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Abstract

Assessment of hip joint reaction force (JRF) is one of the analytical methods that can enable

an understanding of the healthy walking index and the propensity towards disease. In this

study, we have designed software, Analysis Q Hip Force (AQHF), to analyze the data

retrieved from the mathematical equations for calculating the JRF and ground reaction force

(GRF) that act on the hip joint during the early part of the stance phase. The stance phase is

considered the least stable sub-phase during walking on level ground, and the gait stability

is sequentially minimized during walking on elevated ramps. We have calculated the JRF

and GRF values of walking stances on varied inclinations. The data obtained from these cal-

culations during walking on elevated ramps were exported from mathematical equations to

Q Hip Force software as two separate values, namely the JRF data and GRF data of the hip

joint. The Q Hip Force software stores the two reaction force data in a text file, which allows

the import and easy readability of the analyzed data with the AQHF application. The input

and output data from the AQHF software were used to investigate the effect of different

walking ramps on the magnitude of the hip JRF and GRF. The result of this study demon-

strates a significant correlation between the JRF/GRF values and healthy walking indices till

a ramp elevation of 70˚. The software is designed to calculate and extrapolate data to ana-

lyze the possibility of stress in the hip joint. The framework developed in this study shows

promise for preclinical and clinical applications. Studies are underway to use the results of

JRF and GRF values as a diagnostic and prognostic tools in different diseases.

1. Introduction

Many three-dimensional (3D) joint, limb, and musculoskeletal models have been developed

for gait analysis and tested in healthy and disabled conditions and in individuals with prosthe-

ses [1–5]. Such studies help us understand the motor patterns categorized as satisfactory or

impaired gait conditions. Impaired gait pattern is one of the primary symptoms associated

with a plethora of diseases such as cervical spondylotic myelopathy, arthritis, multiple sclerosis,
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Meniere’s disease. In some diseases, a detailed assessment is usually carried out using the

three-dimensional gait analysis (3DGA) tools. However, the administration and reliability of

quite a few of these tools have not been established and remain uncommon in clinical settings.

One of the reasons is the use of costly and cumbersome devices for procuring the data besides

being computationally expensive.

Upslope walking requires raising the knee to a higher position compared to level walking,

which is facilitated by a well-coordinated neuromuscular system [6]. The center of mass

(COM) has to be adjusted to overcome the gravitational force and raised further upwards to

allow forward movement. Gait assessments during walking up the slopes potentially help in

understanding many associated derangements of the joints, which may not be clearly identifi-

able during leveled walking. Additionally, upslope walking assessments are also useful in opti-

mizing mobility in various pathological conditions such as spinal cord disabilities [7]. In the

present study, we investigated the gait parameters of healthy subjects during walking up ramps

of inclinations between 0˚-15˚. Wherein, the 0˚ represents level ground walking reflecting the

absence of inclined surface during walking. We used the motion analysis system that uses

marker-based motion planes and a force platform to record the kinematic and kinetic gait

parameters in a subject-specific investigation method. The system consisted of six high-veloc-

ity infrared Pro-Reflex cameras and an AMTI (Advanced Mechanical Technology Inc., USA)

force plate added as an impediment in the center of a walkway. It has a width is 40 cm and a

length is 60 cm. The motion frequency rate is 120 Hz. The results were analyzed using the Q-

gait analysis software. We observed a significant variation in the vertical COM displacement

between subjects during the single-limb support phase while walking up different ramps. An

increase in COM during level walking ascended on an average of 4.4 cm during the first half of

the stance phase and descended on an average of 4.4 cm during the second half of the stance

phase. According to previous reports, the highest point of this vertical displacement occurred

at about 30% and 60% of the gait cycle [8,9]. Furthermore, the angular displacement of the hip

joint in the frontal plane during the walking phase is the most variable and is most affected

during walking on uneven terrain and inclinations [10]. Hence an overall assessment of gait

while walking upslope requires calculating the magnitude of GRF and JRF in three dimen-

sions. The resultant effect on the hip joint is thus assessed during single limb support and

entered into the complex equations. In this study, we designed the Analysis Q hip force

(AQHF) software and used the gait data as input for each subject to extract the final results

according to body weight of the subjects and the angle of the inclined ramp. This framework

assimilates the ease of data acquisition and computational ability, thus holding better prospects

for use in clinical settings for the assessment of Hip forces in a subject- specific manner.

2. Results

This study was conducted on twenty male and twenty female university students to investigate

the effect of walking ramps (0˚- 5˚- 10˚- 15˚) on hip JRF and the GRF. Mixed Design MAN-

OVA was used with the resultant hip JRF as the first dependent factor, the resultant GRF as

the second dependent factor. The independent factors were the degrees of the walking ramps

and gender. The least significant difference (LSD) multiple comparison post hoc test was used

to determine the significant difference between the mean values of the dependent factors dur-

ing walking up ramps and compare the changes that occur in these factors between male and

female subjects. All statistical analyses were conducted using SPSS for Windows, version 17.0.0

(SPSS, Inc., Chicago, IL). The alpha level of significance was set at 0.05. Effect of walking

ramps (Factor A) on 3D hip JRF was calculated using the AQHF application. The result

obtained from the analysis showed that the resultant mean value of the hip JRF (as a multiple
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of body weight) in 3D during single-limb support on ramps of (0˚, 5˚, 10˚, and 15˚) was 119.4

(±16.1) body weight (BW), 129.5 (±17.4) BW, 138.6 (±18.2) BW and 149 (±19.6) BW respec-

tively. Using the factorial design (Mixed Design MANOVA) test, a significant difference was

found among the four tested ramps for the mean value of the resultant hip JRF (p< 0.05).

Meanwhile, paired comparison using the least significant difference (LSD) multiple com-

parison post hoc test revealed that there was a considerable difference between every two

ramps except for the difference between 0˚,5˚, and 5˚,10˚, which revealed no statistically signif-

icant difference. Table 1 and figure (Fig 1) summarize these results.

2.1 Effect of gender (Factor B) on 3D hip JRF obtained from AQHF

Software

Table 2 and figure (Fig 2) summarize the mean values of the resultant 3D hip JRF (BW) in

both males and females while walking over level ground and inclinations of 5˚, 10˚, and 15˚.

Results indicated that 3D hip JRF in males is higher than in females in all walking inclinations.

Mixed Design MANOVA revealed significant differences between males and females

among all tested inclinations (p<0.05). Statistically, a significant difference was observed in

males between every two ramps except between 0˚ and ramp 5˚ and ramp 5˚ and ramp 10˚. In

addition, post hoc analysis showed that there was only a significant difference in females

between 0˚ and ramp 10˚ and between 0˚ and ramp 15˚.

2.2 The interaction effect of ramps and gender on the resultant hip JRF

Using the factorial designs (Mixed Design MANOVA test), a significant interaction (p< 0.05)

was found between the ramp and the gender on the mean value of the resultant hip JRF

(Table 2). This was supported by the Posthoc analysis (Table 3).

Moreover, paired comparison using the LSD post hoc test revealed that there were signifi-

cant differences between males (M) and females (F) and between each ramp and other in the

mean value of the resultant hip JRF (Fig 3).

Female

3. Discussion

The JRF results obtained in our study showed a significant difference among the tested ramps

for the resultant of the right hip JRF during the single support phase that represents from 30%

Table 1. Descriptive statistics and Mixed Design MANOVA for 3D hip JRF during single-limb support on the

four tested ramps (0˚, 5˚, 10˚, and 15˚) as a multiple of body weight (BW) for all the tested subjects.

3D hip joint reaction force (BW)

Ramp 0˚ 5˚ 10˚ 15˚

X± SD 119.4(±16.1) 129.5 (±17.4) 138.6 (±18.2) 149 (±19.6)

Mixed Design MANOVA

F = 13.85 p = 0.000�

LSD multiple comparison test

0˚ vs 5˚ p > 0.05

0˚ vs 10˚ p < 0.05�

0˚ vs 15˚ p < 0.05�

5˚ vs 10˚ p > 0.05

5˚ vs 15˚ p < 0.05�

10˚ vs 15˚ P < 0.05�

https://doi.org/10.1371/journal.pone.0273159.t001
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up to 60% of the whole gait cycle, which starts with initial contact of the foot and ends at termi-

nal swing phase of the same foot. (Table 1, Fig 1). In addition, paired comparison of LSD

revealed significant differences among walking up the ramps (Table 1). According to the pres-

ent study, the vertical component (Jz) of the JRF has the highest magnitude compared to ante-

roposterior and mediolateral components. Our results are supported by studies from other

groups who assessed the hip and knee joint kinetics to estimate bone-on-bone contact forces

during level walking and stair climbing in healthy subjects with a subject-specific joint model

approach [11,12]. The components of hip forces were Fz, Fx, and Fy in the represent the verti-

cal, mediolateral, and anteroposterior directions. Their results revealed a significant difference

in the hip joint contact forces during stair ascent compared to its value during level walking

comparable to our results. The mean value of the (posterior-anterior) force at the hip joint

during stair ascent was estimated to be twice its value during level walking. Also, the magni-

tude of the vertical hip JRF (Fz) achieved the most significant value compared to the mediolat-

eral (Fx) and anteroposterior (Fy) reactive force during single-limb support. Furthermore,

Salam M. Elhafez (2019), also demonstrated that the joints of the lower extremities were most

loaded during the single supporting phase of the gait cycle [13]. They observed the reaction

forces of these joints to be significantly increased at this sub-phase while walking. The JRF act-

ing at the hip joint can be correlated to motion and stability for prosthetic impingement if the

acetabular abduction angles are altered from the normal 45–50 degrees [14,15]. Acetabular

cups with an angle of> 50˚ demonstrated a volumetric wear rate of 160 mm 3 per year. This

exceeds the critical rate of normal wear and tear and thus likely to result in osteolysis and fixa-

tion problems due to increased JRF [16,17]. Poor positioning of the inclination angle of the

acetabular cup > 50˚ might result in edge-loading and a greater rate of wear and tear

Fig 1. The variation of the hip joint reaction force during single-limb support on the four walking ramps.

https://doi.org/10.1371/journal.pone.0273159.g001
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associated with adverse biological reactions associated with metal ion release and an increase

in the liability of its dislocation [18].

According to Newton’s third law, the body’s normal reaction force (N) acts vertically on an

inclined plane. Thus, the GRF vector will always be oriented perpendicular to the inclined

plane. The trunk and the pelvis remain aligned with the earth’s vertical axis at all surface incli-

nations during single limb quiet standing [19]. Hence, the center of gravity (COG) remains

constant with changing surface inclination [19]. This points that the mathematical calculation

of GRF is carried out by its perpendicular orientation with an inclined plane and the alignment

of its moment arm while walking on inclined surfaces during single limb standing. Hence, we

have selected the sub-phase position to calculate the GRF magnitude at the hip joint using the

AQHF software (Fig 1).

3.1 Effect of gender (factor B) on 3D hip JRF obtained from AQHF

software

An increase in the mean value of the resultant hip JRF of males was observed as compared to

females (Tables 2 and 3). This may be attributed to difference in the gait-related anatomy and

habits between males and females [20]. Previous studies have demonstrated a significant gen-

der difference in the gait pattern while walking. Attributed to the specialized character of a

wider pelvis in females compared to males, significant difference in the gait pattern are noted

[20]. Furthermore, the females walked with the pelvis tilted more anteriorly and with more up

and down oblique motion. The hip joints are more flexed, adducted and internally rotated,

while the knee joints have more valgus angles.

Females are shorter, both in height and leg length and they walk slower than males due to

shorter stride length and narrower step width. Hence, during the stance phase, a shorter

Table 2. The table demonstrates the (a) descriptive statistics for the interaction between ramps and gender on the mean values of the resultant hip JRF while walk-

ing up ramps as a multiple of body weight (BW), (b) Mixed Design MANOVA for the resultant hip joint reaction force of males and females during single-limb sup-

port on the four walking ramps (0˚, 5˚, 10˚, 15˚). Calculation of least significant difference (LSD) in (c) males and in (d) females.

a. Hip joint reaction force (BW)

Ramp 0˚ 5˚ 10˚ 15˚

Gender Male Female Male Female Male Female Male Female

X± SD 121.4 (±15.7) 115.8 (±16.9) 131.6 (±17.42) 127.3 (±19.5) 138.2 (±14.6) 136.1 (±18.9) 155.6 (±17.8) 137.2 (±16.4)

b. Mixed Design ANOVA

F = 8.18 p = 0.000�

c. LSD multiple comparison test in males

0˚ vs 5˚ p > 0.05

0˚ vs 10˚ p < 0.05�

0˚ vs 15˚ p < 0.05�

5˚ vs 10˚ p > 0.05

5˚ vs 15˚ p < 0.05�

10˚ vs 15˚ p < 0.05�

d. LSD multiple comparison test in females

0˚ vs 5˚ p > 0.05

0˚ vs 10˚ p < 0.05�

0˚ vs 15˚ p < 0.05�

5˚ vs 10˚ p > 0.05

5˚ vs 15˚ p > 0.05

10˚ vs 15˚ p > 0.05

https://doi.org/10.1371/journal.pone.0273159.t002
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walking stride results in reduced joint compression forces acting on the lower extremities.

[21]. A significant difference of hip JRF also occurs when the walking speed is reduced by 15%.

This decrease in the hip JRF resulted from the reduction in the posterior joint force at the hip

when the subjects walked at a speed 15% below average [21].

Further, the electromyographic JRF examination of men resulted in a large peak of seven

times body weight just before toe-off when the abductors contracted to stabilize the pelvis. [22].

3.2 The interaction effect of (ramps and gender) on the resultant hip JRF

We found that the males exhibit a higher mean value of the resultant hip JRF than females at

an elevation of 0˚, 5˚, 10˚ and 15˚ during single limb support and a significant effect was

found on the mean value of the resultant of the hip JRF. A significant gender difference in gait

patterns is demonstrated to occur while walking [23]. Comparable results were obtained by

another study establishing that the the step length of females decreased compared to the step

Fig 2. The variation of the resultant hip joint reaction force between males and females during single-limb support on the four walking ramps.

https://doi.org/10.1371/journal.pone.0273159.g002

Table 3. The table demonstrates the post hoc test carried out on male and female subject’s categories. The test is based on the hip joint reaction force calculated for

different ramp elevations as in Table 2.

a. Post hoc test (JRF)

Males

Females Ramp 0˚ 5˚ 10˚ 15˚

0˚

5˚ p < 0.05�

10˚ p < 0.05� p < 0.05�

15˚ p < 0.05� p < 0.05� p < 0.05�

https://doi.org/10.1371/journal.pone.0273159.t003
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length of males during ramp walking. This produced a reduction in the friction demand of

females hence minimizing the joint compression forces of their lower extremities during the

stance phase of walking [24]. Also, a short stride length probably counteracts the higher fric-

tion demand that would otherwise be needed at heel strike in upslope walking [25].

The walking speed and cadence also affect the lower extremity JRF. A differences in the JRF

of the lower extremities was observed when speed and cadence were manipulated [26]. The

most significant differences occurred when the subjects reduced their walking speed by 15%.

Therefore, a significant interaction between walking speed and gender on hip JRF was effective

while walking up the ramps (Fig 3).

Our results also indicate a negative value for the GRF output. This negative sign obtained

by software shows the value of an angle, which depends on the quadrant that harbors the ter-

minal side of θ. If θ is a second quadrant angle. Therefore, cos y ¼ � a
r = —cos ϕ (Fig 4A and

4B) is in accordance with the previous mathematical theory proved by Lia and Won (2008). As

shown in Fig 4(B) the angle between the vector (W) representing the pathway of the GRF vec-

tor ’’CE’’ with the ground in Fig 4(A) lies in the second quadrant during the single-limb sup-

port phase on different inclinations. Thus, ’’Wx = —W (cos θ)’’ as the component of the GRF

in the X-direction results in a negative sign. The results of our study can also be biomechani-

cally interpreted for hip dislocation and active forces on the hip joint.

The negative sign of the X component observed for the GRF may result from the variation

in the angular displacement of the hip joint while walking up ramps. It was known that the

Fig 3. The interaction in the mean difference of the right hip joint reaction force between males and females among the four walking ramps during

single-limb support.

https://doi.org/10.1371/journal.pone.0273159.g003
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range of hip flexion and extension occurs on the X-axis. Thus, if the hip flexion range occurs

in the inner range and has a positive sign, the range of hip extension occurs in the outer range

and will have a negative sign. As the extended position of the hip joint lies in the outer range of

the angular movement with a negative sign, the X components of the GRF lie in the 2nd quad-

rant and have the same sign.

Subsequently, the patients who suffer from recurrent posterior hip dislocation of the artifi-

cial hip may be due to the liability of the hip joint to be dislocated posteriorly, especially during

standing over the affected limb in the single-limb support phase. This causes an increase in the

horizontal components of the GRF acting over the hip joint at this sub-phase

According to the equation, the direction of the GRF is “Tan α =
Wy
Wx”. As Wx = -W(cosθ).

Therefore, the α of the GRF also has a negative sign. According to the above equation, we con-

cluded that not only do the angular displacements of the hip joint in the sagittal plane affect

the hip position; but also the direction of the GRF vector in relation to the horizontal plane

“α,” which has an important implication in determining the best position of the artificial hip.

Consequently, the incidence of recurrent posterior hip dislocation will be decreased. Hence,

there exists a relation between the angular displacement of the hip joint in the sagittal plane

and the direction of the GRF vector at the hip joint.

3.3 Effect on the hip Forces

As the X-component of the abductor muscle force equals the GRF value at the hip joint

(Ax = W), the GRF will gain a negative direction with the horizontal plane (Fig 5A). In

Fig 4. (A) The pathway of the GRF vector during single-limb support on an inclined surface. (B) θ is a second quadrant angle that lies between the vector (W)

& the ground.

https://doi.org/10.1371/journal.pone.0273159.g004

PLOS ONE Analysis of hip joint reaction force using Q Hip Force (AQHF) software in health and disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0273159 September 26, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0273159.g004
https://doi.org/10.1371/journal.pone.0273159


addition to the value for ‘A’ component, which represents the abductor muscle force and

equals two times the body weight, the direction of force ‘A’ will have a positive sign. It will also

be 30˚ from the vertical axis (Fig 5B) [27].

3.4 The interaction effect (ramps and gender) on the resultant total GRF

Females exhibit a higher mean value of the resultant total ground reaction force than males at

the mid stance phase of the gait cycle while walking ramps of 0˚, 5˚, and 15˚. However, male

exhibit a higher mean value than female while walking up a ramp of 10˚. Statistical analysis

using Mixed Design MANOVA revealed that there was a significant interaction (p< 0.05)

between the ramp and the gender on the mean value of the resultant total ground reaction

force (Table 4A). The percentage varied from 30% to 60% measured at the most critical walk

Fig 5. The interaction effect of ramp and gender on the hip forces (a) Calculation to derive the relationship between the

gravitational force and the internal hip joint moment during single limb support. (b) The horizontal and the vertical components of

the abductors force “A” (Adapted from Frankel and Nordin, 2020) [28].

https://doi.org/10.1371/journal.pone.0273159.g005
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phase of the gait cycle, i.e. middle of the stance phase. Multiple comparison post hoc test

revealed that there was a significant difference in the mean value of the resultant total ground

reaction force between male (M) and female (F) for each of ramp of 0˚ and ramp of 15˚, ramp

of 5˚ and ramp of 15˚, ramp of 5˚ and ramp of 10˚ and ramp of 10˚ and ramp of 15˚ at the mid

stance phase of the gait cycle while walking. (Table 4B).

Biomechanically, the single-limb support phase during walking up a ramp, reaches a bal-

ancing state to maintain the pelvis level in the frontal plane and prevent its drop toward the

swing extremity [29]. This is a compensatory mechanism between the abductor muscle force

and the GRF at the hip joint. Thus, the negative direction of the GRF vector against the hori-

zontal plane is compensated by the positive X-component of the abductors force to maintain a

leveled pelvis [30].

However, in case of abductor muscle weakness, the sum of the abductors force in the X-

direction and the gravitational forces is not equal to 0. This represents a state of imbalance

wherein the gravitational force is greater than the X-component of the abductor muscle force.

Finally, the sum of these forces gets directed toward the greater one [31]. The posterior orien-

tation of the GRF vector at the hip joint in the X-axis exposes the hip joint with the abductor

muscle weakness to a greater incidence of pain, arthritis, and lateral edge loading of the hip

joint during repetitive walking up the ramps. Therefore, during walking patterns related to

fast, normal, and slow gait, the highest pressure of moderate magnitude was positioned at the

lateral roof of the acetabulum spanning the mid-stance phase.

The AQHF software can be useful in understanding the biomechanics of the hip joint con-

tact forces. An insight into these forces is a necessary requirement for designing of the hip

joint prosthesis. In a total hip replacement arthroplasty a part of the femur including the head

of the femur is removed and an artificial ball is secured to the thigh bone [23]. The artificial

socket must articulate with the ball component and should be fixed in a position to maintain

an optimal JRF and GRF at the hip joint (Fig 9) [32].

4. Conclusion

In sum, the findings of our study show a significant difference (p< 0.05) between males and

females in the magnitude of the hip JRF. Males exhibit a higher mean value of the hip JRF than

Table 4. The tables indicate (a) the interaction between the ramps and the gender on the mean value of the resultant total ground reaction force at the mid stance

phase of the gait cycle while walking up ramps. (b) the post hoc test carried out on male and female subject’s categories and is based on the hip ground reaction force cal-

culated for different ramp elevations as in Table a.

a. Hip ground reaction force (N)

Ramp 0˚ 5˚ 10˚ 15˚

Gender Male Female Male Female Male Female Male Female

X± SD 509.49 (±34.69) 518.64 (±5.41) 499.87 (±25.3) 504.25 (±22.49) 527.7 (±27.38) 517.57 (±15.58) 549.58 (±3.95) 552.24 (±19.24)

Mixed Design MANOVA

F = 7.5 p = 0.000�

b. Post hoc test (GRF)

Males

Females Ramp 0˚ 5˚ 10˚ 15˚

0˚

5˚ P > 0.05

10˚ P > 0.05 P < 0.05�

15˚ P < 0.05� P < 0.05� P < 0.05�

https://doi.org/10.1371/journal.pone.0273159.t004
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females during the single-limb support phase that represents the middle of the stance phase of

the gait cycle varied from thirty up to sixty percentage at a ramps of 0˚, 5˚, 10˚, and 15˚. In the

light of these findings, achieving a sufficient interface fit between the implant and the hip bone

(Fig 10A and 10B) has important implications for prosthetics and assistive devices.

An increase in the mean value of the male hip JRF during the single-limb support phase

while walking up the four tested ramps compared to the female value predicts a higher level of

micromotion. This predicts for a greater femoral fracture of the male prosthetic hip compared

to females [33,34]. Thus, calculations using the AQHF software can provide clinical values for

the orthopaedic surgeons in predicting hip joint degenerating mechanism and prosthetic

implant wear. Our software can calculate the active forces on normal individuals’ hip joints

and may help predict the possibility of wear and tear if the JRF has deviated from the normal

value. Also, the hip replacement therapy and the use of the best implant material can be

devised based on the results generated by our software to establish the best fit customized for

each individual.

We concluded that an increase in the angle of the walking ramp is associated with an

increase in the hip JRF. Consequently, it should be considered that males with a prosthetic hip

joint may result in a higher incidence of femoral fracture of their prosthetic hip while walking

up the ramps. The higher risk is attributed to an increase in the reaction force of the hip joint

while walking up ramps of various inclinations. The software AQHF supports the evaluation

of the JRF and GRF that can be used for diagnosis in clinical settings.

The advantage of this software is to predict the hip JRF in addition to GRF at the hip joint

through three dimensional analysis in a critical sub-phase of the gait cycle i.e., the single limb

support phase. This phase represents the least stable position of all phases of the gait cycle

while walking and a critical point in gait cycle to exert maximum hip forces. This makes the

AQHF software unique. Besides, there are no comparable softwares for calculating hip joint

GRF and JRF in normal people that can be extrapolated to predict disease disposition. Hence,

no similar softwares are reported that can precisely calculate these forces in gait phases while

walking on level ground and during walking up ramps. The following model (Fig 12) deter-

mine how this software works depending on the input and output data.

5. Material and methods

All the participants included in this study were healthy, normal subjects with no disease or

musculoskeletal deformities. A verbal consent was obtained from each participant. The partici-

pation in this study was based on voluntary enrollment. The study is solely a physical assess-

ment study and no invasive procedure was done. The current research work was approved by

Research Ethics Committee of Faculty of Physical Therapy of Cairo University. NO:P.T.REC/

012/006572.

Software Analysis Procedure: Before starting a new analysis with the AQHF software, the

following data input was required:

1. Subject data that include Weight, height, Age, Height, gender.)

2. The data files from the mathematical calculation included JRF and GRF data files.

3. The measurement report for the specified inclined surfaces.

4. The AQHF software requires input of the following steps for carrying out an analysis:
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1. The start menu of the AQHF Application:

From this menu, all functions in the software can be reached.

Starting a new analysis: The File>detail option is selected (Fig 6A).

The Person Data menu is displayed. The relevant subject data is entered, and the files used

as input for the analysis are selected (Fig 6B).

If the measurement report is filled in correctly, all relevant information is stored in the

report. All data entered in the person data menu will be saved in the hip analysis file.

2. Type of Analysis:

This field determines whether the software will calculate either JRF or GRF.

3. Calculation and Results:

After the software is properly set up, the analysis is started from the Analysis menu. This menu

has several options; JRF calculation and GRF calculation for 0,5,10 15 degrees (Fig 6C) and

another option for new ramp estimation that can calculate up to 70 degrees of ramp inclina-

tion for both JRF and GRF (Fig 6D). When the calculations are completed, the results window

shows the calculated hip force parameters.

Fig 6. Hip force calculation through AQHF. (A) The start menu of the AQHF Application. The hip force calculation

can be done through the Q hip force start window. All functions in the software can be reached through the start

menu. The File>detail option is selected. (B) This displays the Person Data menu. The relevant subject data is entered,

and the files used as input for the analysis are selected. (C) Calculation for 0,5,10 and15 degrees ramps is done through

this window. (D) New ramp estimation that can calculate up to elevation of 70 degrees.

https://doi.org/10.1371/journal.pone.0273159.g006
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By selecting the JRF calculation, a standard JRF for each inclined surface is displayed. There

are two windows; the first one (Raw Data Fig 7A) displays the value of the hip JRF in each

dimension, the 2D and 3D resultant of the hip JRF, and its direction. The second window illus-

trates the figures that show the values of the hip JRF (Fig 7B).

When GRF calculation is selected, two windows appear; the first one (Raw Data) (Fig 8A)

displays the value of the GRF at the hip joint in each dimension, the 2D and 3D resultant of

the GRF at the hip joint in addition to its direction. The second one displays the figures that

show the values of the GRF at the hip joint in each direction (Fig 8B).

Fig 7. JRF calculation. (A) The first window indicates Raw Data. (B) The second window is an illustration of the raw data indicated in window A.

https://doi.org/10.1371/journal.pone.0273159.g007

Fig 8. GRF calculation through AQHF. (A) The first window indicates raw data. (B) The second window is an illustration of raw data shown in window A.

https://doi.org/10.1371/journal.pone.0273159.g008
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Fig 9. Free body diagram showing the perpendicular orientation of GRF for the forces acting on the body.

(Adapted from Frankel and Nordin 2001).

https://doi.org/10.1371/journal.pone.0273159.g009
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As we previously mentioned that the direction of the GRF while walking on a level surface

is 90˚ (referred to Fig 9), and the orientation of the GRF vector with the ground while walking

is perpendicular. Thus the force has only one component in the Y-direction. (Fig 10) Therefore

the output of the software related to the value of the GRF while walking on a leveled surface

differs from walking up other degrees of ramps.

Moreover, the percent of an increase and decrease option has two functions; the first one cal-

culates the percent of an increase or decrease in the mean value of the hip JRF or the GRF dur-

ing the early part of the single-limb support phase on inclined surfaces. The second function

calculates this ratio for each 2D and 3D resultant of the hip JRF and GRF. These two functions

enable the users to calculate this percent when the ramp has a fixed degree and when the weight

has a fixed value (Fig 11A and 11B). Thus the model presented in Fig 12 and the flowchart (Fig

13) demonstrate the synchronization between Q hip force software, Q gait and Q view softwares

needed for calculating the GRF and JRF values, which are important for prediction and extrapo-

lation of data. The result is derived from the input data through the computer programming

languages of the software. This language uses different source codes to facilitate the formatting

of these equations to be understood and manipulated in order to designing this new software.

Fig 10. GRF calculation. The window demonstrates the raw data during the level surface walking. X-value and Z- value is zero.

https://doi.org/10.1371/journal.pone.0273159.g010
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Fig 11. The windows show the final results reflecting the increase or decrease in the GRF and JRF calculations. (A) The percentage

of increase or decrease in GRF at fixed ramp can be observed in this window and (B) the amount of increase and decrease in the 2D JRF

at fixed weight can be observed at the window.

https://doi.org/10.1371/journal.pone.0273159.g011
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Fig 12. The model shows the analytics of data input, calculation through AQHF software and the generation of results. This mechanism is followed for

calculation at each inclination.

https://doi.org/10.1371/journal.pone.0273159.g012
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The variables are derived from the data input of healthy subjects without any deformities

and health issues, hence, the study may benefit somewhat from increasing the number of sub-

jects from both gender. The strength of this study is that the software can effectively and pre-

cisely calculate upslope walking upto 70˚ without a person to actually go through upslope gaits

to achieve an input value.

Fig 13. The flowchart representing the step by step measurement of the GRF and JRF with the Q-gait and AHQF

softwares, sequentially following the input phase, measurement phase and the output phase.

https://doi.org/10.1371/journal.pone.0273159.g013
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