

be experimental cells with enough control cells to be able to esti-

mate background fluorescence well. The microchemostat media was

then switched to an induction medium as described in the text and

imaged for ≥ 25 h. For reinduction experiments, the microfluidic

medium was instead switched to 12 h 2% glucose then ≥ 25 h 2%

galactose. The media took less than 1 min to completely switch in

the cell chamber.

The cells were imaged using a Nikon TiE-inverted microscope

with the Nikon Perfect Focus System and a 60× oil immersion objec-

tive (CFI Plan Apo VC 60× Oil, 1.4NA, 0.13WD). A Prior Lumen 200

with a mercury lamp was used with a Sutter Lambda SC shutter and

three filter cubes for fluorescence imaging of YFP (Semrock YFP-

2427B), CFP (Semrock CFP-2432C), and mCherry (Nikon Y-2E/C).

The light source was limited to 25% maximum intensity. Bright-

field images were taken with a Nikon halogen lamp with exposure

controlled by a Sutter shutter. 16-bit greyscale images were captured

using a Princeton Instruments PIXIS1024b cooled-CCD camera with

a 1,024 × 1,024 pixel, (1.3 × 1.3 cm) chip. The temperature on the

microscope stage during imaging was maintained at 30°C with a

Nevtek ASI400 air stream incubator and a custom-rigged microscope

enclosure.

We imaged cells briefly and infrequently to minimize photo-

stress and photobleaching (Appendix Fig S4): bright-field 50 ms

every 2 min; mCherry 50 ms every 40 min; 2x-yECitrine and

yECerulean for 600 and 200 ms, respectively, every 20 min.

Automated time-lapse imaging was controlled by a PC running

custom routines in lManager (Edelstein et al, 2014) and

MATLAB (The MathWorks, 2014). In order to facilitate the image

processing, we also took a series of 50 ms bright-field images

above and below the target focal plane. Because Gal1p-yECeru-

lean expression varies over a huge range, a single exposure time

would not capture the entire dynamic range without saturating.

To circumvent this, we took a series of four successive 50 ms

exposures and then summed them to get a total yECerulean

image that could accommodate the yECerulean dynamic range.

We used a similar method for Gal3p-2x-yECitrine taking a series

of twelve 50 ms exposures.
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Cell segmentation

We developed a MATLAB-based (The MathWorks, 2014) cell

segmentation and tracking pipeline based on a published pipeline

(Ricicova et al, 2013) to extract data from the images

(Appendix Figs S5–S9).

The cell segmentation pipeline has a number of free parameters,

some of which are more influential than others. It was common for

a parameter set to work for most but not all of the cells in an image

and for another parameter set to pick up the missed ones. We wrote

a MATLAB GUI to help pick sets of parameters that would collec-

tively identify and segment the cells in a dataset and used three

parameter sets for each dataset. We segmented the cells based on

each parameter set and then merged them to make a final cell

segmentation (Appendix Fig S5).

We took a series of images above and below the focal plane and

then max-merged subsets of these to make above-plane and below-

plane images. When we subtracted the below from the above

images, constructive interference from the diffraction patterns

around the cells roughly outlined the cell boundaries (Ricicova et al,

2013). We then performed a series of image processing steps on this

image. We (i) thresholded this image using Otsu’s method (Otsu,

1979), (ii) removed small objects, (iii) morphologically closed the

image to fill holes, identified the insides of cells through a combina-

tion of (iv) dilation and erosion to identify and remove cell

membranes and (v) inverting the segmentation mask after (iii), (vi)

smoothed the edges of the objects, (vii) separated clustered cells by

the watershed method, (viii) filled holes, (ix) removed objects that

were too small, too large, or touched the edges, and (x) ensured that

all segmented objects were 8-separated. Vacuoles not infrequently

interfered with proper segmentation, leaving us with objects that

looked like Cs or doughnuts. We wrote a script to assess these

segmented objects based on area and statistics relating to circularity,

merge them into a single cell if appropriate, or fill them in other-

wise. This gave us three cell segmentation masks for a frame. We

merged them using a pipeline similar our tracking pipeline

described below that matches cells between frames.

Cell tracking

Once a segmentation mask was created for each frame, we tracked

cells across frames. This involves determining how segmented

objects in one frame correspond to the segmented objects in the

next. The tracking algorithm of Ricicova et al (2013) matches cells

across frames using the Hungarian algorithm (Kuhn, 1955) to mini-

mize the distances between the centroids of segmented objects in

one frame and the predicted locations of objects from the previous

frame based on their previous location and velocity. Unlike Ricicova

et al, our interval between frames was only 2 min, and so there was

limited movement between frames. For our images, their assign-

ment procedure mismatched a large fraction of cells. However,

because the cells did not move much over the 2 min, we were able

to rely primarily on overlap between segmented objects to track

cells between frames. We devised a pipeline (Appendix Figs S6 and

S7) to make these assignments and to cope with both cell movement

and improper segmentation due to splitting a single cell into two

objects, combining two cells into one object, and filling in a missing

cell in one or two frames.

When confluent, approximately 2,000–3,000 cells were present

in a field of view in the microfluidic device. We were able to reli-

ably track a large fraction of cells across hours and, crucially,

measure many cells entirely through their induction of the GAL

network.

Classification of cells as alive or dead

Dead cells autofluoresce for a time but also take on a characteristic

appearance under bright-field illumination (Appendix Fig S8). We

trained a random forest classifier (Breiman, 2001) to distinguish

between alive and dead cells based on the bright-field images and

classified all segmented objects as alive or dead. We also used this

classification to improve the cell tracking by splitting “cells” that

were classified as dead for a number of frames but then were

resurrected.

Estimation of protein concentration

We estimated protein concentrations within the cells based on

Gal1p-yECerulean or Gal3p-2x-yECitrine fluorescence intensities.

To measure these, we first added the separate 16-bit images to

make a composite image where the range could be larger than 216.

To remove the effects of variable background signal, we calculated

the median background fluorescence level for non-cell areas of

each image and subtracted that from the image. This gave all

images a comparable baseline. During the experiments, some cells

developed puncta which showed up as small, high-intensity fluo-

rescent spots, particularly in the 2x-yECitrine channel. To prevent

these from distorting the fluorescence intensity concentrations, we

removed them in a two-step process. After scaling the intensities

of a fluorescence image to be between 0 and 1, we identified cells

where the skewness of the distribution of pixel intensities in a cell

was > 1.5 and then removed any pixels in that cell with intensity

values greater than seven median absolute deviations above the

median. This procedure reliably identified pixels in puncta, partic-

ularly in cells with low expression where the excess fluorescence

would have the most effect. The mean of the remaining pixel

values gave a much better estimate of the protein concentration in

the cell.

We distinguished control from experimental cells using the

nuclear-localized mCherry marker. We calculated several statistics

on the magnitude and spatial organization of the mCherry signal

as well as the yECerulean signal in each cell and used a custom

MATLAB GUI to train a random forest (Breiman, 2001) to distin-

guish control cells from experimental cells from bad cells (i.e.,

cells that had likely died and had intense autofluorescence in all

channels). We used a cost function that was conservative in clas-

sifying a cell as control so that our estimated normalization

factors would not be skewed high. The false identification rates

based on out-of-bag estimates were near zero for control cells and

at most a few percent for experimental cells—not high enough to

affect our results. We used the cell type classifications to do a

final curation of the cell tracking by separating cells that had

been classified as experimental in some frames and control in

others into two different cells. If a cell were marked as bad in a

frame, it was classified as bad for all subsequent frames

(Appendix Fig S9).
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Based on the cell masks and the background-subtracted fluo-

rescent images, we measured total pixel intensity within a cell

and the area of the cell and from these calculated the average

pixel intensity, which we took as proportional to the protein

concentration in the cell and used as the cell’s fluorescence level.

Because the control cells had neither 2x-yECitrine nor yECerulean,

we could use them as an internal control for autofluorescence

and any bleedover in fluorescence due to out-of-focus light from

the experimental cells. To remove any image artifacts that were

segmented and tracked as cells, we restricted the dataset to cells

that were present for at least five bright-field frames. We also

ensured that there were at least 50 control cells per frame. For

each frame, we estimated the median fluorescence level across

the control cells and subtracted this from all the cells in the

frame. In that way, zero for each frame was set to the median

control cell fluorescence level.

Trajectory smoothing for fluorescence and scaling each
experiment to be between 0 and 100% expression

To remove high frequency noise from the individual cell fluores-

cence trajectories, we smoothed them by first convolving them

with a Gaussian kernel and then smoothing the result using loess

regression with a short span. Upon dying, fully induced cells

decline in expression. Our classification of cells as alive or dead

(above) allowed us to identify most of these cases and remove the

drops from the analysis. To catch any others, we also eliminated

parts of a cell’s trajectory after it reached its peak where expres-

sion persistently (80% of postpeak frames) dropped in expression

in either fluorescence channel (indicating possible photobleaching

or other problem) or dropped monotonically over five frames by

50% as there were likely to represent tracking errors or cell dying.

To normalize across experiments, we scaled the Gal3p-2x-yECitrine

and Gal1p-yECerulean data between uninduced (0% expression)

and fully induced (100% expression). About 0% expression was

the control cell median baseline described above. For 100%

expression, we estimated where the fluorescence level plateaued.

After examining the fluorescence trajectories for each experiment,

we identified a period of time where the cells appeared to plateau,

took the maximum fluorescence intensity for each cell in that time

period, and took the median of these maxima to be our estimate of

full induction.

Vector field estimation

To estimate the vector field for an experiment, we restricted our

focus to between 0 (galactose exposure) and 900 min. This is well

after the time for GAL network induction in all experiments. We

divided the Gal3p-Gal1p state space into bins of 6% plateau expres-

sion on each side. Within each bin, we identified all cells with Gal3p

and Gal1p expression levels in that bin which were also tracked into

the next fluorescent frame. Data from these two time points gave us

a velocity for each cell. The mean velocity within the bins is repre-

sented in the vector field plot by the length of the arrows (scaled by

1/2 so that the arrows do not overlap). The lightness of the arrows

indicates the circular variance of the vector directions, a statistic

that ranges from 0 (low variation in directions) to 1 (high variation)

(Mardia, 1972) (Appendix Fig S1).

To estimate the consistency of the vector fields during induction,

we filtered the data so as to remove much of the plateau period. For

each experiment, we determined the frame at which 95% of the

inducing cells had induced (Fig 2). For each cell, we assigned a

cutoff frame as follows: for cell that spent at least five frames above

85% plateau level for Gal1p before the experiment-specific frame

determined above, the cutoff frame was the fifth frame; for all other

cells, the cutoff frame was the experiment-specific frame. Only data

at or before this cutoff frame were used in the consistency

calculations.

The consistency statistic is an estimate of the average circular

standard deviation of mean vector directions in each of the exper-

iments LTGR, reinduction, and glycerol. We divided the data into

bins and only used bins for which there were at least 10 cells in

each of the experiments. For each experiment, we sampled the

data 500 times with replacement with a sample size of 10 and

calculated the mean vector direction for each replicate. For each

of the 500 replicates, we took one of the resampled mean vector

directions for each experiment and calculated their standard devi-

ation. Our statistic is the mean of these 500 circular standard

deviations. In Fig 3D, we estimated the statistic at a fine spacing

by linear interpolation.

Variance decomposition

To estimate the fraction of cells’ “steady-state” variation that was

due to consistent intercell differences, we subtracted the mean cell

fluorescence for each time point between 15 and 25 h after galactose

exposure (when the cells were at their plateau level), then fit linear

mixed-models to the fluorescence levels, with experiment as a fixed

effect and cell ID as a random effect. We used the R2
GLMMðcÞ statistic

(Nakagawa & Schielzeth, 2013; Lefcheck, 2016) to quantify the

fraction of variation explained by cell-specific differences and

calculated 95% confidence intervals by bootstrapping across cells.

Software

Data processing and analysis were done using custom scripts in

MATLAB (The MathWorks, 2014), MySQL (MySQL; www.mysql.

org), and R (Wickham, 2011; Bates et al, 2015; RStudio Team, 2015;

Wickham & Francois, 2015; R Core Team, 2016; Tsagris & Athineou,

2016), and all figures were made using ggplot2 (Wickham, 2009) or

MATLAB (The MathWorks, 2014).

Data availability

The data and analysis scripts can be found in the UCSD Digital

Collections under the reference: Stockwell, Sarah R; Rifkin, Scott A

(2017). Data from: A living vector field reveals constraints on galac-

tose network induction in yeast. UC San Diego Library Digital Collec-

tions. http://doi.org/10.6075/J0C24TCX.

Expanded View for this article is available online.
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