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Exploiting epigenetic dependencies in ovarian cancer therapy
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Abstract

Ovarian cancer therapy has remained fundamentally unchanged for 50 years, with

surgery and chemotherapy still the frontline treatments. Typically asymptomatic until

advanced stages, ovarian cancer is known as “the silent killer.” Consequently, it has

one of the worst 5-year survival rates, as low as 30%. The most frequent driver muta-

tions are found in well-defined tumor suppressors, such as p53 and BRCA1/2. In

recent years, it has become clear that, like the majority of other cancers, many epige-

netic regulators are altered in ovarian cancer, including EZH2, SMARCA2/4 and

ARID1A. Disruption of epigenetic regulators often leads to loss of transcriptional con-

trol, aberrant cell fate trajectories and disruption of senescence, apoptotic and prolif-

eration pathways. These mitotically inherited epigenetic alterations are particularly

promising targets for therapy as they are largely reversible. Consequently, many

drugs targeting chromatin modifiers and other epigenetic regulators are at various

stages of clinical trials for other cancers. Understanding the mechanisms by which

ovarian cancer-specific epigenetic processes are disrupted in patients can allow for

informed targeting of epigenetic pathways tailored for each patient. In recent years,

there have been groundbreaking new advances in disease modeling through ovarian

cancer organoids; these models, alongside single-cell transcriptomic and epigenomic

technologies, allow the elucidation of the epigenetic pathways deregulated in ovarian

cancer. As a result, ovarian cancer therapy may finally be ready to advance to next-

generation treatments. Here, we review the major developments in ovarian cancer,

including genetics, model systems and technologies available for their study and the

implications of applying epigenetic therapies to ovarian cancer.

K E YWORD S

chromatin remodeling, disease modeling, epigenetic drugs, ovarian cancer, precision oncology

1 | INTRODUCTION

Ovarian cancer is one of the most lethal gynecological malignancies,

with the highest incidence rates in North America, as well as Central

and Eastern Europe. When diagnosed at Stage I, the 5-year survival

rate is ~90% for all subtypes. However, due to a lack of symptoms

prior to metastasis throughout the abdomen, and the failure of current
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treatments to lead to complete remission, the vast majority of serous

carcinomas are not diagnosed until Stage III (51%) or IV (29%).1,2

Thus, the overall 5-year survival rate is as low as 30% worldwide.3-5

The vast majority of ovarian tumors originate from one of three cell

types: epithelial (>90%), stromal (~6%) and germ cells (2%-3%).3,5,6

Each of these subtypes of ovarian cancer has distinct clinical

features, putative cells of origin and associated driver mutations.

This suggests different pathways driving the alternative cancer

types, and specific weaknesses or synthetic lethalities should exist

for each. As an example of inter-subtype variation, high-grade

serous ovarian cancer (HGSOC) typically occurs in post-

menopausal women and is characterized by frequent (>90%) P53

mutations.6-9 This is the most common form of ovarian cancer,

accounting for 70% of all cases.3,5,6 A highly aggressive malignancy,

its cell of origin is often unclear, there has been ambiguity as to

whether it has originated from ovarian surface epithelium or tubal

epithelium, with recent data suggesting that it can arise from both

(Figure 1).3,10 Emerging technologies in cell of origin tracing, such

as OriPRINT,10 and patient-derived organoids for normal tissue

comparative analysis,11 we are closer to tracking the specific dys-

regulation driving tumorigenesis.

The key driver of this type of ovarian cancer, p53, is of course a

common genetic lesion in many cancers, which causes genomic instabil-

ity and structural variation; however, the p53 pathway has proven to

be difficult to target therapeutically.12 For these reasons, this review

will focus on alternative genetic and epigenetic disruptions in the differ-

ent subtypes of ovarian cancer, such as amplification and hyperactivity

that may represent more viable targets for cancer therapy.

A related subtype, low-grade serous ovarian cancer (LGSOC)

typically presents in patients between 40 and 55 years of age and is

associated with mutations in KRAS and BRAF.4,13 On the other hand,

ovarian clear cell carcinomas (OCCC) and ovarian endometrioid carcino-

mas (OEC) frequently feature mutations in PTEN and ARID1A.3,4 OCCC

and OEC are the second and third most common histological subtypes,

respectively, that together account for ~20%-25% of epithelial ovarian

cancer cases. These cancers are thought to originate through endome-

triosis and endometriotic ovarian cysts (Figure 1). Their specific cell of

origin remains unclear but related to ectopic inclusions that are

suspected to be tubal or endometrial in origin.3,14-16

The final subtype we will discuss is small cell carcinoma of the

ovary. This is a very rare and highly aggressive cancer that typically

occurs at a young age when compared to other ovarian cancers

(~23.9 years mean).17 Small cell carcinoma of the ovary hypercalcemic

type (SCCOHT) is almost exclusively defined by germline or somatic

mutations in SMARCA4, the ATPase subunit of the BAF complex, and

is currently thought to originate from germ cells (Figure 1).18-20

Currently, standard treatment for newly diagnosed ovarian cancer

is a combination of surgical cytoreduction and platinum-based chemo-

therapy.21 At advanced stages, recurrence and platinum-resistance of

tumors is very common.4,22 In recent years however, there has been

significant advancement in the use of directed therapies, such as inhi-

bition of angiogenesis and DNA repair pathways.23-25 Inhibition of the

DNA repair enzyme poly (ADP-Ribose) polymerase (PARP) has shown

specific activity in HGSOC with homologous recombination deficiency

(~50%), with particular efficacy in BRCA-mutated HGSOC (~20%).8,21,24,26

Despite such promising advances in directed therapy, 50%-80% of

F IGURE 1 Current
understanding of the putative
tissues of origin for key ovarian
cancer subtypes, and the most
frequent mutations associated
with each type
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HGSOC patients do not contain the sensitive mutational profile to benefit

from these therapies. This highlights the urgent need for additional thera-

peutics for this malignancy, targeting alternative mutational sensitivities.

It has become clear in recent years that disruption of the epige-

netic machinery is key in development in almost all human cancers.27

This discovery has unlocked vast potential for the field of oncology,

as the plasticity of chromatin states makes epigenetic machinery

attractive targets for cancer therapy. Epigenetics—the reversible

modification of both DNA and DNA-bound histones28—regulate the

underlying genes, and disruption of the machinery results in aberrant

activation/repression of key cancer-related genes, driving oncogene-

sis. Therapies targeting oncogenic deregulation of the epigenome,

such as EZH2 and BET-family inhibition, have been successfully used

in clinical and preclinical trials for many diverse cancers, such as non-

Hodgkins lymphoma and glioblastoma.27 This review will focus on

the key perturbations to epigenetic machinery in ovarian cancer, the

sensitivities these disruptions create that can be exploited by avail-

able therapies and the advances in technologies that are bringing us

closer to precision oncology for ovarian cancer.

2 | EPIGENOMIC REGULATION OF
TRANSCRIPTION

Over the past century, it has become clear that the organization of

DNA in 3D space is one of the most fundamental controls of gene

expression. Genetic information must be, in the simplest sense, physi-

cally accessible in order to be regulated. Accessibility is determined by

position and information loaded in the histone-DNA complex known

as the nucleosome. The nucleosome is comprised of 147 base pairs of

DNA wrapped around an octamer of histones H2A, H2B, H3 and

H4.29,30 Nucleosome remodeling is the alteration of the histone-DNA

interface by a dedicated set of chromatin remodeling enzymes.

There is a large and complex interplay between remodelers responsi-

ble for positive and negative regulation of genetic regulatory ele-

ments. Four main subfamilies of chromatin remodelers exist, based

on domain structure and organization of the catalytic ATPase trans-

locase domain; chromodomain helicase DNA-binding (CHD), INO80,

imitation switch (ISWI) and switch/sucrose non-fermentable

(SWI/SNF, aka BAF) are the main subgroups, each of which can have

distinct targets activities based on associated accessory proteins.

BAF alters chromatin access through nucleosome repositioning/evic-

tion, whereas members of the INO80 family can edit the composi-

tion of nucleosomes through incorporation of histone variants.30,31

Fundamentally, chromatin remodeling enzymes (remodelers) control

transcription through mobilization and organization of nucleosomes

to make genetic information more or less accessible to transcrip-

tional machinery.31

The octamer of histones comprising the nucleosome contains

post-translational modifications (PTMs) with specific information on

how the associated DNA should be organized. PTMs to the N- and

C-terminal tails of histones are added and removed by enzymes

commonly referred to as “writers” and “erasers,” ushering in both

physical changes (compaction/relaxation) and/or relay signals to be

executed upon the associated regions of DNA via the actions of effec-

tor proteins (“readers”). The compaction state of a DNA region—

influenced by its histone PTM status—is the central control to tran-

scriptional output, either allowing or restricting its access to down-

stream transcription factors.32,33 Some of the most common histone

modifications include methylation, acetylation, ubiquitination and phos-

phorylation. Designated enzymes catalyze the transfer (writers) or

removal (erasers) of these marks to specific amino acid residues. Reg-

ulators (readers) recognize these marks, and through this recognition

recruit other regulators, enzymes or remodelers conferring down-

stream changes in chromatin compaction and accessibility.32,33

For example, mono-, di-, or trimethylation of histone lysines is

catalyzed by six major groups of lysine methyltransferase com-

plexes (KMT1-6), the lysine methyl “writers.” Key examples are

EZH1 and EZH2 of the KMT6 family, which are the catalytic sub-

units of Polycomb Repressive Complex (PRC) 2, designating H3K27

mono-, di- and trimethylation.34-36 These “writing” enzymes cata-

lyze the transfer of methyl groups to specific lysine residues, but

the plasticity of chromatin requires the changing of states during

development, transitioning from pluripotent transcriptional profiles

to differentiated expression profiles through dynamic writing and

erasing of key genomic sites. Thus, several families of “erasers”
counteract the activity of the writer enzymes. Key examples are

histone lysine demethylases (KDM) such as UTX, which removes

methyl groups from H3K27.37,38

The balanced writing and erasing modification states ultimately

serves as information understood and acted upon by “reader”
enzymes. For instance, H3K27me3 is specifically recognized and

bound by the Cbx components of the PRC1 complex and is involved

in chromatin compaction.39,40 Thus, the complex interplay and bal-

ance of these writers, erasers and readers is key to transcriptional reg-

ulation and cellular identity.

As chromatin modification and remodeling has such a critical role

in transcription, it is unsurprising that mutations in fundamental tran-

scriptional regulators are commonly disrupted in cancers. Genomic

analysis of various cancers indicates that chromatin remodelers are

some of the most frequently mutated genes in human malignan-

cies.31,41 Of specific interest are the antagonistic relationships

between BAF and Polycomb complexes, as well as the arginine meth-

yltransferase CARM1. Here we discuss some of the most important

chromatin regulatory complexes, their role in ovarian cancer and the

therapeutic opportunities these lesions create.

3 | POLYCOMB REPRESSIVE COMPLEXES
1 AND 2

Polycomb group proteins are highly conserved chromatin repressors

responsible for cell fate gene regulation during development and play

a fundamental role in cellular identity. Mammals contain two main
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multi-subunit PRC, PRC1 and PRC2.34 PRC1 catalyzes the ubiquiti-

nation of H2AK119ub1, a modification essential for repression at

Polycomb target promoters.42,43 It can be broadly divided into two

subcomplexes (canonical and variant) that contribute to repression

in alternative fashions. vPRC1 (variant) catalyzes the majority of

H2AK119ub1, which promotes repression at promoters, at least

partially, through PRC2 recruitment,42,44 while cPRC1 (canonical)

promotes compaction and long-range repressive Polycomb body

formation through subunits that confer structural changes on

chromatin.40,45,46

PRC2 is responsible for mono-, di- and tri-methylation of H3K27.

Tri-methylation is typically found at repressed promoters, where it is

essential for maintaining transcriptional repression of non-lineage

expressed genes. Di-methylation is found across the genome, where

it has been suggested to maintain repression of tissue-specific

enhancers47 while mono-methylation is found at active gene bodies,

though the function, if any, of this has not yet been established. The

PRC2 core contains three subunits EED, SUZ12 and a catalytic meth-

yltransferase component, either EZH1 or EZH2.48 It has become clear

that mutations in Polycomb complexes and consequent aberrant

H3K27 methylation patterns have a key role in cancer development.34

In these cases, failure to undergo cellular differentiation is a conse-

quence of aberrant methylation patterns of H3K27.49,50

3.1 | EZH2

EZH2 is widely mutated in various cancer types and can act in both an

oncogenic or tumor suppressive capacity.34 “Change of function”
mutations are observed in diffuse large B-cell and follicular lympho-

mas, and to a lesser degree in melanoma, which cause global hyper tri-

methylation of H3K27, replacing the diffuse intergenic H3K27me2

levels.34,51 Conversely, EZH2, SUZ12 and EED deletions, which cause

reductions in H3K27me3 levels, are also observed in leukemias and

other myeloid disorders.52,53 This is an example of the importance of

mutational context in cancer development and reinforces the need for

patient-specific profiling in order to choose appropriate therapeutics,

as will be discussed later in this review.

EZH2 overexpression/amplification has been widely reported in

ovarian cancers. Increased EZH2 activity has been found in ~85% of

epithelial ovarian carcinomas through genetic amplification and loss

of antagonistic protein activity54-57 and is functionally implicated in

tumor development and proliferation.56,58 While studies show in vitro

cytotoxic effects of EZH2 inhibition against several ovarian cancer

lines,58 the efficacy of EZH2 targeting is highly dependent on the

mutational status of several other key epigenetic regulators, which

can be cooperative or antagonistic to EZH2 function, rather than the

mutational status of EZH2 itself (Figure 2).55,59-63 There is a balanced

and specific interplay between chromatin regulators to maintain cellu-

lar identity and accurate gene expression. Loss of antagonists to

PRC2, such as BAF components ARID1A and SMARCA2/4, leads

to unrestricted EZH2 activity and improper repression of key tumor

suppressor genes. This has been shown to be a fundamental driver in

multiple subtypes of ovarian cancer.64-67 To understand the action

and potential of EZH2 inhibition in ovarian cancer, we must first dis-

cuss the mechanism of action of these PRC2 antagonists whose loss

results in EZH2 dependency in cancer.

4 | BAF

One of the best-known nucleosome-remodeling complexes is BAF. Its

catalytic activity is important for accessibility and activation of genes,

binding active promoters and enhancers through recognition and

recruitment to H3K4me1 and multiple bromodomain-containing sub-

units reading histone acetylation.31 Originally identified in yeast as a

major transcriptional regulating complex, it has since been found that

human BAF comprises multiple configurations and compositions.68 It

contains a core set of essential components, the BAF-core. Combina-

tions of subunits build upon this to define three distinct compositions—

BAF, PBAF and ncBAF.31,69 ARID1A/B and DPF1/2/3 specify the BAF

complex. PBRM1, BRD7, ARID2 and PHF10 define the PBAF complex,

and ncBAF-specific components include BRD9 and GLTSCR1/1L.31

The presence of distinct accessory proteins specializes the complexes,

directing them to primarily non-redundant sets of genomic targets for

each of these complexes, such as recruitment to active sites through

the multiple acetyl lysine readers.70

A large body of evidence has accumulated implicating a role for

the BAF complex in tumor suppression.41,71 In fact, components of

BAF machinery are mutated in ~20% of human cancers, making it the

most frequently mutated chromatin regulatory complex across human

malignancies.41 Consequently, identifying therapeutic susceptibilities

of cancers carrying BAF mutations could be broadly applicable, partic-

ularly as understanding the mechanisms of specific BAF complex

mutations has led to the discovery of targetable synthetic lethal-

ities.31,72-75 Indeed, the BAF components ARID1A and SMARCA2/4

are persistently mutated in ovarian cancer subtypes,64-67 and repre-

sent promising sensitivities for epigenetic inhibition therapy, as dis-

cussed below.

4.1 | ARID1A

AT-rich interactive domain-containing protein 1a (ARID1A) is a com-

ponent of the BAF complex involved in the regulation of multiple

genes. ARID1A is the most frequently mutated subunit of the BAF

complex across all human malignancies.69 ARID1A is mutated in

~57% of OCCC and ~30% of OEC, with the majority being frame-

shifts and nonsense, likely loss-of-function, mutations.59,64,66,76,77

Its null mutations result in altered expression of several key genes

such as CDKN1A and PIK3IP1,59,65,66 both of which regulate entry

into apoptosis and are aberrantly repressed in the absence of

ARID1A due to changes in chromatin remodeling.66 Mouse models

with a single mutation in PIK3CA (a frequently co-occurring mutation

with ARID1A) have been shown to rapidly develop OCCC-like

tumors upon ARID1A loss.78

COUGHLAN AND TESTA 1735



The established antagonistic relationship between the Polycomb

complexes and the BAF complex logically predicts that loss of func-

tion of BAF components will lead to unopposed activity of repressive

Polycomb machinery.31,79 Thus, repression of key apoptotic-entry

proteins in tumor cells can be expected to rely largely on EZH2 activ-

ity and suggests Polycomb complex components as promising thera-

peutic targets for the majority of OCCC and a significant proportion

of OEC.55,74,80 Indeed, ARID1A-mutant ovarian cancer cell lines OVISE

and TOV21G have displayed sensitivity to EZH2 inhibition, and in

wild-type ARID1A cells, its knockdown confers EZH2 sensitivity.55,59

Without ARID1A, unrestrained activity of EZH2 represses ARID1A

target genes, such as PIK3IP1. Once EZH2 is inhibited, PIK3IP1

repression is relieved, leading to apoptotic cell death in tumor cells

(Figure 2A). Importantly, in wild-type ARID1A cells EZH2 inhibition did

not display any significant impact on cell proliferation demonstrat-

ing the specificity of this effect to ARID1A mutant ovarian cancers

and underscoring the critical actionability of patients' tumor

genotype in clinical practice,59 and more specifically the way in

which patient-specific mutations and a mechanistic understanding

of dysregulation in chromatin pathways can jointly inform rational

therapeutic innovation.

Another prospective therapeutic target in ARID1A mutant can-

cers is histone deacetylase (HDAC) activity. Antagonism between the

BAF complex and HDAC containing complexes such as NuRD is criti-

cal in maintaining chromatin state and cellular identity, and failure to

maintain this balance contributes to cancer development.31,81 In the

absence of functional ARID1A, the overactivity of multiple HDACs

results in aberrant repression of pro-apoptotic genes, including p53

and PIK3IP1.82,83 It has been reported that ARID1A mutant cells

become dependent on HDAC6 activity, as HDAC inhibition results in

accumulation of acetylated p53 Lys-120—a pro-apoptotic modifica-

tion (Figure 2A).82 In ARID1A mutant cells, PIK3IP1 is repressed

through cooperative activity of EZH2 and HDAC2, and upon treat-

ment with HDAC inhibitors, PIK3IP1 is derepressed and promotes cell

L

L

L

F IGURE 2 Key regulatory mechanisms in OCCC/OEC (A), SCCOHT (B), and HGSOC (C), highlighting the consequences of their disruption,
the molecular sensitivities created, and how these perturbations can be exploited for therapy by epigenetic inhibitors
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death. Mouse models of OCCC lacking ARID1A activity display

increased survival and reduced ascites accumulation and tumor

progression when treated with the pan-HDAC inhibitor SAHA,83

making HDAC inhibition a very promising strategy for mutant

ARID1A OCCC and OEC. In fact, the HDAC6 inhibitor ACY-1215 is

already in clinical trials for lymphoma, multiple myeloma and breast

cancer (https://clinicaltrials.gov/) and may potentially be repurposed

for OCCC or OEC. Growing evidence suggests a synergistic anti-

cancer action of the combination of EZH2 and HDAC inhibition in

several cancers.84,85 There is an increasing number of clinical trials

implementing precision medicine and biomarker-directed therapy, as

well as combination treatments epigenetic drugs and established

anti-cancer therapies.86 Given the evidence for epigenetic interven-

tion as a strategy for ovarian cancer, this could be a very promising

approach in the clinical setting.

4.2 | SMARCA2/4

The human BAF complex has two separate ATPases, SMARCA2 and

SMARCA4 (also known as BRM and BRG1, respectively). Each individ-

ually can combine with approximately eight other core subunits to

form the BAF core, which in turn assemble into BAF, PBAF or ncBAF.

SMARCA2/4 act as the molecular motor for the complex, using ATP

hydrolysis to power the movement of the complex over DNA

resulting in the local repositioning of nucleosomes. Mutations in

SMARCA4 occur in a wide range of cancers, including lung cancers,87

melanomas88 and lymphomas.89 Critically, almost every case of

SCCOHT is characterized by inactivating mutations in SMARCA2

and/or SMARCA4.67,74,90,91

A promising clinical development has also been the sensitivity

of SMARCA4 null cells to EZH2 inhibition (Figure 2B). SCCOHT cell

lines display synthetic lethality with core PRC2 complex subunits,

which is supported by experiments showing that SCCOHT cells

are acutely sensitive to EZH2 inhibition, inducing cell cycle arrest

and apoptosis.60,61 Considering the frequency of SMARCA2/4 loss

in SCCOHT, EZH2 inhibition, or other PRC2 inhibitors (EZH1/2

dual or EEDi), would appear to be an excellent and highly effective

choice, as has been suggested in several studies.74 However, what

has been overlooked is that cases of SCCOHT are frequently

familial, predisposed by germline mutations in SMARCA4.67 While

EZH2 inhibitors are tolerated in SMARCA4 wild-type patients in

clinical trials to date, patients with germline SMARCA4 mutations

instead may be inherently sensitive to EZH2 inhibition. To date,

studies have been carried out using cell lines with homozygous

deletions of SMARCA4, displaying sensitivity to EZH2,60 or

xenografting SMARCA4+/+ mice with cell lines bi-allelic for loss

of SMARCA4.59,92 A key experiment that, to our knowledge, has

not yet been carried out would be testing the toxicity of EZH2

inhibition on SMARCA4 heterozygous cell lines and mice where

side-effects compared to previous trials may be greater. In addi-

tion, the capacity to generate iPSCs from patients with SMARCA4

germline mutations could be a critical paradigm for defining

patient-specific efficacy and toxicity of treatments, well beyond

the predictive capability of the mouse model.

5 | CARM1

Protein arginine methyltransferases (PRMTs) catalyze the methylation

of arginine side chains, a fundamental process in the regulation of

mRNA splicing, signal transduction, DNA repair and gene expres-

sion.93,94 In addition, arginine methylation modulates the activity of

many cancer-associated proteins.94,95 Coactivator-associated argi-

nine methyltransferase 1 (CARM1, also known as PRMT4) is an

arginine methyltransferase essential during mammalian develop-

ment.96 It catalyzes asymmetric dimethylation of arginines on a small

set of distinct substrates, including histone 3.97 Its recruitment to

promoters results in increased levels of H3R17 and H3R26 methyla-

tion, which are associated with active transcription.

CARM1 is overexpressed in multiple cancer types, including

breast,98,99 colorectal100 and HGSOC.62,94,101 It is involved in the

activation of several cancer-related genes, including cyclins and

beta-catenin.94,98,100 Other than its histone substrates, CARM1 also

methylates substrates involved in epigenetic chromatin remodeling

such as SMARCC1 (BAF155). CARM1 forms a complex with ATP-

remodeling (BAF) factors, and its methylation of SMARCC1 results in

the eviction of the BAF complex from target loci (Figure 2C).99 The

precise mechanism of how this methylation redirects BAF targeting is

not entirely clear. However, EZH2 and SMARCC1 antagonistically

regulate several key tumor suppressors, such as the apoptosis-

promoting gene NOXA.62 Therefore, akin to ARID1A-mutant OCCC,

CARM1 overexpression and its consequent loss of SMARCC1 activity

impairs BAF's counteraction of Polycomb repression, leading to

replacement by EZH2 (Figure 2C).62,63,99 Indeed, EZH2 inhibition is

selectively effective against CARM1-overexpressing HGSOC,62,63 and

thus represents a promising therapeutic strategy in this setting as well

(Figure 2C).

6 | BROMODOMAIN PROTEINS

Multiple bromodomain-containing proteins may be effective targets in

ovarian cancer. One such bromodomain protein, BRD4, is a chromatin

reader protein crucial during embryogenesis and cell differentiation.

It, like other bromodomain-containing proteins, binds acetylated

histones at transcription start sites and active enhancers, recruiting

transcriptional machinery to chromatin.102-105 Many cancerous cells

aberrantly hyperactivate oncogenes, such as MYC, through co-option

of non-native enhancers and BRD4 activity.106 BRD4 inhibition there-

fore may be selectively toxic to cancers dependent on such enhancer

or super-enhancer activity. BRD4-occupied enhancers function within

phase separated punctae, within which drugs such as cisplatin accu-

mulate and show specific and greater activity. The manipulation or

disturbance of such particles may therefore greatly impact the effi-

cacy of current cancer therapies.107 In fact, recent evidence implicates
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https://clinicaltrials.gov/


disruption of condensate-forming mechanisms by cancer cells as a

mechanism of chemo-resistance,107 one of the major issues in ovarian

cancer long-term therapy.22 Therefore, the nature of BRD4 activity

makes it a promising broad spectrum target, especially in the instance

of chemo-resistance to cisplatin.

The expression of BRD4 target genes is frequently altered in

oncogenesis.102,103 Its overexpression and consequent oncogenic

transcriptional profiles have been reported in HGSOC and are associ-

ated with poor overall survival.108,109 However, the enhancer land-

scape of ovarian carcinomas remains largely unexplored. Multiple

inhibitors have been developed for targeting BRD4, which are already

in clinical and pre-clinical trials27,110 that may be effectively applied to

HGSOC. Indeed, HGSOCs displaying increased BRD4 expression and

its transcription profile exhibit sensitivity to BET inhibition.111 Consid-

ering the current poor survival rates and intractability of HGSOC, it is

promising that there may already be multiple avenues of effective epi-

genetic treatment approved and available for repurposing.

Another bromodomain-containing protein of significance to

ovarian cancer is BRD9. Implicated in oncogenic profiles of several

cancers, it is a key component of the GLTSCR1-BAF (ncBAF or

GBAF), a remodeling complex targeting multiple loci that are involved

in pluripotency.112 Perturbations in canonical BAF components have

been shown to cause a dependence on ncBAF activity75 and BRD9

inhibition with a small-molecule degrader successfully reverses of the

oncogenic transcription pattern and significantly impedes cell prolif-

eration in cancers associated with perturbations in the BAF-core.73,75

Due to the frequent mutation of BAF components in ovarian cancer

discussed here, targeting key ncBAF components may be of great

potential. A recent study demonstrated that BRD9 levels are in fact

elevated in ovarian cancer, and that inhibition sensitizes ovarian can-

cer to PARP inhibition and cisplatin therapy through regulation of

the DNA damage response machinery—a frequently disrupted path-

way in ovarian cancer.113,114 The success of the BRD9 degrader in

clinical trials will be of great significance for future ovarian cancer

therapy.

7 | FUTURE STEPS FOR THERAPEUTIC
ADVANCES

What is clear from the evidence above is that the efficacy of EZH2

inhibition in multiple ovarian cancers (and indeed many other malig-

nancies) is dependent on the mutational context, copy number or

activity of other genes, that is, ARID1A, SMARCA4 and CARM1

rather than on Polycomb complex components themselves. This

clearly indicates the importance of identifying individual patient

mutational profiles for effective and directed therapy. Broad-

spectrum cancer therapies have limited utility, even within cancer

subtypes. Ovarian cancer itself is subdivided into distinct categories,

based on cell of origin, histology and pathogenesis. But, as discussed

above, within these categories the underlying mutational and epige-

netic landscapes vary greatly, and treatment that may be successful

in one individual may be ineffective or even potentially harmful to

another. In short, the key step forward in ovarian cancer treatment,

and indeed cancer treatment in general, is to profile and define the

specific mutational background of cells within individual tumors.

Additionally, fully characterizing the cell-of-origin of the various sub-

types, through techniques such as OriPRINT,10 will allow proper

molecular characterization and identification of subtype-specific

vulnerabilities. The burgeoning fields of organoid modeling, single-

cell technologies and epigenetic characterization can guide us

through this complex area (Figure 3).

F IGURE 3 Emerging technologies for identifying improved patient-specific treatments, illustrations of (A) CRISPR screening for identification
of synthetic lethalities, (B) single-cell technologies to identify cancer-specific epigenetic/transcriptional changes and (C) patient-specific organoid
modeling as a basis for personalized drug screening and therapeutic discovery
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7.1 | Organoid modeling

Organoids mimic the fundamental characteristics of organs as mul-

ticellular, 3D in vitro cultures, derived from primary cells.115,116 Origi-

nally, it was revealed that single intestinal stem cells could give rise to

self-organizing differentiated structures of the gut when provided

with key factors for the in vivo intestinal stem cell niche.115,116 With

this paradigm, through modification of the cocktail of factors to the

specific organ, there are now organoids developed that faithfully reca-

pitulate key features of multiple vital organs, including breast, kidney

and stomach.117-119

Critically, 3D tumor organoids have been successfully developed

for many malignancies.116,120,121 They are already demonstrating prom-

ising results in preclinical prediction of treatment response to both

targeted therapies and chemotherapeutics,122 to improve and inform

therapeutic options for broadly treatable tumors123 and also as models

to understand and characterize the mechanism of pathogenesis of

intractable malignancies, such as pancreatic ductal adenocarcinoma.124

Patient-derived organoid models have recently been developed

for ovarian cancer, through several approaches that recapitulate the

genomic landscape and tumor heterogeneity of primary ovarian can-

cer tumors.11,125 One of the key challenges in ovarian cancer is the

capacity of a small subpopulation of quiescent cells to evade treat-

ment, and results in post-chemotherapy relapse.126 It is becoming

clear that a combination of therapies targeting individual susceptibili-

ties of cancer subpopulations may lead to greater disease-free survival

rates. In combination with single-cell omics technologies, organoids

represent a transformative approach for making tumor heterogeneity

experimentally tractable in vitro and profiling patients as to the muta-

tional susceptibilities of their tumors (Figure 3C).

In addition, and perhaps most critically, organoid technology can

be used for comparative analysis of potential treatments in tumor vs

normal tissues (Figure 3C). For example, if we consider the case of the

variable success of EZH2 inhibitors, characterizing ARID1A and

SMARCA4 mutational status will provide valuable data as to the likely

efficacy of EZH2, as mutants in both of these genes display depen-

dency on EZH2 activity.55,59-61 However, the question of whether the

mutation is germline or somatic remains to be answered, with particular

reference to germline SCCOHT SMARCA4 mutations. The burgeoning

field of organoid modeling could be extremely beneficial to tackle this

question. We can utilize patient-derived normal and cancer organoids

to comparatively assess the relative cytotoxicity of inhibitors to normal

tissues that are specific to the patient, not just to the tumor itself.

7.2 | Chromatin profiling and single-cell
technologies—deconvoluting tumor heterogeneity

The application of single-cell transcriptomics to cancer has been illu-

minating in the deconvolution of tumor heterogeneity and has already

been successful in identifying druggable pathways127 and understand-

ing sub-populations resistant to drug treatment (Figure 3B).128 Analy-

sis of tumor cell populations pre- and post-chemotherapy could be a

fundamental in improving long-term survival in ovarian cancer

patients.

Disruption of chromatin remodeling is clearly a fundamental prop-

erty in ovarian cancer. Understanding the impact of such mutations

on activity and chromatin accessibility in cell lines can be readily pro-

filed using bulk techniques, such as standard ChIP and ATAC-seq. This

is particularly relevant for BAF mutant cancers as they are a key regu-

lator of accessibility at enhancers and promoters.74 However, for

organoid technology and patient-specific profiling, obtaining the

required cell number is a major hindrance. Primary samples have lim-

ited utility due to their propensity to undergo senescence, limiting the

expansion capability and reducing input. The application of new tech-

nologies with reduced requirements for cell input overcomes such

issues, such as CUT&Tag—an alternative approach to ChIP for detec-

tion of chromatin-bound proteins using a tethered Tn5 transposase

fusion protein. An antibody to the protein of interest is recognized

and bound by the Tn5, which then specifically tagments adjacent

DNA.129 This technology reduces the required cell number from mil-

lions (standard ChIP-seq) to several thousands, as well as allowing

single-cell applications130 with the potential to increase resolution,

throughput and elucidate mechanisms previously masked through

bulk epigenomic analyses.

7.3 | CRISPR screening

CRISPR-based screening has been successfully used to identify syn-

thetic lethalities in multiple cancers.73,131 Identified hits often trans-

late to logical sensitive targets to inhibition or degradation therapies.

Applying this paradigm in ovarian cancer cell lines and organoids is a

major step toward identifying druggable sensitivities (Figure 3A). Fur-

ther classification of the intra-tumor cell subpopulations, and the com-

bination therapies most effective for complete cancer clearance, relies

on integrative screening of organoids, CRISPR/Cas perturbation tech-

nology and single-cell applications to fully understand the process of

ovarian cancer tumorigenesis and optimize therapeutics screening and

strategies (Figure 3).

The ever-improving technologies in the field of CRISPR screening,

such as knockout, activation, Perturb-seq and domain tiling screens,

have rapidly increased our ability to probe specific weaknesses in can-

cer cells.131-133 Databases such as Depmap allow for simple identifica-

tion of synthetic lethalities providing new and druggable options for

targeting.134 Focused use of such screening technologies in ovarian

cancer cell models such as 2D cell lines and organoids will enhance

drug target identification in a patient and mutation specific context.

The coming decade will see these technologies cumulatively harnessed

in order to advance ovarian cancer treatment.

8 | CONCLUSION

Ovarian cancer therapy and survival has not progressed significantly

in over 30 years. Genetic and epigenetic variability within different
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cells in a tumor presents obvious difficulties to cancer treatment. It

has become clear that therapies targeting tumors as a homogenous

group of cells commonly result in drug-resistant relapse.135 However,

with the advent of new technologies, it is becoming more evident that

many of the most common ovarian cancer subtypes, such as HGSOC

and OCCC, have mutational profiles that could be targeted with thera-

pies already in clinical and preclinical trials for other malignancies. In fact,

with the recent approval of the EZH2 inhibitor Tazemetostat by the

FDA for treatment of follicular lymphoma,136 improved therapy for ovar-

ian cancer may soon be readily available. It is extremely promising that

inhibitors already in use for clinical trials exhibit anti-tumor effects for

ovarian cancer. EZH2 inhibition is one of the most promising therapies

discussed here for CARM1-overexpressing HGSOC, ARID1A-mutant

OCCC/OEC and SMARCA2/4-deficient SCCOHT. What is lacking is a

more thorough genetic and molecular understanding at the patient-

specific level. Combining emerging technologies such as patient-specific

organoids, CRISPR/Cas targeting of oncogenic drivers and single-cell

technologies, we can begin to identify novel appropriate and effective

therapies to eradicate the entire population of cells that comprise individ-

ual patients' cancer. We may be on the cusp of a new era of ovarian can-

cer therapy, as we may already have the tools at our disposal to

investigate drug repositioning and combination therapies.
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