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Abstract

Noise induced hearing loss (NIHL), a multifactorial disease involving both genetic and environ-

mental factors, is one of the most important occupational health hazards. Nonetheless, the

influence of FOXO3 variants on NIHL risk have not been illuminated. This research was con-

ducted to explore the effects of FOXO3 polymorphisms on individual susceptibility to NIHL. A

total of 2689 industrial workers from one textile factory of east China were recruited to partici-

pate in the current research. Venous blood was collected, questionnaire and pure-tone audi-

ometry (PTA) was conducted by specialist physicians. Then, we performed genotyping of

three selected SNPs (rs2802292, rs10457180, and rs12206094) in FOXO3 gene in 566 NIHL

patients and 566 controls. Subsequently, the main effects of genotype and its interactions

were evaluated. Our results revealed that individuals with the G allele of rs2802292, G allele of

rs10457180, T allele of rs12206094 (OR = 1.43, 1.43, and 1.31 respectively) and the haplo-

type GAC and others (TGT/GGT/GGC/GAT) (rs2802292-rs10457180-rs12206094) (OR =

1.49 and 2.09 respectively) are associated with an increased risk of NIHL in a Chinese popula-

tion. Stratified analysis showed that an increased NIHL risk was found in the subjects who

exposed to noise >16 years with rs2802292 GG/GT and rs10457180 AG/GG genotype with

an OR of 1.62 and 1.66 respectively. Multifactor dimensionality reduction analysis indicated

that rs10457180, rs2802292, and rs12206094 have interactions and are related to increased

NIHL risk (OR = 1.53). The genetic polymorphism rs2802292, rs10457180, and rs12206094

within FOXO3 gene are associated with an increased risk of NIHL in a Chinese population

and have potential to be biomarkers for noise exposed workers.

Introduction

Occupational noise is one of the most common occupational hazards for the health of indus-

trial workers, and noise induced hearing loss (NIHL) is the second most frequent form of sen-

sorineural hearing impairment besides age-related hearing loss (ARHL) worldwide[1]. It has
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been verified that NIHL is a kind of multifactorial disease resulting from the interactions of

both genetic and environmental factors[2]. Currently, the mechanism of NIHL has not been

completely understood. The possible etiopathogenesis may involve the inner ear cell apoptosis

or necrosis caused by oxidative stress or the metabolic products generated during signal trans-

duction and direct mechanical injury to the structures of the cochlea[3–5]. However, numer-

ous population studies have indicated that the subjects had various degrees of NIHL risk even

if they were exposed to equal noise intensity level[1, 6]. Animal experiments also prove that

genetic variations contribute to the incidence of NIHL[7, 8]. Previous studies have found that

single nucleotide polymorphism (SNPs) in HSP70, EYA4, CDH23, GRHL2 and DFNA5 genes

are associated with human genetic susceptibility to NIHL and could increase or decrease the

risk of NIHL by interaction with occupational noise[9–11]. All the evidence implicates that the

genetic susceptibility and its interaction with environmental factors might play an important

role in the occurrence and development of NIHL.

Forkhead Box O3 (FOXO3) is a winged helix transcription factor that has been known to

regulate longevity in various species including humans and mice[12–14]. FOXO3 regulates the

expression of stress response proteins[15] and FOXO3 effectors may ameliorate oxidative

stress, block mitosis, induce apoptosis, or promote inflammation[16]. It has been shown that

mice are susceptible to adult-onset hearing loss with the hallmark characteristics of auditory

neuropathy, namely, elevated auditory thresholds combined with normal outer hair cell func-

tion if lacking the transcription factor Foxo3[17]. Also, Foxo3 was found to be necessary for

auditory function after noise exposure in a mouse model system and outer hair cells are lost

throughout the middle and higher frequencies in absence of Foxo3[18].

However, associations between NIHL and FOXO3 SNPs and their functional significance

in the FOXO3 gene were not reported before. In consideration of the vital functions of

FOXO3 in hearing maintenance, we speculated that the polymorphisms in FOXO3 gene

might have associations with the genetic susceptibility to NIHL. Herein, a case-control study

was performed to elucidate the associations between three FOXO3 SNPs, namely rs2802292,

rs10457180, and rs12206094, with the genetic susceptibility of NIHL.

Materials and methods

Subjects

The subjects of the current study were all industrial employees from one textile factory of east

China who received annual health examinations which were performed by the Jiangsu Provincial

Center for Disease Prevention and Control in 2015. A total amount of 2689 people participated

in health examinations. Before the investigation, informed consent was obtained from each par-

ticipant. This study was approved by the Institutional Review Board of Jiangsu Provincial Center

for Disease Prevention and Control. Occupational health examination items mainly included

venous blood collection, general physical examination and pure-tone audiometry (PTA). During

the health examination, personal medical history, smoking, drinking habits and habitual use of

drugs were queried. Subjects were excluded from this study according to the following criterions:

a) workers with diseases that may affect hearing thresholds (e.g. otitis media, cholesteatoma, ear

canal stenosis, etc.); b) workers who have used or are using ototoxic drugs (e.g. aspirin, quino-

lones, aminoglycosides, etc.). Eventually, 2477 subjects conformed to our criterions.

PTA and NIHL assessment

Audiometry was performed for each participant only after stopping noise exposure for up to12

hours. By using a Madsen Voyager 522 audiometer (Madsen, Taastrup, Denmark), pure tone

audiometry was conducted by qualified doctors in a soundproof room.

NIHL and FOXO3 polymorphism
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Definitions of NIHL and control subjects

Hearing loss and normal hearing are identified according to China diagnostic criteria of occu-

pational noise induced deafness (GBZ 49–2007). In this study, occupational noise exposure is

identified as levels of noise exposure (Lex) are at least 85 dB (A) for a nominal 8-hour working

day. Hearing loss was identified as the binaural hearing thresholds which exceed 25 dB at both

high (3000, 4000, 6000 Hz) and speech (500, 1000, 2000 Hz) frequencies. Correspondingly,

normal hearing means that the binaural hearing thresholds are under 25 dB both at high and

speech frequencies. Hearing thresholds were obtained from the results of PTD. The subjects

were divided into two groups: NIHL patient group (noise exposed individuals with hearing

loss) and control group (noise exposed individuals with normal hearing). We first selected the

NIHL patients, and controls were frequency-matched to the patients by sex, age, and intensity

of noise exposure [19]. Eventually, 566 NIHL patients and 566 controls were selected from all

eligible subjects.

DNA extractions

Peripheral blood (3 mL) was collected in ethylene diamine tetra acetic acid (EDTA) and taken

for DNA isolation and genotyping. DNA was extracted from blood samples of subjects by

using the QIAcube HT and QIAamp 96 DNA QIAcube HT Kit (Qiagen, Dusseldorf, Ger-

many) following the manufacturer’s protocol and then stored at -20˚C until use.

SNP selection and genotyping

Target SNPs in the FOXO3 genes were selected on the basis of the 1000 Genomes Project data-

base and previous findings from the literature. The criteria for searching for SNPs were as fol-

lows: a) MAF (minor allele frequency) of CHB > 0.10; b) a linkage disequilibrium value of r2

>0.8. SNPs of which DNA sequence are not suitable for PCR primer design were excluded. In

the end, eleven candidate SNPs were selected using these criteria by Haploview software.

Then, we searched these candidate SNPs in Pubmed and found that rs2802292, rs10457180

and rs12206094 were the most commonly reported SNPs of FOXO3 in previous findings. Ulti-

mately three SNPs in the FOXO3 gene were selected for genotyping: rs2802292, rs10457180,

and rs12206094.

Genotypes for the selected polymorphisms were screened with the ABI TaqMan SNP geno-

typing assays (Applied Biosystems, Foster City, Calif., USA) by using the pre-designed com-

mercial genotyping assays. The extracted DNA and genotyping assays were added to TaqMan

universal PCR master mix (Roche, Branchburg, N.J., USA) according to the manufacturer’s

instructions. The genotyping procedures were then performed by ABI 7900 real-time PCR sys-

tem (Applied Biosystems). The results were analyzed using ABI 7900 System sequence detec-

tion software version 1.2.3 (Applied Biosystems).

Statistical analyses

Statistical analyses was performed by using SPSS 23.0 software (Chicago, IL, USA). The good-

ness-of-fit χ2 tests were conducted for the Hardy-Weinberg equilibrium rule of the SNPs in

FOXO3 gene among the control subjects. Categorical variables are represented as percentages

and continuous variables are described as the mean ± SD. Odds ratios (ORs) and 95% confi-

dence interval (95%CI) for genotypes were achieved under conditional logistic regression

models adjusted for age, sex, smoking, and drinking. Differences in allele-specific promoter

activity and gene expression were compared by Student’s t-test or paired t-test. Haplotype

analysis of the polymorphisms was performed using the SHEsis platform [20]. All the P values
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were corrected (Pc) with Bonferroni corrections and P< 0.05 was used as the criterion of sta-

tistical significance.

Results

Demographic characteristics of study subjects and Hardy-Weinberg test

of selected SNPs

The general characteristics (age, sex, smoking, drinking, work time with noise and exposure

level with noise) and high-frequency hearing threshold of the NIHL cases and controls were

shown in Table 1. No significant differences in general characteristics were shown between

NIHL cases and controls (P> 0.05). Results also show that there was statistically significant

difference between NIHL cases and controls in terms of high-frequency hearing threshold.

The average high-frequency hearing threshold was higher for patients (35.77± 9.86) than for

Table 1. Demographic characteristics of study subjects.

Variables Cases (n = 566) Controls (n = 566) P

n % n %

Age (years) 0.879a

Mean±SD 40.52±6.26 40.31±5.85 0.556b

� 35 133 23.5 138 24.4

35–45 320 56.5 321 56.7

> 45 113 20.0 107 18.9

Sex 0.646a

Male 527 93.1 523 92.4

Female 39 6.9 43 7.6

Smoking 0.263a

Now 331 58.5 315 55.7

Ever 11 1.9 19 3.4

Never 224 39.6 232 41.0

Drinking 0.898a

Now 233 41.2 235 41.5

Ever 10 1.8 12 2.1

Never 323 57.1 319 56.4

Work time with noise (years) 0.237a

Mean±SD 18.69±7.59 18.06±7.03 0.145b

� 16 248 43.8 261 46.1

> 16 318 56.2 305 53.9

Expose level with noise (dB) 0.712a

Mean±SD 87.18±7.72 87.39±7.39 0.651b

� 85 253 44.7 249 44.0

85–92 109 19.3 101 17.8

> 92 204 36.0 216 38.2

High frequency hearing threshold shift (dB) <0.001a

Mean±SD 35.77±9.86 14.02±4.17 <0.001b

� 26 59 10.4 566 100.0

> 26 507 89.6 0 0.0

a Two-sided χ2 test
b Students’ t-test.

https://doi.org/10.1371/journal.pone.0189186.t001

NIHL and FOXO3 polymorphism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189186 December 8, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0189186.t001
https://doi.org/10.1371/journal.pone.0189186


controls (14.02± 4.17) (P< 0.001). General information of selected SNPs and results of

Hardy-Weinberg test were shown in Table 2. Rs2802292, rs10457180, and rs12206094 are

located in 5’ UTR variant, intron variant, intron variant (upstream variant 2KB) of FOXO3

gene respectively and χ2 tests revealed that all SNPs were in the balance of Hardy-Weinberg

(P>0.05).

Multivariate analyses of FOXO3 SNPs with the risk of NIHL

Three FOXO3 SNPs (rs2802292, rs10457180, and rs12206094) were selected to genotype in

1132 noise exposed workers (566 NIHL patients and 566 controls). Table 3 presents the results

of genotype and allele distributions of rs2802292, rs10457180, and rs12206094 in codominant,

dominant, recessive and allelic model. Results are shown that the genotype frequencies of

rs2802292, rs10457180, and rs12206094 in codominant model among cases and controls were

statistically significantly different (P = 0.001, 0.001 and 0.046 respectively). In the dominant

model, the rs2802292 GT+GG and rs10457180 AG+GGwere significantly associated with

NIHL risk (P = 0.008 and 0.005 respectively). Subsequent logistic regression analysis adjusting

for age, sex, smoking and drinking showed that individuals with rs2802292 GT+GG and rs104

57180 AG+GG had increased NIHL risk with OR of 1.40 (95%CI = 1.10–1.78) and 1.44 (95%

CI = 1.13–1.82). In the recessive model, the rs2802292 GG (OR = 2.24, 95% CI = 1.38–3.36),

rs10457180 GG (OR = 2.16, 95% CI = 1.29–3.61) and rs12206094 TT (OR = 2.10, 95% CI =

1.04–4.24) genotypes conferred a significantly increased risk for NIHL (P = 0.001, 0.004, and

0.043 respectively). In the allelic model, the rs2802292 G (OR = 1.43, 95% CI = 1.18–1.74),

rs10457180 G (OR = 1.43, 95% CI = 1.18–1.75) and rs12206094 T (OR = 1.31, 95% CI = 1.04–

1.64) alleles conferred a significantly increased risk for NIHL (P<0.001, P<0.001, and

P = 0.026 respectively). Thus, our data revealed that FOXO3 SNP rs2802292, rs10457180, and

rs12206094 may have a significant association with NIHL risk, and those individuals who

carry rs2802292 G, rs10457180 G, and rs12206094 T allele may have significantly increased

NIIHL susceptibility.

Stratified analyses of rs2802292, rs10457180, and rs12206094

polymorphism and NIHL risk

The impacts of rs2802292, rs10457180, and rs12206094 genotypes in NIHL on a series of risk

characteristics were analyzed in a dominant model. The results were shown in Table 4. Signifi-

cant differences were found in the genotype distributions between cases and controls for the

group in noise exposure time (>16 years) in rs2802292 and rs10457180 (P = 0.006 and 0.004).

After adjusting for age, sex, smoking, and drinking in logistic regression model, an increased

NIHL risk was found in the subjects who exposed to noise >16 years with rs2802292 GG/GT
and rs10457180 AG/GG genotype with an OR of 1.62 (95% CI = 1.17–2.26) and 1.66 (95%

Table 2. General information of selected SNPs and Hardy-Weinberg test.

SNP Alleles Chromosome Functional Consequence MAF P for HWE b

Control Database a

rs2802292 G/T 6:108587315 5’ UTR variant 0.212 0.189 0.172

rs10457180 A/G 6:108643836 Intron variant 0.205 0.200 0.754

rs12206094 C/T 6:108584997 Intron variant (upstream variant 2KB) 0.143 0.146 0.858

a Data from NCBI dbSNP
b P value of Hardy-Weinberg test.

https://doi.org/10.1371/journal.pone.0189186.t002
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CI = 1.19–2.31). For persons exposed to noise�85dB with rs10457180 AG/GG have an

increased risk for NIHL (OR = 1.81, 95% CI = 1.25–2.61, P = 0.003).

Association between the haplotypes of FOXO3 SNPs with NIHL risk

Furthermore, analysis of the haplotype frequencies of the three SNPs was performed between

NIHL cases and controls (Table 5). Four common haplotypes (frequency > 5%) derived from

the three SNPs accounting for 90% of the haplotype variations were selected and the rest of

haplotypes were pooled into the mixed group. Ultimately, the haplotype GAC and others

(TGT/GGT/GGC/GAT) (rs2802292-rs10457180-rs12206094) in FOXO3 gene were found to

be associated with an increased risk for NIHL (OR = 1.49 and 2.09) compared to TAC
haplotype.

Table 3. Distribution of three polymorphisms and the association with NIHL.

Genetic models Genotypes Cases Controls Pa Adjusted OR

n = 566 % n = 566 % (95% CI)b

rs2802292

Codominant TT 307 54.2 352 62.2 0.001 1.00 (Ref.)

GT 204 36.0 188 33.2 1.26 (0.98–1.02)

GG 55 9.7 26 4.6 2.44 (1.49–4.00)

Dominant TT 307 54.2 352 62.2 0.008 1.00 (Ref.)

GT/GG 259 45.8 214 37.8 1.40 (1.10–1.78)

Recessive TT/GT 511 90.3 540 95.4 0.001 1.00 (Ref.)

GG 55 9.7 26 4.6 2.24 (1.38–3.63)

Alleles T 818 72.3 892 78.8 <0.001 1.00 (Ref.)

G 314 27.7 240 21.2 1.43 (1.18–1.74)

rs10457180

Codominant AA 309 54.6 357 63.1 0.001 1.00 (Ref.)

AG 210 37.1 186 32.9 1.32 (1.03–1.69)

GG 47 8.3 23 4.1 2.40 (1.42–4.05)

Dominant AA 309 54.6 357 63.1 0.005 1.00 (Ref.)

AG/GG 257 45.4 209 36.9 1.44 (1.13–1.82)

Recessive AA/AG 519 91.7 543 95.9 0.004 1.00 (Ref.)

GG 47 8.3 23 4.1 2.16 (1.29–3.61)

Alleles A 828 73.1 900 79.5 <0.001 1.00 (Ref.)

G 304 26.9 232 20.5 1.43 (1.18–1.75)

rs12206094

Codominant CC 389 68.7 416 73.5 0.046 1.00 (Ref.)

CT 152 26.9 138 24.4 1.19 (0.91–1.56)

TT 25 4.4 12 2.1 2.20 (1.09–4.45)

Dominant CC 389 68.7 416 73.5 0.088 1.00 (Ref.)

CT/TT 177 31.3 150 26.5 1.28 (0.99–1.65)

Recessive CC/CT 541 95.6 554 97.9 0.043 1.00 (Ref.)

TT 25 4.4 12 2.1 2.10 (1.04–4.24)

Alleles C 930 82.2 970 85.7 0.026 1.00 (Ref.)

T 202 17.8 162 14.3 1.31 (1.04–1.64)

a Two-sided χ2 test
b Adjusted for age, sex, smoking, drinking in logistic regression model.

https://doi.org/10.1371/journal.pone.0189186.t003
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Comparison of high-frequency hearing threshold shift of three SNPs

genotypes

Fig 1 shows the results of the comparison of high-frequency hearing threshold shift of

rs2802292, rs10457180, and rs12206094 genotypes in 1132 noise exposed workers. Subjects

with GG genotype of rs2802292 have a significantly higher high-frequency hearing threshold

shift than people with GT and TT genotype (P = 0.015 and 0.012). Persons with GG genotype

Table 4. Stratified analysis of SNPs in a dominant model.

SNPs Group Genotype Work time with noise (years) Expose level with noise (dB)

�16 > 16 �85 85–92 > 92

rs2802292 case GG/GT 113 146 112 52 95

TT 135 172 141 57 109

control GG/GT 107 107 89 33 92

TT 154 198 160 68 124

Pa 0.298 0.006 0.051 0.027 0.413

Adjusted OR (95% CI)b 1.22 (0.85–1.74) 1.62 (1.17–2.26) 1.50 (1.04–2.16) 1.77 (1.00–3.13) 1.18 (0.80–1.75)

rs10457180 case AG/GG 115 142 117 49 91

AA 133 176 136 60 113

control AG/GG 107 102 83 32 94

AA 154 203 166 69 122

Pa 0.222 0.004 0.003 0.048 0.822

Adjusted OR (95% CI)b 1.27 (0.89–1.81) 1.66 (1.19–2.31) 1.81 (1.25–2.61) 1.73 (0.97–3.09) 1.06 (0.72–1.57)

rs12206094 case CT/TT 80 97 77 33 67

CC 168 221 176 76 137

control CT/TT 78 72 62 18 70

CC 183 233 187 83 146

Pa 0.563 0.053 0.166 0.035 0.924

Adjusted OR (95% CI)b 1.14 (0.78–1.66) 1.47 (1.02–2.10) 1.39 (0.93–2.07) 1.87

(0.96–3.65)

1.02 (0.67–1.54)

a Two-sided χ2 test.
b Adjusted for age, sex, smoking, drinking in logistic regression model.

https://doi.org/10.1371/journal.pone.0189186.t004

Table 5. Frequencies of inferred haplotypes among the cases and controls and their association with risk NIHL.

Haplotypesa Case (n = 566) Control (n = 566) Pb Adjusted OR Global Pd

n % n % (95% CI)c

TAC 610 53.9 697 61.6 1.00 (Ref.) <0.001

GAC 209 18.5 190 16.8 0.039 1.27 (1.01–1.59)

TGT 130 11.5 118 10.4 0.080 1.28 (0.97–1.68)

TGC 72 6.4 66 5.8 0.209 1.25 (0.88–1.78)

Otherse 111 9.8 61 5.4 <0.001 2.09 (1.50–2.91)

a The alleles of haplotypes were arrayed as rs2802292-rs10457180-rs12206094.
b Two-sided χ2 test.
c Adjusted for age, sex, smoking, drinking in logistic regression model.
d Generated by permutation test with 1000 times of simulation.
e Haplotypes (TGT/GGT/GGC/GAT) were pooled into the mixed group.

https://doi.org/10.1371/journal.pone.0189186.t005
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of rs10457180 were also found to have higher high-frequency hearing threshold shift than peo-

ple with AG and AA genotype (P = 0.016 and 0.009).

Multifactor dimensionality reduction analyses of the interaction between

the three SNPs

MDR analysis results of the interaction between the three SNPs were presented in Table 6.

The interaction results suggested that the rs10457180-rs2802292-rs12206094 model got

the highest cross-validation consistency and testing balanced accuracy and was related to

increased NIHL risk (OR = 1.53, 95%CI = (1.20–1.94), P = 0.0005).

Discussion

Single nucleotide polymorphism (SNP) is the one of the most common types of genetic variant

in the human genome and there are about fifteen million SNPs in all human group[21]. Haplo-

type, defined as a specific set of alleles observed on a single chromosome, or a part of a chro-

mosome, has been an integral part of human genetics for decades[22]. However, the genomic

distribution of SNPs is not homogenous; most of the SNPs occur in noncoding regions of gene

more frequently than in coding regions. At present, detection methods of SNP include dena-

turing gradient gel electrophoresis (DDGE), single-strand conformational polymorphism

(SSCP), cleaved amplified polymorphic sequence (CAPS), denaturing gradient gel electropho-

resis (DDGE), and allele-specific PCR (such as TaqMan SNP genotype-PCR).

In the current study, a genetic association analysis was performed on three selected FOXO3

SNPs (rs2802292, rs10457180, and rs12206094) in 566 NIHL patients and 566 controls by Taq-

Man SNP genotyping assay. Results reveal that rs2802292 G allele, rs10457180 G allele, and

Fig 1. Comparison of high-frequency hearing threshold shift of three SNPs. Comparison of high-frequency hearing threshold shift of

rs2802292, rs10457180, and rs12206094 genotypes in all subjects. Data are presented as mean ± SE and analyzed by ANOV.

https://doi.org/10.1371/journal.pone.0189186.g001

Table 6. MDR analysis results of the interaction between the three SNPs.

Model Training balanced

accuracy

Testing balanced

accuracy

Cross-validation

consistency

P OR(95%CI)

rs10457180 0.5426 0.538 9/10 0.0037 1.42(1.12–

1.80)

rs10457181-rs2802292 0.5463 0.5274 7/10 0.0016 1.47(1.16–

1.87)

rs10457181-rs2802292-rs12206094 0.5507 0.538 10/10 0.0005 1.53(1.20–

1.94)

https://doi.org/10.1371/journal.pone.0189186.t006
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rs12206094 T allele in FOXO3 are associated with a significantly higher risk of NIHL. Subse-

quent haplotype analysis shows that the haplotype GAC and others (TGT/GGT/GGC/GAT)

(rs2802292-rs10457180-rs12206094) confers increased risks of NIHL. These findings support

our hypothesis that the FOXO3 polymorphism may contribute to susceptibility to NIHL. As

far as we know, this may be the first association study showing that FOXO3 gene is correlated

with an increased risk of NIHL in a Chinese population.

Recent research has shown the essential role of transcription factor FOXO3 in the cochlea

in hearing maintenance[17]. Foxo3 protein is detected in the nuclei of spiral ganglion neurons,

hair cells, and pillar cells of young adult mice suggesting that it acts in sensory cells. Notably,

Foxo3 protein becomes localized to the cytoplasm of spiral ganglion neurons as mice age.

Exposure to nondamaging noise levels drives Foxo3 nuclear localization indicating that higher

cochlear activity levels promote Foxo3-dependent transcription by increasing Foxo3 concen-

tration near DNA[17]. Moreover, Foxo3 can drive transcription of the master mitochondrial

regulator Pgc-1α. Pgc-1α coordinates new production of mitochondrial proteins from both

the nucleus and mitochondrial DNA (mtDNA)[23]. In conjunction with Pgc-1α, Foxo3

directly interacts with the promoters of Sod2, catalase, and peroxiredoxin to drive their expres-

sion[23]. Sod2, catalase, and peroxiredoxin which contains free radicals have been known to

have an essential role in the cochlea in noise-induced hearing loss (NIHL)[5]. Foxo3 is

required for auditory function after noise exposure in a mouse model system and absent

Foxo3, outer hair cells are lost throughout the middle and higher frequencies[18]. Above evi-

dence support an influential role of transcription factor Foxo3 in contributing to the mainte-

nance and protection of hearing.

Despite all the three SNPs selected locate in noncoding region of FOXO3 gene, numerous

studies have shown that functional consequences of noncoding SNPs involve in the regulation

of protein-coding genes and lncRNA regulation[24, 25]. Genetic variation at FOXO3

rs12212067 has been proved to drive allele-specific expression of FOXO3 and modulate

inflammatory cytokine production in monocytes through a paracrine TGFβ1-dependent

mechanism[26]. Also, Foxo3 intron variations may alter the dysregulated biogenesis of circ-

Foxo3. Ectopic expression of circ-Foxo3 could bind to the cell cycle proteins cyclin-dependent

kinase 2 and cyclin-dependent kinase inhibitor 1, resulting in the formation of a ternary com-

plex which arrests the function of CDK2 and blocked cell cycle progression[27].

Our current study has several potential limitations. (i) The sample size of our study was rel-

atively larger compared to previous research. However, the power of statistical tests may not

be fully enough due to the lower biological effects of an individual SNP. Therefore, large sam-

ple size and cohort studies are needed in future to confirm the effects of the FOXO3 polymor-

phism on NIHL; (ii) Study subjects of this case-control study are limited by the Chinese

population. Thus, our results may likely be better generalized to Chinese Han population and

limit external generalizability; (iii) The selected SNPs are noncoding, thus we assume these

variants to be linked with one or more functional variants within the FOXO3 gene or its regu-

latory regions. Future fine mapping of the FOXO3 gene may detect such functional variants;

(iv) The loss of connections between inner hair cells and auditory nerve has been proved to be

associated with loss of FOXO3 by animal studies and could change suprathresholds audition.

This "hidden hearing loss" is not always detected with the routine tests of changes in hearing

thresholds by pure tone audiometry. As this is a cohort study, suprathreshold audiometry is

necessary in the follow-up examination of these noise exposed workers to detect "hidden hear-

ing loss" and verify the role of FOXO3 gene variation in noise induced hearing loss.

In conclusion, rs2802292 G allele, rs10457180 G allele, and rs12206094 T allele in FOXO3

are associated with a significantly higher risk of NIHL. These three noncoding SNPs may

involve in the regulation of protein-coding genes, lncRNA, and circRNA mechanism of
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FOXO3. Thus, these findings show that FOXO3 SNPs (rs2802292, rs10457180, and rs1220

6094) may have important roles in noise induced hearing loss and have potential to be bio-

markers for noise exposed workers.
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