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Prediction of hospitalization using 
artificial intelligence for urgent 
patients in the emergency 
department
Jung‑Ting Lee1, Chih‑Chia Hsieh2, Chih‑Hao Lin2*, Yu‑Jen Lin3 & Chung‑Yao Kao3

Timely assessment to accurately prioritize patients is crucial for emergency department (ED) 
management. Urgent (i.e., level‑3, on a 5‑level emergency severity index system) patients have 
become a challenge since under‑triage and over‑triage often occur. This study was aimed to develop a 
computational model by artificial intelligence (AI) methodologies to accurately predict urgent patient 
outcomes using data that are readily available in most ED triage systems. We retrospectively collected 
data from the ED of a tertiary teaching hospital between January 1, 2015 and December 31, 2019. 
Eleven variables were used for data analysis and prediction model building, including 1 response, 2 
demographic, and 8 clinical variables. A model to predict hospital admission was developed using 
neural networks and machine learning methodologies. A total of 282,971 samples of urgent (level‑3) 
visits were included in the analysis. Our model achieved a validation area under the curve (AUC) of 
0.8004 (95% CI 0.7963–0.8045). The optimal cutoff value identified by Youden’s index for determining 
hospital admission was 0.5517. Using this cutoff value, the sensitivity was 0.6721 (95% CI 0.6624–
0.6818), and the specificity was 0.7814 (95% CI 0.7777–0.7851), with a positive predictive value of 
0.3660 (95% CI 0.3586–0.3733) and a negative predictive value of 0.9270 (95% CI 0.9244–0.9295). 
Subgroup analysis revealed that this model performed better in the nontraumatic adult subgroup and 
achieved a validation AUC of 0.8166 (95% CI 0.8199–0.8212). Our AI model accurately assessed the 
need for hospitalization for urgent patients, which constituted nearly 70% of ED visits. This model 
demonstrates the potential for streamlining ED operations using a very limited number of variables 
that are readily available in most ED triage systems. Subgroup analysis is an important topic for future 
investigation.

Visits to the emergency department (ED) have continued to increase in recent  decades1. When the capacity of 
EDs cannot satisfy the demand from patients, it results in ED crowding. ED crowding has become a worldwide 
problem, which could significantly delay the delivery of medical care and worsen patient  outcomes2–4.

Timely assessment to accurately prioritize patients is crucial for ED management. The triage system, along 
with Taiwan triage and acuity scale (TTAS), has been adopted in all EDs in Taiwan. The TTAS is a five-level 
system, with the most acute patients designated level-1 and the least acute as level-55. The five levels of triage are 
therefore defined as level-1, critical; level-2, emergent; level-3, urgent; level-4, less urgent; and level-5, non-urgent. 
Among ED patients, approximately 25% are critical or emergent. The majority of ED patients were triaged as 
urgent, comprising up to 70% of  patients6. More than 20% of urgent patients, after primary management in the 
ED, need  admission1. The large number and complicated composition of urgent patients have become a chal-
lenge since both under-triage (i.e., “critical” or “emergent” patients being triaged as “urgent”) and over-triage 
(i.e., “less urgent” or “non-urgent” patients being triaged as “urgent”) often  occur7,8. Moreover, the accuracy of 
triage is easily affected by the operator’s experience and subjective  judgment9.

Electronic triage using artificial intelligence (AI) has been proposed to predict patient  outcome10. The aim 
of this study was to develop a computational model using AI methodologies to accurately predict patient out-
comes—i.e. whether the patient requires hospitalization—using data that are readily available in most ED triage 
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systems. The target group in this study was urgent (level-3) patients since this group of patients constitutes the 
majority of ED visits and encounters the greatest challenge with respect to under-triage and over-triage. With 
the assistance of this AI model, the need of hospitalization for urgent patients could be more accurately assessed, 
which in turn could optimize risk stratification and streamline management of patients.

Methods
Study design and setting. This study retrospectively collected data from the ED of a tertiary teaching 
hospital between January 1, 2015, and December 31, 2019. The study hospital, located in Tainan city, Taiwan, 
has 914 general ward beds and 214 intensive care beds. The average number of ED visits is 100,668 annually. 
A computerized system, the so-called Taiwan triage and acuity scale (TTAS) similar to ESI, was adopted in the 
ED for triage. The study only included urgent (level-3) triaged visits with complete information at triage and 
recorded disposition of either admission or discharge. Individuals with any missing information at triage and 
other dispositions, such as transfer or against-advice discharge, were excluded. The primary outcome was hos-
pital admission.

Data collection and processing. In total, eleven variables were used for data analysis and prediction 
model building. These include one response variable, two demographic variables, and eight clinical variables. 
The clinical variables included six vital signs used for triage evaluation, medical history, and chief complaints. 
Among the eleven variables, the response and gender variables are binary, while the other variables are numeric 
in nature.

Response variable. The primary response variable was the patients’ disposition made by ED physicians 
and was encoded as a binary variable with ’admission’ coded as 1 and ’discharge’ coded as 0.

Demographics. Two demographic variables, age and sex, were used in this study. They were either collected 
from the patients or from the Taiwan Health Care Database System by the triage nurse. While the age variable is 
numeric with one decimal fraction, and the gender variable is binary with the ’male’ gender coded as 1 and the 
’female’ gender coded as 0.

Vital signs for triage evaluation. Six vital signs, including temperature, heart rate, respiratory rate, sys-
tolic blood pressure, diastolic blood pressure, and mean arterial pressure (MAP), were measured and recorded 
by the triage nurse. Oxygen saturation was not included, as a significant number of patients did not have their 
oxygen saturation level measured at triage. As such, the amount of missing information made this vital sign 
unavailable for model building. All six selected variables are numeric. Except for the temperature variable, which 
has one decimal fraction, the other variables have integer values.

Medical history. Electronic medical records of the patients were pulled out by the triage nurse while patients 
arrived at the triage station using the International Classification of Diseases (ICD) code. Diseases were classified 
following the ICD-10 codes, and an integer score was assigned to each classification. The value of this variable is 
the sum of scores of all classifications the patient belongs to or zero if the patient had no medical history avail-
able. The value of this variable ranges from 0 to 12.

Chief complaints. The Taiwan triage acuity scale is defined by the Ministry of Health and Welfare (MOHW) 
of Taiwan. It includes a code system corresponding to the patient’s chief complaint and its severity, which is simi-
lar to the ICD code. There are four major categories in this code system: trauma, nontraumatic adult, pediatrics, 
and environmental emergency. The triage nurse chooses the code that meets the patient’s chief complaint and its 
severity most appropriately and then decides the patient’s emergency severity index.

where

v(cf) : decimal value for the given chief complaint code cf.
nt(cf) : the number of patients in the training data set whose chief complaint code is cf.
nh,r(cf) : the number of patients in the training data set whose chief complaint code is cf and who were hos-
pitalized and eventually recovered.
nh,d(cf) : the number of patients in the training data set whose chief complaint code is cf and who were hos-
pitalized and eventually deceased.

Mathematically speaking, the value v(cf) , being the sum of two terms, represents the risk of hospitalization 
for patients with chief complaint code cf. The first term is the percentage of patient hospitalizations with chief 
complaint code cf, while the second term is the percentage of deaths among patients with chief complaint code 
cf who were hospitalized. The second term is introduced to differentiate one chief complaint from another, which 
results in the same number of admitted patients. Intuitively, a medical complaint that results in more deceased 
patients should be assigned a higher risk value. Note that when nt(cf) is equal to zero, which means that there is 
no patient in the training data set whose chief complaint code is cf, v(cf) is set to zero.

v(cf) =
nh,r(cf)+nh,d(cf)

nt(cf)
+

nh,d(cf)

nh,r(cf)+nh,d(cf)
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Model development, fitting, and evaluation. A prediction model for hospital admission was devel-
oped using neural network and machine learning  methodologies11. A three-layer structure is assumed with 
output dimensions of 100, 12, and 1. Between layers, the batch normalization technique was adopted to facilitate 
the training process. The (final) output layer utilizes the sigmoid function as the activation function. As such, a 
mathematical representation of the model can be expressed as

where x represents the input vector of 10 variables, and y is the model output, which has a value between 0 and 1. 
The model output represents the likelihood of the patient being admitted. The nonlinear function f (x) , primarily 
determined by the first two layers, contains 2549 trainable model parameters.

The data were randomly divided into training (80%) and validation (20%) sets. Statistical similarity of the 
training and validation sets regarding demographics, medical history, and chief complaints was confirmed by 
statistical analysis. Specifically, the percentages of admitted and discharged patients in each category of the train-
ing and validation data sets were calculated and compared. The model parameters were trained based on the 
training data set, and the predictive power of the model was evaluated by the validation data set using the area 
under the curve (AUC) in the receiver operating characteristic (ROC) analysis. The optimal cutoff point on the 
ROC curve was calculated based on Youden’s  index12, which in turn was used to calculate sensitivity, specificity, 
positive predictive value, and negative predictive value for the prediction model applied to the validation data.

Testing the benefit of additional training samples. To answer a key question of whether one can 
improve the performance of the model if additional training samples are used for tuning the model parameters, 
we trained the model on randomly selected fractions of the training set. Specifically, we trained the model using 
100%, 75%, 50%, 25%, and 12.5% of the training samples, calculated the corresponding AUCs on the held-out 
validation set and quantified the incremental gain in performance.

Variables of importance. To determine which variables are crucial and more "useful" for predicting hos-
pital admission, lower dimension models were trained using various subsets of variables. The performances of 
these models, indicated by AUCs on the validation set, were compared to determine whether these models could 
predict hospital admission as robustly as the full model. Variables to drop were selected based on the statistical 
analysis shown in Tables 1 and 2 and physician experiences.

Ethical approval. The study was approved by the Institutional Review Board of the National Cheng Kung 
University Hospital, Tainan, Taiwan (A-ER-108-451).

Results
Characteristics of study samples. There were 441,782 ED visits between January 2015 and December 
2019. Approximately 70% of visits were classified as level-3 by the triage nurse. After the exclusion of any miss-
ing information at triage stations and other dispositions, such as transfer and against-advice discharge, a total of 

y =
1

1+ ef (x)

Table 1.  Descriptive analysis of all patients included in the training and validation sets. CC chief complaint, 
Env. emergency environmental emergency.

Training set (80%) Validation set (20%)

Admitted patients 
(n = 35,831, 15.75%)

Discharged patients 
(n = 191,696, 
84.25%)

Total patients 
(n = 227,527) p value

Admitted patients 
(n = 8991, 15.81%)

Discharged patients 
(n = 47,889, 84.19%)

Total patients 
(n = 56,880) p value

Gender  < 0.001  < 0.001

Male 18,979 (52.97%) 90,996 (47.47%) 109,975 (48.33%) 4719 (52.49%) 22,739 (47.48%) 27,458 (48.27%)

Female 16,852 (47.03%) 100,700 (52.53%) 117,552 (51.67%) 4272 (47.51%) 25,150 (52.52%) 29,422 (51.73%)

Age  < 0.001

 < 0.001

0–17 5005 (13.97%) 43,789 (22.84%) 48,794 (21.45%) 1300 (14.46%) 10,890 (22.74%) 12,190 (21.43%)

18–64 15,298 (42.69%) 110,165 (57.47%) 125,463 (55.14%) 3870 (43.04%) 27,442 (57.30%) 31,312 (55.05%)

65–84 12,074 (33.70%) 31,224 (16.29%) 43,298 (19.03%) 2918 (32.45%) 7911 (16.52%) 10,829 (19.04%)

≥85 3454 (9.64%) 6518 (3.40%) 9972 (4.38%) 903 (10.04%) 1646 (3.44%) 2549 (4.48%)

Medical history  < 0.001

 < 0.001With 16,844 (47.01%) 28,838 (15.04%) 45,682 (20.08%) 4149 (46.15%) 7309 (15.26%) 11,458 (20.14%)

Without 18,987 (52.99%) 162,858 (84.96%) 181,845 (79.92%) 4842 (53.85%) 40,580 (84.74%) 45,422 (79.86%)

CC category  < 0.001

 < 0.001

Nontraumatic adult 27,706 (77.32%) 123,662 (64.51%) 151,368 (66.53%) 6939 (77.18%) 30,904 (64.53%) 37,843 (66.53%)

Pediatrics 4747 (13.25%) 38,998 (20.34%) 43,745 (19.23%) 1239 (13.78%) 9697 (20.25%) 10,936 (19.23%)

Trauma 3343 (9.33%) 28,188 (14.70%) 31,531 (13.86%) 802 (8.92%) 7079 (14.78%) 7881 (13.86%)

Env. emergency 35 (0.10%) 848 (0.44%) 883 (0.39%) 11 (0.12%) 209 (0.44%) 220 (0.39%)
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282,971 samples of level 3 visits were used for this study. The visits represented 180,603 unique patients, for an 
average of 1.57 visits per patient. The characteristics of the study samples are shown in Tables 1 and 2.

Model performance. The model we presented shows good distinguishing power for predicting hospital 
admissions using only a few metrics collected at triage stations. This model achieved a validation AUC of 0.8004 
(95% CI 0.7963–0.8045). The optimal cutoff value found by Youden’s index for determining hospital admission 
was 0.5517. Using this cutoff value, the sensitivity was 0.6721 (95% CI 0.6624–0.6818), and the specificity was 
0.7814 (95% CI 0.7777–0.7851). The positive predictive value (PPV) was 0.3660 (95% CI 0.3586–0.3733), and 
the negative predictive value (NPV) was 0.9270 (95% CI 0.9244–0.9295).

The model was also applied to patients in the following four subgroups to examine its respective predictive 
power in these groups: nontraumatic adult, pediatrics, trauma, and environmental emergency. For nontraumatic 
adult patients, the model achieved a validation AUC of 0.8166 (95% CI 0.8199–0.8212), which was higher than 
its performance on all patients. For pediatric and traumatic patients, however, the model performances were 
worse. The achieved validation AUCs were 0.6637 (95% CI 0.6492–0.6782) and 0.7762 (95% CI 0.7623–0.7901), 
respectively. For patients with environmental emergencies, the model performed significantly higher, with a 
validation AUC of 0.9274 (95% CI 0.8801–0.9747). All validation ROC curves are shown in Fig. 1.

Testing the benefit of additional training samples. The model trained on 75% of the training set 
achieved a validation AUC of 0.7999 (95% CI 0.7958–0.8040). The 95% confidence interval contains the AUC of 
the model trained on the entire training set. The algorithm with the proposed model structure appears to reach 
maximum performance at 75% of the training set or less. All AUC values with corresponding 95% confidence 
intervals are provided in Table 3.

Variables of importance. Excluding four vital signs (temperature, respiratory rate, systolic blood pressure, 
and diastolic blood pressure), a lower-dimensional model was built using the remaining six variables (age, sex, 
heart rate, MAP, medical history, and chief complaint). The model achieved a validation AUC of 0.7963 (95% CI 
0.7921–0.8005); the 95% CI contains the AUC of the full-dimensional model. Notably, if one further excludes 
the chief complaint variable, the predictive power of the resulting model diminishes significantly. The validation 
AUC of the model built on only five variables (age, sex, heart rate, MAP, and medical history) dropped to 0.7501 
(95% CI 0.7454–0.7548). To further confirm this observation, a model was built based on nine variables (all but 
the chief complaint variable). The validation AUC of this model also dropped to 0.7517 (95% CI 0.7470–0.7564).

Discussion
After emergency physicians examine patients for the first time, they often make predictions regarding the patients’ 
outcomes and diagnoses using so-called diagnostic  intuition13. Physicians often work using two types of mind-
sets: the intuition mindset and the analytical  mindset14. The intuition mindset depends largely on the physi-
cians’ own experiences. It responds quickly and works similar to pattern recognition. The analytical mindset 
is usually based on the existing knowledge and available data. These processes are complicated and cognitively 
resource-demanding15. The intuition mindset plays an important role in medical decision  making16. It is often 
associated with the patient’s prognoses rather than  diagnoses17. The work based on this mindset benefits from the 
physician’s clinical reasoning and the accuracy of the  diagnoses18. The setting of our study simulates the scenario 
where the physician visits the patient for the first time. The computational model predicts the patient’s outcome 
with very limited information; the work of this model is comparable to the physician’s diagnostic intuition. The 
existing clinical decision-support systems are often criticized for their nonuser friendly methods of informa-
tion  collection19. Our model avoids these drawbacks by adopting variables that can all be extracted from the 
electronic medical record system automatically. This is a significant advantage for the utilization of our model.

The primary purpose of this model was to predict whether an urgent (level-3) patient requires hospitalization 
right after they are initially triaged. The model was designed to serve as a secondary triage tool assessing prob-
ability of hospitalization, which essentially gives an indication of the severity level of the patient. The assessment 
that our model provides would help the risk stratification of patients and streamlining the ED  operations10. 

Table 2.  Characteristics concerning age, triage evaluation, and risk value of chief complaint for all study 
samples. CIs confidence intervals.

Discharged (84.24%) (mean, 95% CIs) Admitted (15.76%) (mean, 95% CIs) p value

Age 39.5 (39.39–39.59) 55.05 (54.8–55.29)  < 0.001

Temperature 37.04 (37.04–37.04) 37.24 (37.23–37.25)  < 0.001

Heart rate 96.74 (96.64–96.84) 98.39 (98.18–98.6)  < 0.001

Respiratory rate 19.86 (19.84–19.87) 19.73 (19.7–19.76)  < 0.001

Systolic blood pressure 133.72 (133.62–133.82) 135.32 (135.09–135.56)  < 0.001

Diastolic blood pressure 82.59 (82.53–82.66) 80.63 (80.48–80.78)  < 0.001

Mean arterial pressure 99.30 (99.23–99.37) 98.53 (98.37–98.69)  < 0.001

Medical history score 0.2619 (0.2554–0.2685) 0.8781 (0.8735–0.8826)  < 0.001

Risk value of chief complaint 0.1403 (0.1399–0.1407) 0.2494 (0.2478–0.2509)  < 0.001
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Figure 1.  The receiver operating characteristic (ROC) curves of the predictive model for all patients and 
subgroups. (a) All patients. (b) Nontraumatic adult patients. (c) Pediatric patients. (d) Traumatic patients. (e) 
Patients of environmental emergency.

Table 3.  Validation area under the curve (AUC) values and the corresponding 95% confidence intervals of 
models trained on various percentages of the training data set samples.

Percentage of training set samples (%) AUC (95% confidence intervals)

100 0.8004 (0.7963, 0.8045)

75 0.7999 (0.7958, 0.8040)

50 0.7956 (0.7914, 0.7998)

25 0.7849 (0.7806, 0.7892)

12.5 0.7558 (0.7511, 0.7647)
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Patients who were predicted requiring hospitalization would be sent to the therapeutic area for timely examina-
tion and further treatment or who otherwise could be fast-tracked for rapid evaluations and discharge. This in 
turn improves both the quality of medical care and patient  safety20. By reducing unnecessary examinations and 
the length of ED stay, the model could also improve patient’s  satisfaction21–23.

With the assessment provided by the model, ED physicians would be more confident in their decisions regard-
ing patient disposition. For patients who need hospital admission, the process can be initiated earlier according 
to the prediction given by the model to reduce ED  boarding24,25. On the other hand, unnecessary examination 
and observation in the ED could be avoided for those who do not need hospital admission. Furthermore, based 
on the prediction of the need for hospitalization, the ED can streamline patients to primary care services, which 
subsequently reduces ED  crowding26,27. The efficient allocation of medical resources in the ED can improve the 
cost management and quality  control28.

Because only a few variables are adopted in our model and they are readily available, the model can be utilized 
in the prehospital setting to improve the efficiency of the emergency medical services (EMS) system. With the 
aging of the population, the loading of the EMS has increased in many  countries29. Misuse of the ambulance 
by low-acuity patients unnecessarily occupies emergency medical resources and thus endangers patients who 
truly need emergent medical  aid30. Our model can be used by the EMS system to divert ambulance requests to 
other alternatives for those with low  acuity31. The potential benefits include better reserve of the EMS resources 
and possible improvement in the outcome of patients who receive medical aid  sooner32–34. For the patients who 
were predicted not requiring hospitalization, the emergency medical technicians could apply a “treat and release” 
protocol by giving primary medical aids in the field without transporting the patients to  hospitals35,36.

Another potential application of our model is “self-triage”. Certain computer algorithms had been proposed 
for patients to perform self-triage before ED visits, in the hope of better patient  streamlining37–40. However, most 
of the algorithms either require many variables to perform prediction or fail to demonstrate a sufficient prediction 
 power37–40. Our model offers a reliable prediction of hospital admission using very limited variables that could 
be obtained by the patients themselves. Those who were predicted to have low possibilities of hospitalization 
could be first delivered to primary care services.

People generally believe that having many decision variables is necessary for successfully building a predictive 
model based on machine learning algorithms. On the other hand, having many decision variables often makes 
it difficult to explain the possible causality and correlation between the decision variables and the designated 
model  output41. In this study, we did not blindly use many variables for the model building process. Instead, we 
chose specific variables that may have explainable causality with the model output according to the physicians’ 
experiences. Moreover, important information, such as chief complaints and medical history, were distilled into 
one single variable representing the risk of hospitalization. This is in contrast to the approach taken in other 
 studies42. The results of our study demonstrate that this approach works very well. Models with good predictive 
power can be built using as few as six decision variables. Compared to previous  methods42,43, very few computa-
tional resources are required for building and using our model, and the predicted outcomes are easily explained 
in medicine and conform to medical intuition.

In our study, we found that the predictive power of our model differed among the four subgroups (nontrau-
matic adult, pediatrics, trauma, and environmental emergency) of ED patients. The model performed worse in 
the traumatic subgroup and substantially worse in the pediatric nontraumatic subgroup. Technically speaking, 
the predictive power of the model originates from recognizing certain crucial characteristics of the patients. 
Our results indicate that patients in one subgroup appear to have crucial characteristics that significantly differ 
from those of patients in another subgroup. For example, among nontraumatic adult patients, the likelihood of 
hospitalization increases as age grows, while among pediatric patients, this correlation is usually the opposite. In 
contrast, among traumatic patients, ’age’ may not be an important factor for predicting hospitalization at all. As 
such, it seems difficult to use a single model to predict the outcome for all types of patients in the ED due to the 
high heterogeneity among patient characteristics in different subgroups. Further studies analyzing these patient 
subgroups are required to build separate models with high predictive power for different patient subgroups.

Limitations
There are some limitations in our study. First, the model was structured based on the data of single medical center. 
For broader utilization, it might need the data from multiple medical centers and rural hospitals to improve the 
accuracy of the model. Furthermore, the oxygen saturation level was not included as a variable in our model. 
During the study period, the triage nurses in the study hospital were not required to routinely obtain the oxygen 
saturation levels. As a result, the triage staff tended to skip taking measurement of the oxygen saturation level 
when they were subject to heavy workload. The workflow protocol was later corrected to demand this item, but 
the problem of data missing in our study period remains. Moreover, our model, aimed to promptly identify 
patients with high possibility of hospitalization, was designed to use only the data that could be collected at the 
initial triage. Further studies are planned to evaluate the benefits between timely prediction and the degree of 
accuracy when more variables, such as results of initial laboratory test and medical images, are introduced to 
the model. Finally, we did not perform a comparison analysis with other computer or human (physicians or tri-
age nurses) prediction models. To our knowledge, despite certain studies on triage  accuracy37–39, no model for 
prediction of hospitalization had been reported. This is an interesting subject for future studies, which would 
facilitate the integration of the AI model into the work of the triage crew.
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Data availability
All the data used to draw the conclusions of this paper are available in the data presented in the figures and/or 
tables. The raw/processed data required to reproduce these findings are available from the corresponding author 
upon request.
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