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Comparisons of gene trees and species trees are key to understanding major processes of genome evolution such as gene
duplication and loss. Because current methods to reconstruct phylogenies fail to model the two-way dependency between gene
trees and the species tree, they often misrepresent gene and species histories. We present a new probabilistic model to jointly
infer rooted species and gene trees for dozens of genomes and thousands of gene families. We use simulations to show that this
method accurately infers the species tree and gene trees, is robust to misspecification of the models of sequence and gene family
evolution, and provides a precise historic record of gene duplications and losses throughout genome evolution. We simulta-
neously reconstruct the history of mammalian species and their genes based on 36 completely sequenced genomes, and use the
reconstructed gene trees to infer the gene content and organization of ancestral mammalian genomes. We show that our
method yields a more accurate picture of ancestral genomes than the trees available in the authoritative database Ensembl.

[Supplemental material is available for this article.]

The reconstruction of gene phylogenies based on sequences alone

is difficult. First, homologous sequences are often hard to align

unambiguously (Wong et al. 2008), which leads to incorrect gene

trees and erroneous predictions of events of duplications and los-

ses. Second, sequence alignments generally contain insufficient

information to accurately model gene evolution and thus un-

derstand their history, as suggested by the positive correlation

found between sequence length and congruence to the species tree

(Galtier 2007). However, knowing the relationships among the

species in which these sequences have evolved can improve gene

tree inference. Several methods have successfully implemented

this idea by combining sequence evolution models with a model of

gene evolution that accounts for duplication and loss (DL) (Vilella

et al. 2008; Akerborg et al. 2009; Flicek et al. 2010; Rasmussen and

Kellis 2010, 2012). Provided the species tree is known, these

methods yield significantly better gene trees than other molec-

ular phylogenetic methods. However, because reference species

trees themselves generally rely on molecular data, they can be

also affected by phylogenetic reconstruction uncertainties and

unidentified events of gene duplication and loss. This reveals a

circular problem: the reconstruction of a species tree requires

identifying events of gene family evolution such as DLs, and both

the reconstruction of gene trees and the identification of dupli-

cations and losses requires a known species tree. The solution to

the conundrum is to explicitly consider this two-way dependence

and jointly reconstruct the species phylogeny and the histories of

all gene families present in their genomes.

The coestimation of gene and species trees requires that sev-

eral gene families be analyzed simultaneously. This represents a

significant departure from existing methods (Vilella et al. 2008;

Akerborg et al. 2009; Flicek et al. 2010; Rasmussen and Kellis 2010,

2012) that analyze one gene family at a time, but is similar in

principle to methods that jointly estimate the species tree and gene

trees using coalescent models (Liu and Pearl 2007; Heled and

Drummond 2010). However, while these methods use models of

incomplete lineage sorting and a Bayesian MCMC algorithm not

targeted at genome-scale data sets, the study of genome and gene

family evolution requires using a model of gene DL, and algo-

rithms able to handle virtually the complete repertoire of genes

present in these species. Coestimating genes and species trees with

a model of DL in a maximum likelihood framework provides an

opportunity to obtain accurate estimates of the species tree and of

the DL parameters based on large amounts of data from complete

genome sequences that are becoming increasingly common.

Here we present the first probabilistic model for coestimating

gene trees and the species tree in the presence of DLs. During the

course of the inference, expected numbers of DLs are also estimated

for each branch of the species tree, providing ways to contrast

genomic evolution among lineages in the tree of life. We have

implemented this model in a parallel algorithm to analyze ge-

nome-size data sets for dozens of species. Using extensive simu-

lations, we show that our method accurately estimates the gene

trees, the species tree, and the parameters of DLs, and that it is

robust to moderate levels of incomplete lineage sorting in gene

histories. We apply our algorithm to a data set of nearly 7000 gene

families from 36 mammalian genomes from the Ensembl data-

base v57 and show that we can reconstruct a rooted species tree,

which corresponds to state of the art knowledge of the phylogeny

of mammals, even in the presence of low-coverage genomes. We

discuss our results in terms of the dynamics of evolution of these

genomes and show that the gene trees reconstructed with our

approach yield estimates of the content and organization of an-

cestral mammalian genomes that are much more realistic than

other methods commonly used on genomic data.

Coestimation of gene and species trees
We introduce PHYLDOG, a probabilistic model that, given a set

of gene alignments A, can reconstruct a species tree S and all

corresponding gene trees T along with their DL scenarios, as well

as branchwise expected numbers of duplications and losses

N. PHYLDOG searches for the species tree that maximizes L(T, S,
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N|A), defined as the product, over all gene families Gi, of two

likelihood functions on Gi. We assume that gene families evolve

independently according to a shared set of DL parameters. In

other words, we want to find S, T, and N that maximize:

L T; S;NjAð Þ=
Y

Gi2G
L Gið Þ ð1Þ

with

L Gið Þ = L S;NjTið Þ 3 L TijAið Þ ð2Þ

where G is the set of all gene families, Ti and Ai are the gene tree and

alignment for family Gi, respectively. L(Ti|Ai) is the likelihood of

a phylogeny given an alignment, and can be computed using any

probabilistic model of sequence evolution (Felsenstein 2003). In

practice, all models implemented in the Bio++ library (Dutheil

et al. 2006) for nucleotide, codon, and amino acid sequences are

available in our implementation. L(S, N|Ti) is the likelihood of the

reconciliation of a gene tree with a species tree according to DL

rates. It is computed using a model similar to the one described by

Akerborg et al. (2009), but with parameters for events of DL that are

shared among families and branch specific on the species tree, thus

accommodating heterogeneities in rates of DLs among lineages. In

the Supplemental Material we show that the function L(T, S, N|A)

that we optimize is proportional to the posterior probability P(T, S,

N|A), if we assume a uniform prior on S, N.

A notable difference between our model and previous works

(Arvestad 2003; Dubb 2005; Akerborg et al. 2009; Rasmussen and

Kellis 2010; Górecki et al. 2011) is that our model does not require

divergence time estimates in addition to rates of gene DL. Instead,

we directly estimate expected numbers of DLs for each branch of

the species tree. These expected numbers correspond to the prod-

uct of branch lengths on the species tree, in units of time, by the

rates of DL, respectively. We use the same strategy as used in

methods of phylogenetic reconstruction without a clock, where

branch lengths are estimated in expected numbers of substitutions

(Felsenstein 2003). This allows us to avoid the difficult estimation

of divergence times on the species tree.

Implementing this model for coestimating gene and species

trees requires dedicated algorithms. Previous works (Arvestad 2003;

Dubb 2005; Akerborg et al. 2009; Rasmussen and Kellis 2010;

Górecki et al. 2011) have described the search for a single gene

tree under similar models, with a fixed species tree, fixed diver-

gence times, and fixed rates of gene DL. However, our algorithm

handles a large number of gene families simultaneously, while

also searching for the species tree and branch-specific parameters

of DL. To achieve this, PHYLDOG is implemented in a parallel

architecture (Fig. 1), where for a given species tree and a given set

of gene trees, client processes compute L(Gi), send the values to

a server process, which then computes L(T, S, N|A). In addition to

computing the scores, client and server processes are in charge of

optimizing gene and species trees, respectively, using local rear-

rangement heuristics (see Methods; Supplemental Material sec-

tions S1–S5).

Results

Simulations

We tested the ability of PHYLDOG to correctly infer the species

tree, the gene trees, and the numbers of DLs by running a large-

scale simulation (40 species, 2000 gene families). We intended to

emulate the relative complexity of real data by introducing het-

erogeneity in rates of DL among families and by using a relatively

complex model of sequence evolution in the simulations, and

attempting to reconstruct their history with a homogeneous,

simple model (see Supplemental Material section S6).

The program reconstructed the correct rooted tree topology

for the species tree (Supplemental Fig. S2), despite starting from

a random topology. Figure 2 shows that PHYLDOG provides ac-

curate estimates of branchwise expected numbers of duplications

and losses per gene. These parameters were more difficult to estimate

for branches with small expected numbers of events, because events

with frequencies on the order of 10�3 have too few realizations

in our data set of 2000 gene families. Gene trees reconstructed

by PHYLDOG were more accurate than those reconstructed

independently from alignments using standard maximum like-

lihood methods implemented in PhyML (Guindon et al. 2010).

This was the case even when PhyML was run with the model of

sequence evolution used for simulation. In addition, we found

that PHYLDOG was able to correctly infer the root of the gene

trees for 1981 gene families out of 2000 (99% of the trees).

Reconstructing the evolutionary history of mammalian
genomes

We used PHYLDOG to analyze the history of the mammalian ge-

nomes represented in the Ensembl database v. 57 (Flicek et al.

2010) (Supplemental Material section S7). The mammalian phy-

logeny has been the focus of intense research, and many groupings

in the species tree have now been resolved, although some are still

contentious. Our data set included 6966 gene families from 36

Figure 1. Genome-scale joint reconstruction of the species and gene trees.
PHYLDOG is using a parallel server–client architecture. The server (in red) is in
charge of the species tree search, and computes L(T, S, N|A). It communicates
with clients (in boxes), each one in charge of one or more gene families, for
which they search the gene tree maximizing L(Gi) = L(S, N|Ti) 3 L(Ti|Ai),
using sequence alignments. (a) The server sends the current species tree as
well as other parameters to the clients. (b) The clients compute L(Ti|Ai), i.e.,
the likelihood of a sequence alignment given the gene tree. ( c) The clients
compute L(S, N|Ti), and send L(Gi) to the server.
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mammalian species with widely different sequence coverages

(Supplemental Table S1). Genomes with low coverage share by

chance a number of unsequenced or unannotated genes, mak-

ing this data set challenging for studying genomic evolution

(Milinkovitch et al. 2010). We introduced a correction to account for

genome coverage to prevent PHYLDOG

from interpreting these artifactual ‘‘shared

losses’’ as a signal for clustering low-cov-

erage genomes together in the species tree.

More precisely, we added a component to

the expected number of gene losses on

terminal branches that depended on ge-

nome coverage (Supplemental Material

section S8). For this analysis, we benefited

from a French national supercomputing

resource for research, JADE, currently the

43rd largest supercomputer in the world

(Top500 November 2011 supercomputer

list, http://www.top500.org), and used

3000 processes in parallel.

We started PHYLDOG from a ran-

dom species tree topology, and obtained

the tree shown in Figure 3. For compari-

son, we also reconstructed the species trees using two alternative

approaches: iGTP (DL parsimony method) (Chaudhary et al. 2010),

and duptree (gene tree parsimony method) (Wehe et al. 2008).

These two approaches differ from ours by their use of a parsimony

framework and the fact that the gene trees need to be reconstructed

Figure 2. (A) Correlation between the expected and reconstructed numbers of duplications and
losses per gene and per branch of the species tree. The x = y line is in gray. (B) Topological (RF) (Robinson
and Foulds 1979) distance to the true gene family trees of the trees reconstructed by PHYLDOG under
a simpler model of sequence evolution (JC69) than that used in the simulation (HKY85 with rate het-
erogeneity among sites) and by PhyML under the same simple model and under the correct model of
evolution. For PHYLDOG, the median RF distance to the true tree is at 0.

Figure 3. Mammalian tree reconstructed by PHYLDOG, with arbitrary branch lengths. Ancestral gene contents obtained using PhyML (red), TreeBeST
(green), and PHYLDOG (blue) are shown for several nodes (circled).
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a priori (here we used these methods with gene trees inferred by

PhyML). We also compared the species tree inferred by Phyldog

with the species tree that is used by Ensembl to build the Compara

database (which is based on a synthesis of the current literature on

mammalian phylogeny). Overall, the four species trees agree on

most well-established relationships and, for instance, support the

Atlantogenata hypothesis for the root of the placental phylogeny

(Fig. 3; Supplemental Figs. S5, S6, S7; Waddell et al. 1999; Murphy

et al. 2007). However, iGTP does not recover the consensus mam-

malian root between monotremes and Eutheria. Most incongru-

ences among the four trees appear in Laurasiatheria, notably

regarding the position of bats, a problem still highly controversial

(McCormack et al. 2012; Zhou et al. 2012), possibly made difficult

by effects of incomplete lineage sorting (McCormack et al. 2012).

Interestingly, the PHYLDOG tree and the tree used by Ensembl

place the tree shrew Tupaia belangeri as a sister to primates, as in a

previous study based on rare genomic events (Janecka et al. 2007),

but the two parsimony-based methods place it next to or within

rodents. Although the question of the position of tree shrews re-

mains largely open, these results suggest that the simultaneous in-

ference of gene trees and the species tree such as implemented in

PHYLDOG may be an important step toward resolving difficult

phylogenetic questions such as this one.

For those nodes that are common between our phylogeny

of mammals and the one used in Ensembl Compara, we esti-

mated ancestral genome sizes using gene trees reconstructed by

PHYLDOG and two widely used methods to reconstruct gene

trees at the genomic scale, PhyML (Guindon et al. 2010) and

TreeBeST (Vilella et al. 2008). We used only the 5039 gene trees

that had identical sequence content in our analysis and the trees

provided by Ensembl (see Supplemental Material section S10).

Figure 3 shows these estimates for some key ancestral nodes.

They suggest striking differences in the reconstructed dynamics

of mammalian genomes: According to TreeBeST and PhyML,

mammalian genomes have consistently reduced in gene num-

bers from a large genome ancestor. In contrast, PHYLDOG sug-

gests more stable genome sizes throughout the evolution of

mammals.

We compared the quality of the gene trees reconstructed by

PHYLDOG with those reconstructed using PhyML (Guindon et al.

2010) and TreeBeST (Figs. 3, 4; and Supplemental Material section

S10; Vilella et al. 2008). First, for each of these sets of reconciled

gene trees, we compared the number of gene duplications and the

reconstructed ancestral genome sizes. As noted by Hahn (2007),

errors in gene tree reconstruction are expected to inflate the

number of inferred duplications on internal branches of the spe-

cies tree and to produce larger ancestral genomes. Second, because

more accurate gene trees are expected to give more reliable pre-

dictions of orthology, and orthologs are usually found in the same

genomic locus across species, the neighborhoods between pre-

dicted orthologs should also be conserved (Vilella et al. 2008).

From reconstructed gene trees and adjacencies between extant

couples of genes (immediate proximity, with no other gene be-

tween the two in the data set), we inferred adjacencies between

ancestral genes (Supplemental Material section S9). Like extant

genes, most ancestral genes should have exactly two adjacent

neighbors, one on each side. However, erroneous gene trees tend to

introduce spurious duplications, and because the corresponding

locus has not been duplicated in the genome, the ‘‘duplicates’’ will

be mapped to the exact same position. Direct neighbors will

therefore have at least three adjacencies: two with these spurious

duplicates on one side, and one with their true neighbor on the

other side. Poor reconstruction methods will therefore show fewer

genes with exactly two adjacent neighbors because they contain

many erroneous gene trees.

According to trees reconstructed using PhyML, the set of gene

families that we used has undergone 43,483 duplication events

during the history of mammals. Using trees built and reconciled

using TreeBeST, this number is much smaller (14,868) but still

significantly higher than with PHYLDOG trees, which yield 9869

gene duplications. Overall, PhyML trees and TreeBeST trees show

more duplications on internal branches than on external branches

(paired Wilcoxon test P-values: P < 10�16), as expected from gene

trees that contain errors (Hahn 2007), but for PHYLDOG trees,

internal branches show fewer duplications than external branches

(paired Wilcoxon test P-value: P < 10�16).

Figure 4 shows genome sizes and the distribution of ancestral

gene adjacencies inferred with different sets of gene trees. As

expected, PhyML trees, which are reconstructed in the absence of

any information on the species tree, yield relatively poor results in

terms of ancestral genome content (8263 genes on average, com-

pared with 4144 genes for the genomes of extant species) (Fig. 4A;

Supplemental Fig. S8). TreeBeST trees, built using a species tree to

choose among a set of possible gene trees, are better, in part be-

cause duplication nodes with low support in gene trees are dis-

carded by TreeBeST reconciliations (7814 genes on average, Sup-

plemental Figs. S8, S9, S10). Compared with PHYLDOG (5074

genes on average), both algorithms lead to much larger ancestral

genomes for deeper nodes in the species tree (Fig. 3), showing that

the gene trees that they reconstruct contain more errors than

PHYLDOG gene trees (Hahn 2007). This is confirmed by the dis-

tribution of ancestral gene adjacencies (Fig. 4B). Fully annotated

gene families and error-free gene trees would give exactly two

neighbors to almost all ancestral genes. Genes with fewer or more

neighbors are due to unassembled genomes, but also reflect the

quality of gene tree reconstruction. PHYLDOG trees provide more

complete (fewer genes with 0 or one neighbor) and less erroneous

(more genes with two neighbors and fewer with three or more)

reconstructions of ancestral genome organizations. Overall, trees

built using our model yield better estimates of ancestral genomes.

Figure 4. Quality of ancestral chromosome reconstruction inferred
from gene tree reconciliations. We used the species tree and reconcilia-
tions from Compara to analyze TreeBeST trees, and the most parsimo-
nious reconciliation using the species tree in Figure 3 for PhyML and
PHYLDOG trees. (A) Genome content corresponds to the total number of
genes from 5039 families (selected for comparison purposes, see Sup-
plemental Material section S10), for all ancestral nodes in the species
phylogeny. ‘‘Extant’’ corresponds to the observed numbers of genes in our
data set for extant species. Gene contents reconstructed from PHYLDOG
trees are significantly smaller than those reconstructed from TreeBeST
trees: paired Wilcoxon test P-value = 4.10�4. (B) Number of adjacencies
per ancestral gene. The proportion of genes with two adjacencies is higher
for PHYLDOG (blue) than for PhyML (red) and TreeBeST (green) (paired
Wilcoxon test P-value = 3.10�11 for the comparison with TreeBeST).
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Interestingly, although the number of duplications is much

lower with PHYLDOG than with TreeBeST, we find cases where

PHYLDOG proposes a gene tree with a larger number of dupli-

cations than TreeBeST, and which is more compatible with an-

cestral genome reconstructions (e.g., Fig. 5). This confirms that

the most likely scenario of gene family evolution according to

PHYLDOG is different from the most parsimonious scenario,

thanks to the use of a probabilistic model.

Because ancestral genomes are not expected to be systemati-

cally larger than extant genomes, the comparison of ancestral ge-

nome sizes with extant genome sizes provides an (upper) estimate

of the amount of remaining reconstruction errors in gene trees

(Fig. 4). The difference between extant and ancestral genome sizes

can be attributed to several sources: errors in annotations and

family clustering, remaining errors in gene trees, and correctly re-

constructed gene trees in which instances of incomplete lineage

sorting are interpreted as duplication events. Regarding reconstruc-

tion errors, although PHYLDOG allows correcting for a large frac-

tion of phylogenetic artifacts (Fig. 5), we find that gene alignments

with low quality reduce gene tree accuracy, as shown by a negative

correlation between the quality of a sequence alignment (Supple-

mental Material section S11) and the amount of error in the corre-

sponding gene tree (measured as the proportion of ancestral genes

with fewer or more than two adjacencies: R = �20, P < 10�16).

Sensitivity to incomplete lineage sorting

Although PHYLDOG seems relatively robust to misspecifications

of sequence evolutionary models and heterogeneity in rates of DL

among families, its model evidently does not account for the full

complexity of the gene evolutionary process. In particular, lateral

gene transfer, gene conversion of paralogs, or incomplete lineage

sorting (ILS) are not yet included in the model. In the case of the

mammalian phylogeny, the role of ILS seems particularly prob-

lematic and could yield PHYLDOG to overestimate the number

of DLs in gene histories. In order to evaluate the impact of ILS on

the inference made by PHYLDOG, we performed two additional

experiments: first, we used the simulated data set of gene trees

from Rasmussen and Kellis (2012) to simulate sequences and run

PHYLDOG (Supplemental subsection S6.2). This data set simulates

the joint effect of ILS and DL on the evolution of gene families,

under 24 conditions spanning a large range of parameters. Each set

of parameters is used to simulate 500 gene families along a species

tree of 12 species, and the range of ancestral population size (from

106 to 500 * 106) ensures varying levels of gene tree/species tree

incongruences due to ILS.

In this case, we observe that PHYLDOG accurately recon-

structs gene trees (Supplemental Fig. S3; Supplemental subsection

S13.1), even in cases of severe ILS, and that the species tree inferred

is correct for ancestral population sizes below 100 million indi-

viduals. However, the number of erroneous duplications increases

steadily with increasing levels of ILS (Supplemental Fig. S3). Hence,

these simulations suggest that except in situations of extreme ILS,

gene tree and species tree reconstruction remain accurate, but that

higher degrees of gene tree/species tree incongruences can only be

interpreted by PHYLDOG as high numbers of DL.

Second, we focused on the case of Homo sapiens, Pan troglodytes,

and Gorilla gorilla, in which ILS has been described as prevalent

(Supplemental Material section S13). We used the measures of

ILS established by Scally et al. (2012) to see how PHYLDOG had

interpreted this signal in our analysis of mammalian genes. Con-

trary to PhyML and TreeBeST, PHYLDOG seems insensitive to ILS in

this data, and recovers a topology identical to the species tree even

in gene families reported to have been affected by ILS (Scally et al.

2012). It should be noticed that the amount of ILS depends on the

effective population size and on the length of the branch between

two speciation events. In the case of primates, which have relatively

small effective population sizes, ILS is expected to impact only short

branches. For example, 30% of the genome was affected by ILS

during the gorilla/(human, chimpanzee) divergence (about 2 MYRS

between the two cladogenesis events) (Scally et al. 2012), whereas

the comparison of orangutan with human and chimpanzee ge-

nomes revealed that only 1% of the orangutan genome was affected

by ILS (about 6 MYRS between the two cladogenesis events)

(Hobolth et al. 2011). Short branches are expected to leave little

phylogenetic signal. Moreover, different exons of a same gene may

have different ILS histories, which would further weaken the signal

of ILS. Thus, even though the comparison of human, chimpanzee,

and gorilla genomes revealed a high prevalence of ILS (Scally et al.

2012), this process did not leave a strong signal in individual gene

Figure 5. Reconciled trees reconstructed by TreeBeST (left) and by PHYLDOG (right) for gene family containing human gene coding for protein
ENSP00000391561, ‘‘T-cell receptor, gamma, variable region V9.’’ Gene names have been replaced by species names (see Supplemental Fig. S11 for
original gene names). Although PHYLDOG predicts more duplications (red dots) than TreeBeST, it proposes a scenario more consistent with ancestral
chromosomal organizations (proportion of ancestral genes with two neighbors: TreeBeST: 0.29, PHYLDOG: 0.54).
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phylogenies and, therefore, PHYLDOG systematically forced the

gene trees to match the species tree. However, simulations show

that when population sizes are very large, ILS can affect long

branches and, hence, leave a strong phylogenetic signal in gene

trees. In such cases, PHYLDOG correctly recovers the species trees

and gene trees, but incorrectly interprets cases of ILS as events of

DLs (see Supplemental section S13 for further discussion).

Discussion
Both simulations and biological data analyses show that it is pos-

sible to simultaneously infer accurate species and gene trees with

a probabilistic model of gene family and sequence evolution. We

use simulations to show that the inference of the species tree and

gene trees are robust to violations of the model implemented

in PHYLDOG, and especially misspecification of the model of

sequence evolution, heterogeneity of rates of DL among gene

families, and various degrees of ILS. However, because PHYLDOG

provides reconciled trees invoking only speciations and DLs, the

scenarios of evolution it outputs can be wrong in the case of

a strong signal for ILS. In such cases, the numbers of DL can be

widely overestimated. This means that one should be careful on

the interpretation of reconciliation scenarios in regions of the

species tree where PHYLDOG infers particularly high numbers of

DL. On the contrary, we observe that PHYLDOG can also erase

a weak signal for ILS in gene trees. Refinements such as proposed in

Rasmussen and Kellis (2012), in which a model of DL is combined

with a model of incomplete lineage sorting could be implemented

in PHYLDOG to study both population-level phenomena as well as

the dynamics of gene family evolution.

The inference presented here is achieved by our method in

a few days on a cluster of computers, and is robust to violations of

the models of sequence and gene family evolution and to strong

heterogeneities in genome coverages among species.The fact that

PHYLDOG can be run on thousands of gene families to reconstruct

more accurate gene trees than other approaches (Fig. 4; Vilella et al.

2008; Guindon et al. 2010) makes it particularly useful for com-

parative genomic studies and for building genomic databases (Penel

et al. 2009; Flicek et al. 2010; Huerta-Cepas et al. 2011). Its ability

to reconstruct the species tree should also be key to recent projects

(e.g., G10K, Genome 10K Community of Scientists 2009; i5K,

Robinson et al. 2011 projects) that sequence genomes in groups that

have been understudied thus far, for which reference species trees

and estimates of divergence times and DL rates are not available.

Recent studies have shown that the coestimation of align-

ments and phylogenies provides better alignments and trees than

separate reconstructions (e.g., Liu et al. 2009). The results presented

here now show that the joint reconstruction of species and gene

trees improves upon competing two-step approaches for phyloge-

nomics. Overall, integrative approaches such as these are superior in

terms of quality and are conceptually more rigorous than estab-

lished two-phase methods. Therefore, it seems reasonable to predict

that a method capable of jointly inferring the gene alignments, the

gene trees and the species tree for dozens of whole-genome se-

quences will be proposed in the next few years, and will provide

improved inferences. PHYLDOG’s parallel framework seems natu-

rally suited for such an endeavor.

Methods
We devised a method, named PHYLDOG (joint inference of Or-
ganism and Gene PHYlogenies modeling gene Duplications and
Losses), which is able to run with thousands of gene families and

dozens of species for the joint inference of gene trees and species
trees. In this section we introduce the model of gene family evo-
lution and some of the algorithms that we use. More details can be
found in the Supplemental Material.

Probabilistic models and inference

We jointly model gene family evolution and sequence evolution.
We assume that gene family evolution only involves events of gene
duplications and gene losses, and that sequence evolution only
involves events of substitutions between nucleotides or amino-
acids. The probabilistic modeling of sequence evolution has been
the subject of a large body of literature, and algorithms are avail-
able to compute the likelihood of the gene family tree given the
alignment, L(Ti|Ai) (Felsenstein 1981). The probabilistic modeling
of gene DL is more recent. Parsimony reconstructions of gene
family evolution were first developed in 1979 (Goodman et al.
1979), and since then have been the object of several articles
attempting to improve the algorithms (Mirkin et al. 1995; Guigó
et al. 1996; Zmasek and Eddy 2001; Dufayard et al. 2005; Bansal
and Eulenstein 2008; Wehe et al. 2008; Bansal et al. 2010). More
recently, probabilistic models of gene family evolution have been
developed (Arvestad 2003; Dubb 2005; Akerborg et al. 2009;
Rasmussen and Kellis 2010; Górecki et al. 2011). In most of these
cases, gene DLs are modeled by a birth–death process running
along a species tree, and algorithms have been developed to
compute the likelihood of a species tree (and in our case param-
eters of DL given a gene tree [L(S, N|Ti)].

It is natural to integrate these two models of sequence and
gene family evolution into a hierarchical model, where gene trees
are generated from a species tree through a birth–death process,
and gene sequences are generated from gene trees through a sub-
stitution model. First, we define a gene family likelihood L(Gi) as in
equation 2.

As both L(S, N|Ti) and L(Ti|Ai) can be computed, L(Gi) can also
be computed, and one can devise algorithms to search for the best
gene tree or sample gene trees according to this formula. For in-
stance, Akerborg et al. (2009) devised a bayesian procedure to
sample gene trees for a single gene family according to a similar
equation, assuming a known species tree.

Previous works (Arvestad 2003; Dubb 2005; Akerborg et al.
2009; Rasmussen and Kellis 2010; Górecki et al. 2011) have all taken
the species tree, divergence times, and rates of DL as given, and have
considered one gene family at a time. We extend upon these ap-
proaches by considering several gene families at a time, and by
searching for the species tree and the expected numbers of DLs.

As is commonly done in models of sequence evolution that
assume that sites of a molecule evolve independently of each other,
we assume that all gene families evolve independently of each other.
We therefore obtain the formula shown in equation 1 for the overall
score of the hierarchical model.

Using this equation and devoted algorithms, one can search
for the best gene trees and species tree by maximizing over gene
trees, species tree, and branch-wise expected numbers of DLs. Our
algorithms are tuned to achieve efficiency: In the first step of the
algorithm, where the species tree is not accurate but gene trees can
be obtained with algorithms that only use the information con-
tained in the gene sequences, only the species tree is rearranged.
In later steps, when the species tree has been improved, both the
species tree, the parameters of DL, and the gene trees are jointly
optimized. In the final step, when the topology of the species tree
cannot be further improved, an extra round of more extensive gene
tree exploration with optimization of the parameters of DL is done
to further improve these estimates. Detailed descriptions of the al-
gorithms can be found in the Supplemental Material, section 4.
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In this work, we use classical models of sequence evolution
to compute L(Ti|Ai) and rely on a birth–death model to compute
L(S, N|Ti) (as in Arvestad 2003; Dubb 2005; Akerborg et al. 2009;
Rasmussen and Kellis 2010). However, our birth–death model
differs from theirs in two important respects. First, we do not as-
sume that DL rates have been constant over the whole species
phylogeny, and we choose instead to associate a particular pair of
DL parameters {lb, mb} to each branch b of the species tree. Second,
previously published approaches (Arvestad 2003; Dubb 2005;
Akerborg et al. 2009; Rasmussen and Kellis 2010; Górecki et al.
2011) require a time-anchored species tree, where each branch
length corresponds to the amount of time elapsed between the
beginning and the end of the branch. In practice, these strategies
therefore require that a time-calibrated species tree be estimated
before computing the likelihood of a gene family. Instead, we use
the same trick as is used in classical phylogenetic inference without
a clock: We reason in terms of expected numbers of events and not
in terms of rates and times. We thus bypass the need to estimate
node ages in the species tree, and estimate branchwise expected
numbers of DLs {lb, mb} instead of branchwise rates of DL.

An important difference between our approach and previous
approaches to reconstruct species trees and gene trees in the co-
alescent framework (e.g., Liu and Pearl 2007; Heled and Drummond
2010) is that we estimate trees and parameters by maximizing the
likelihood of our model instead of sampling them in the Bayesian
framework through a Markov Chain Monte Carlo (MCMC) algo-
rithm. Although the latter procedure provides confidence intervals
on its estimates, we favored the former because it avoids the diffi-
culty to sample parameters inherent to hierarchical models. Indeed,
in the case of the joint reconstruction of species and gene trees, the
acceptance rate for proposed changes in the species tree can be re-
duced by the fact that any change in the species tree has an impact
on thousands of gene trees, which need to be updated accordingly.
A solution to this difficulty might be to propose simultaneous
changes in the species tree and gene trees, and constitutes an
interesting direction for future work.

Efficient implementation of the algorithms

As PHYLDOG was implemented with large-scale genomic data sets
in mind, efficiency was a guiding principle throughout the design
of the algorithms. First, the program is implemented in C++ and is
based on the Bio++ libraries (Dutheil et al. 2006). Second, we par-
allelized the computations (see next section) using the Message
Passing Interface (MPI) as implemented in the Boost libraries
(Boost C++ source libraries, http://www.boost.org). Third, we made
several approximations to improve time efficiency, which turn out
to be harmless, as shown in simulations (see Supplemental Mate-
rial, section 6). We here focus on two pieces of the algorithm: the
computation of L(S, N|Ti), and the estimation of the expected
numbers of DLs per gene per branch.

It is possible to compute the exact likelihood L(S, N|Ti) for
a rooted binary species tree and a rooted binary gene tree through
a complex dynamic programming algorithm as explained in
(Akerborg et al. 2009). We rely on a simpler algorithm to compute
an approximate likelihood, highly correlated to the true likeli-
hood (r 2 = 0.96, Supplemental Fig. S13). In short, we map nodes
of the gene tree to nodes of the species tree, and use this mapping
to cut the gene tree into subtrees. We then compute the likeli-
hood of each of these subtrees according to our branchwise birth–
death model, and then approximate the likelihood of the whole
gene tree as the product of the subtree likelihoods (see Supple-
mental Material, section 2).

Our program assumes branchwise pairs of parameters describ-
ing the expected numbers of DLs per gene. Estimating parameters

through numerical optimization can be costly. Instead, we use an-
alytical formulas to estimate the expected numbers of DLs based on
counts obtained from the gene trees, according to the most parsi-
monious reconciliation (see Supplemental Material, section 3).

Parallelization of the computations

Computations associated to the model described in equation 1 can
be parallelized over several processes, as schematized in Supple-
mental Figure S1. In this framework, for a given species tree and
a given set of gene trees, client processes compute L(Gi), send the
values to a server process, which then computes L(T, S, N|A). In
addition to computing the scores, client and server processes are in
charge of optimizing the genes and species trees, respectively. The
server process runs an algorithm to search for the best species tree
according to L(T, S, N|A), and the client processes search for the best
gene trees according to L(Gi). These algorithms rely on subtree
prunings and regraftings, re-rootings, and nearest neighbor in-
terchanges to explore tree space. The only communications are
between the server and the clients, and are kept to a minimum,
ensuring efficiency (see Supplemental Material, section 2).

Overall algorithm

PHYLDOG takes as its input gene alignments, a mapping between
gene names and species names, and a list of species names. Based
on these elements only, it can infer gene trees, species tree, and
branchwise numbers of DLs.

The overall algorithm aims at maximizing L(T, S, N|A). The
server explores the species tree space and, for each species tree
explored, sends the species tree and parameters of DLs to the cli-
ents. The clients use the species tree and the parameters sent by the
server to explore gene tree space, they maximize L(Gi), and return
the maximum L(Gi) they found to the server as well as counts
obtained from the gene trees. The server can then compute L(T, S,
N|A) and update the species tree and parameters of DLs before
sending these to the clients. The algorithm stops when L(T, S, N|A)
can no longer be improved (see Supplemental Material, section 4).

Data access
Our implementation of PHYLDOG is available at: http://pbil.
univ-lyon1.fr/software/phyldog/.
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