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This paper details a novel probabilistic method for automatic neural spike sorting which uses stochastic point process models
of neural spike trains and parameterized action potential waveforms. A novel likelihood model for observed firing times as the
aggregation of hidden neural spike trains is derived, as well as an iterative procedure for clustering the data and finding the
parameters that maximize the likelihood. The method is executed and evaluated on both a fully labeled semiartificial dataset
and a partially labeled real dataset of extracellular electric traces from rat hippocampus. In conditions of relatively high difficulty
(i.e., with additive noise and with similar action potential waveform shapes for distinct neurons) the method achieves significant
improvements in clustering performance over a baseline waveform-only Gaussian mixture model (GMM) clustering on the
semiartificial set (1.98% reduction in error rate) and outperforms both the GMM and a state-of-the-art method on the real dataset
(5.04% reduction in false positive + false negative errors). Finally, an empirical study of two free parameters for our method is
performed on the semiartificial dataset.

1. Introduction

Trace signals from extracellular electrodes implanted in a
population of neurons are extremely valuable for studying
the behavior of neurons and are used as the primary input
source for motor and communication prostheses based on
brain-computer interfaces [1, 2]. Given a trace of extracellular
electric potential signals, neural spike sorting is the task
of detecting neuronal action potential events in the form
of “spikes” in the extracellular signal and identifying which
neurons or neuronal clusters produced each spike in the trace.
Many approaches to the spike sorting problem are based on
discriminating between neuronal units by extracting features
from spike waveforms and forming clusters in the feature
space. This includes manual spike sorting approaches, where
an expert visually identifies clusters of spike waveforms, and
automatic approaches, which are typically based on rigorous
signal processing and statistical modeling for clustering or
classification. Many studies and practical implementations
confirm the effectiveness of waveform-based spike sorting
approaches; thorough reviews are given in [3, 4]. While
approaches that use only the waveform shape have been
successful, these methods are particularly susceptible to

some very common sources of errors in intracortical BCIs.
Distinct neurons having similar waveform shapes, changes
in time-domain, and parameterized waveform shapes due
to movement of the electrodes and excessive background
noise all have a direct negative impact on the performance
of waveform-only spike sorting methods.

An ensemble of neural spike trains, one for each neuron
or neuronal cluster in the vicinity of the electrode, is typically
the most important result of the spike sorting operation
[5]. Estimates of the firing rates of neural spike trains, as
well as stochastic point process models of the spike trains
themselves, are used to make inferences about populations
of neurons [6–8] and for decoding in intracortical BCIs [9–
13]. While modeling and analysis of spike trains is usually
associated with neural decoding, a number of recent studies
have advocated incorporating neural spike trains (and other
temporal information) into the process of spike sorting.
A complete maximum-likelihood framework based on a
variant of hidden Markov models (HMMs) is described in
[14] to model neuronal bursting behavior. The sparse HMM
framework proposed in [14] models counts of neural firing
events in equally spaced time frames. In another study,
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extracellular traces were divided into short-duration time
segments to model the nonstationarity of neuronal action
potential waveform features [15]; Viterbi decoding was then
used to find the optimal clustering across time segments. Sev-
eral studies have explicitly incorporated models of interspike
interval (ISI) durations into spike sorting [16, 17]. Stationary
models of spike amplitudes and ISI durations are used in [16],
while HMMs are incorporated in [17] to model the time-
varying firing behavior of each neuron. Finally, a joint model
of waveforms and firing rates, as modulated by a function of a
known covariate quantity, was introduced in [18]. In [16, 17],
Markov chain Monte Carlo distribution sampling was used
for model inference.

In this paper, we detail a novel, probabilistic framework
for neural spike sorting, based on stationary, stochastic ISI
models of neural spike trains. A preliminary version of this
work was presented previously in conference proceedings
[19, 20]. Our method for spike sorting introduces a joint
probabilistic model of parameterized spike waveforms and
the occurrence times of an ensemble of neural spike trains.
We derive a novel likelihood model and a procedure for
clustering and parameter estimation and then evaluate the
model on both fully labeled semiartificial neural data and
partially labeled real data.

In Section 2 we describe our methods in detail. In
Section 2.1, we define neural spike sorting as a latent-variable
problem with three variables: the set of observed waveforms,
the observed firing times, and hidden neuronal cluster labels.
We give likelihood expressions for the three variables, and
formulate the solution as maximizing their joint likelihood.
We model the set of observed firing times as the aggregation
of an ensemble of neural spike trains, one for each neu-
ronal cluster, using a stationary, stochastic interspike interval
model for each spike train. We then express the likelihood of
the observed firing times as the joint likelihood of 𝐾 neural
spike trains. In Section 2.2, with the likelihoodmodel defined,
we derive a novel iterative method for clustering the data
by finding the model parameters that maximize the joint
likelihood of the firing times, waveforms, and hidden labels.
For computational efficiency, the clustering method depends
on iterating forward in time and keeping a short history
of recent firing times at each stage. Section 2.3 gives detail
about our choices for the probability distributions used in the
likelihood model, and Section 2.4 explains the meaning and
use of the procedure’s two hyperparameters.

Finally, in Section 3, we evaluate our method on publicly
available datasets. We first use realistic, semiartificial data
(i.e., real spike waveforms, with synthesized firing times),
with a complete set of labels, to evaluate the performance of
our spike sorting procedure versus a state-of-the-art method.
We then evaluate our procedure on a completely real dataset,
consisting of extracellular traces, and an intracellular trace for
one neuron.

2. Methods

The task of neuronal action potential identification, or spike
sorting, can be seen as a latent variable problem where

the set of detected firing times and corresponding action
potential waveforms are observed in an extracellular electric
trace, and the identity of the underlying neurons is a hidden
variable. In the remainder of this section, we describe a new
approach to the spike sorting problem, where we model the
set of observed, threshold-crossing neuronal firing times as
the aggregation of multiple hidden point processes, one for
each neuron. We use an iterative procedure to estimate the
maximum likelihood sequence of states based on the set of
observed action potential waveforms and firing times.

2.1. Likelihood Model. Let the vector z = {𝑧
𝑖
}
𝑁

𝑖=1
be the time

occurrences of𝑁 observed, threshold-crossing events corre-
sponding to firings of a population of 𝐾 cortical neuronal
clusters in the vicinity of the electrode. Let X = {x

𝑖
}
𝑁

𝑖=1

be the set of corresponding parameterized action potential
waveforms, where each vector x

𝑖
has dimension 𝐷, and let

c be an 𝑁-length, discrete-valued vector containing the set
of unknown neuronal labels corresponding to each observed
event.

We define the posterior probability 𝑃(c | X, z) as follows:

𝑃 (c | X, z) = 𝑃 (X, z, c)
𝑃 (X, z)

∝ 𝑃 (X, z, c) , (1)

where we note that the term 𝑃(X, z) in (1) does not vary with
respect to c.

The optimal sequence ĉ thus satisfies

ĉ = arg max
c

𝑃 (X, z, c) . (2)

The graphical model in Figure 1 illustrates the assump-
tions about the statistical dependencies between the observed
variables X and z and the latent variable c that we will use
in our modeling framework. The figure illustrates that the
observed variables in X and z depend on the hidden labels
in C, but not on each other. On this basis, we express the
likelihood 𝑃(X, z, c) as follows:

𝑃 (X, z, c) = 𝑃 (X, z | c) 𝑃 (c) (3)

= 𝑃 (X | c) 𝑃 (z | c) 𝑃 (c) , (4)

where the terms 𝑃(X | c) and 𝑃(z | c) express the likelihood
of the observed set of extracted neuronal waveforms and
their corresponding occurrence times, respectively, given a
sequence of neuronal labels c, and 𝑃(c) is the likelihood of
the sequence itself.

In all experiments, we model the parameterized action
potential waveform for each neuronal cluster as a single,
multivariate Gaussian with parameters 𝜃 = {𝜇,Σ}, such that
the waveform likelihood for cluster 𝑗 is given by 𝑝(x; 𝜃

𝑗
) =

N(x; 𝜇
𝑗
,Σ
𝑗
) and the likelihood for the complete set of

waveforms is given by

𝑝 (X | c) =
𝑁

∏

𝑖=1

𝑝 (x
𝑖
; 𝜃
𝑐𝑖
) . (5)

We characterize the temporal behavior of a population of
𝐾 neuronal clusters by modeling the set of neuronal firing
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Figure 1: Statistical dependencies for parameterized waveforms X,
occurrence times z, and labels c.
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Figure 2: Lattice structure for clustering and parameter estimation.

times z as the aggregation of 𝐾 independent point processes
(t
1
, t
2
, . . . , t

𝐾
), where each t

𝑘
= {𝑧
𝑗
}
𝑗∈𝑐𝑘

is the subset of
z corresponding to firings of the 𝑘th neuronal cluster. It
is convenient to model the likelihood 𝑃(t

𝑘
) based on the

distribution of interspike interval durations. Let 𝑓
𝑘
(𝜏; 𝜙isi)

be a probability density function with parameter set 𝜙isi,
characterizing the distribution of the continuous, univariate
time period 𝜏 = 𝑡

𝑘,𝑖
−𝑡
𝑘,𝑖−1

between two consecutive firings of
neuronal cluster 𝑘 occurring at times 𝑡

𝑘,𝑖
and 𝑡
𝑘,𝑖−1

. Assuming
that interspike interval durations are independent and iden-
tically distributed, the likelihood 𝑃(t

𝑘
) can be expressed as

𝑃 (t
𝑘
) = 𝑤
𝑘
(𝑡
𝑘,1
; 𝜙init)

𝑁𝑘

∏

𝑖=2

𝑓
𝑘
(𝑡
𝑘,𝑖
− 𝑡
𝑘,𝑖−1

; 𝜙isi) 𝑔𝑘 (𝑡𝑘,𝑁𝑘 ; 𝜓) ,

(6)

where 𝑁
𝑘
is the number of neuronal firings in t

𝑘
, 𝑤
𝑘
(𝑡; 𝜙init)

is the distribution of the first firing time 𝑡
𝑘,1
, and 𝑔

𝑘
(𝑡
𝑘,𝑁𝑘

) =

∫
∞

𝑇
𝑓
𝑘
(𝑥−𝑡
𝑘,𝑁𝑘

; 𝜙
𝑘
)𝑑𝑥 is the distribution of the last firing time

𝑡
𝑘,𝑁𝑘

, where 𝑇 is the total time length of the dataset [21]. We
model the likelihood 𝑃(z | c) of the complete set of firing
times in terms of the joint occurrence of all class-conditional
firing times; that is, 𝑃(z | c) = 𝑃(t

1
, t
2
, . . . , t

𝐾
). Since we have

assumed that these𝐾 point processes are independent, we say

𝑃 (z | 𝑐) = 𝑃 (t
1
, t
2
, . . . , t

𝐾
) =

𝐾

∏

𝑘=1

𝑝 (t
𝑘
) . (7)

The last term in (4), 𝑃(c), is the likelihood of the set of
neuronal firing labels. It is important to note that since we

have assumed that each neuronal cluster fires independently,
all temporal modeling is expressed in terms of firing times
and interspike intervals. Thus, unlike a hidden Markov
model, we do not apply any explicit statistical modeling to
the sequence of labels, and the likelihood 𝑃(c) is simply given
by

𝑃 (c) =
𝑁

∏

𝑖=1

𝑃 (𝑐
𝑖
) . (8)

2.2. Clustering and Parameter Estimation. We can represent
the dynamic relationship between X, c, and z with the lattice
structure depicted in Figure 2. Figure 2 depicts a dataset
consisting of 𝐾 = 3 neuronal clusters, with 𝑁 = 5

observed firing times in z and corresponding action potential
waveforms inX. The lattice structure is similar in appearance
to the commonly used HMM trellis but has some important
differences. Particularly, since we do not explicitly model
transitions between states and all temporal modeling is based
on 𝑃(z | c), uneven horizontal spacing is used to illustrate
observed interarrival durations in z.

For the spike sorting task, we seek to exploit both the
action potential waveform shape in X and the temporal
information in z. To find themaximum likelihood sequence ĉ
as defined in (2)we use an approximate, iterative procedure to
find the best path through the state space depicted in Figure 2.
The procedure is initialized with a clustering based on the set
of action potential waveforms only.

Given a set of parameters 𝜆 = {𝜃, 𝜙init, 𝜙isi}, we determine
themaximum likelihood state sequence ĉ by deriving a recur-
sive expression for the joint likelihood𝑃(X, z, c). Let the nota-
tion 𝑃({x

𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
) indicate the joint likelihood of

the first 𝑛 data points, such that the likelihood of the full set of
𝑁 data points is given by𝑃(X, z, c) = 𝑃({x

𝑖
}
𝑁

𝑖=1
, {𝑧
𝑖
}
𝑁

𝑖=1
, {𝑐
𝑖
}
𝑁

𝑖=1
).

We decompose 𝑃({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
) as follows:

𝑃 ({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
)

= 𝑃 (x
𝑛
, 𝑧
𝑛
, 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

= 𝑃 (x
𝑛
, 𝑧
𝑛
, 𝑐
𝑛
| {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

= 𝑃 (x
𝑛
| 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 (𝑧
𝑛
| 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 (𝑐
𝑛
| {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
) ,

(9)

where we have used the statistical dependency assumptions
given in (4) and (5) and illustrated in Figure 1. Assuming that
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action potential waveforms in x
𝑛
and hidden labels in 𝑐

𝑛
do

not depend on any previous samples, we obtain

𝑃 ({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
, 𝑐
𝑛
= 𝑗)

= 𝑃 (x
𝑛
| 𝑐
𝑛
= 𝑗) ⋅ 𝑃 (𝑧

𝑛
| 𝑐
𝑛
= 𝑗, 𝜁
𝑗
) ⋅ 𝑃 (𝑐

𝑛
= 𝑗)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
) .

(10)

Note in (10) that we have expressed the likelihood of
an 𝑛-length label sequence ending in state 𝑗 and that we
have introduced a new variable 𝜁

𝑗
. Given a label sequence

ending in state 𝑗, the likelihood 𝑃(𝑧
𝑛
| 𝑐
𝑛
= 𝑗, 𝜁

𝑗
) depends

on 𝜁
𝑗
< 𝑧
𝑛
, which we define as the most recent, previous

occurrence time of state 𝑗. To find 𝜁
𝑗
, some bookkeeping

is necessary. Specifically, at each iteration we retain the 𝐿

highest likelihood label sequences or paths through the lattice
structure illustrated in Figure 2 (the number of paths, 𝐿,
is determined empirically). Each path contains only the
most recent spikes occurring within a history time window,
starting at time 𝑧

𝑛
− 𝜏win and ending at 𝑧

𝑛
. The length 𝜏win of

the history window is constant and is determined empirically.
The likelihood in (10) is computed for the best 𝐿 paths
retained from the previous iteration. For a given path, the
duration 𝑧

𝑛
− 𝜁
𝑗
is modeled with an interarrival distribution

𝑓
𝑗
as expressed in the second term of (6). If no previous

occurrences of state 𝑗 are found in a given path, we say that
𝜁
𝑗
= −∞ and the distribution 𝑤

𝑗
(expressed in the first term

in (6)) for the first firing time is used instead, with thewindow
length 𝜏win as its argument. This is expressed in (11):

𝑝 (𝑧
𝑛
| 𝑐
𝑛
= 𝑗, 𝜁
𝑗
)

= {
𝑤
𝑗
(𝜏win 𝜙init) , 𝜁

𝑗
= −∞

𝑓
𝑗
(𝑧
𝑛
− 𝜁
𝑗
𝜙isi) , otherwise.

(11)

Iterative Procedure. Though our spike sorting method uses
both spike waveforms and firing times, we must initialize
the procedure using spike waveforms only. We model the
waveforms in X as a Gaussian mixture model (GMM) and
find the maximum likelihood waveform parameters using
the expectation-maximization (EM) algorithm to produce
an initial clustering. Based on the initial clustering, we
estimate parameters 𝜙isi,𝑗 for the interarrival distribution 𝑓

𝑗

and 𝜙init,𝑗 for the first-firing distribution 𝑤
𝑗
, for each neuron

𝑗. For the first firing and interarrival distributions 𝑤
𝑗
and

𝑓
𝑗
, we use the exponential and lognormal probability density

functions, respectively. We then assign each data point x
𝑖
to

the maximum a posteriori GMM component to produce a
clustering and estimate parameters 𝜆 = {𝜃, 𝜙isi, 𝜙init} based
on the clustering. The 3-step procedure is then as follows.

(1) Decode with parameters 𝜆 and produce a segmenta-
tion.

(2) Estimate parameters 𝜆new based on the segmentation.

(3) Reiterate until convergence.

2.3. Probability Distributions. A breakdown of the probabil-
ity distributions and their parameters used in all experiments
is given in Table 1. We model parameterized action potential
waveforms for each cluster as single, multivariate Gaussians
and model interarrival durations with the conditional dis-
tribution expressed in (11). For 𝑤

𝑗
, the distribution of the

“first firing” after a long duration, we use a simple Poisson
distribution 𝑤

𝑗
(𝑘; 𝛽𝑡) = (𝛽𝑡)

𝑘
𝑒
−𝛽𝑡

/𝑘!|
𝑘=1

, with duration
parameter 𝛽 and event count 𝑘 = 1. For the ISI distribution
𝑓
𝑗
, we use a log-normal density with parameters 𝜇 and 𝜎

2.
The log-normal density has been shown to have a superior
empirical fit to neuronal ISI durations having a necessary
minimum refractory period [16, 17].

2.4. Parameters 𝐿 and 𝜏. In addition to the distribution
parameters 𝜆 = [𝜃, 𝜙init, 𝜙isi], our procedure has two free
parameters 𝐿 and 𝜏, which are determined empirically; these
are the number of paths and the history window length,
respectively. The number of paths 𝐿 is typically chosen
according to a trade-off of accuracy against speed and
memory usage. We choose the window length 𝜏 such that
the “𝜁

𝑗
= −∞” condition in (11) occurs rarely. 𝜏 is chosen

to be larger than an interarrival duration 𝑡
𝑘,𝑖

− 𝑡
𝑘,𝑖−1

for
any neuron 𝑘 with high probability. To estimate 𝜏 we fit a
lognormal distribution to each neuronal cluster based on an
initial waveform-only clustering of the data and choose 𝜏

𝑘

to cover 99% of the area under the lognormal ISI curve for
neuron 𝑘. The history window 𝜏 is then simply 𝜏 = max

𝑘
𝜏
𝑘
.

The general expression for the log-normal density function
for a variable 𝑡 with parameters 𝜇 and 𝜎

2 is given by

𝑡 ∼ LogNorm (𝑡; 𝜇, 𝜎
2
) =

1

𝑡𝜎√2𝜋

exp[−1
2
(
log 𝑡 − 𝜇

𝜎
)

2

] .

(12)

Given a set of univariate, Gaussian-distributed data 𝑥 ∼

N(𝑥; 𝜇, 𝜎
2
), if 𝜒 is the logarithm of 𝑥 then, by definition,

𝜒 is log-normal distributed, such that 𝜒 = log(𝑥) ∼

LogNorm(𝜒; 𝜇, 𝜎
2
). The log-normal parameters 𝜇 and 𝜎2 are

then the mean and variance of exp(𝜒), respectively. The log-
normal distribution is supported on the range [0,∞) and has
been used successfully to model neuronal interspike interval
durations [16, 17].

3. Experimental Results

Given a real, continuous extracellular trace, it is typically
impracticable to obtain a complete set of ground truth labels
since it cannot be directly observed which neuron caused
each action potential spike in the trace.Thismakes evaluation
for spike sorting difficult in most nontrivial cases. Synthetic
extracellular traces, which are often partially composed of
real data, provide fully labeled datasets useful for develop-
ment and evaluation of spike sorting methods. When fully
authentic data are desired, however, it is possible to collect
data using both an extracellular electrode and a carefully
placed intracellular electrode in one neuronal cell to obtain
a partial ground truth labeling. Spikes on an intracellular
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Table 1: Breakdown of parameter set 𝜆 = [𝜃, 𝜙init, 𝜙isi] and
probability distributions for joint waveform and firing rate spike
sorting.

Waveform Gaussian 𝜃
𝑗
= {𝜇
𝑗
,Σ
𝑗
}

First firing [𝑤
𝑗
] Poisson 𝜙init,𝑗 = {𝛽

𝑗
}

ISI [𝑓
𝑗
] Log-normal 𝜙isi,𝑗 = {𝜇

𝑗
, 𝜎
2

𝑗
}

electrode identify the firing times of one neuron with near
certainty. In Sections 3.1 and 3.2, we apply our spike sorting
method to two publicly available sets of cortical extracellular
traces to demonstrate its performance. One of these datasets
is real and partially labeled, and the other is semiartificial and
fully labeled. Finally, in Section 3.3, we perform an empirical
study of the parameters 𝐿 and 𝜏 using the semiartificial, fully
labeled dataset.

3.1. WaveClus Semiartificial Dataset. We evaluate our spike
sorting methods with labeled data collected, in part, from
the publicly availableWaveClus artificial dataset [22]. We use
randomly selected action potential waveforms from “Exam-
ple 1” and “Example 2” subsets, hereafter referred to as “Easy1”
and “Difficult1,” respectively. Each data subset consists of
𝐾 = 3 neuronal clusters with characteristic action potential
waveform shapes drawn from a library of templates. The 3
characteristic waveforms in the “Difficult1” set are similar
to each other in shape and are generally more difficult to
separate than in the “Easy1” set. All of the WaveClus datasets
contain realistic additive background noise at varying power
levels. For our spike sorting experiments, we added additional
Gaussian noise to the baseline data at various SNR levels. We
use principal components analysis (PCA) for dimensionality
reduction in all experiments. Scatter plots of the first 2
principal components are given in Figure 3 for both data
subsets under various noise conditions.

All subsets of the WaveClus dataset contain 3 neuronal
clusters with artificial firing times having identical firing rate
statistics. For our experiments, we generated firing times
according to a Monte Carlo sampling of 3 independent log-
normal distributions, resulting in a dataset of 2483 firing
times 24 seconds in length. A minimum 3-millisecond
interval durationwas enforced tomodel the refractory period
for all clusters.

Table 2 gives the simulation parameters, 𝜇 and 𝜎
2, we

used to generate interspike interval durations, along with the
mean, in milliseconds, of the generated data. The parameters
listed in Table 2 were determined by computing the sample
mean and variance of putative log interarrival times taken
from another publicly available dataset. (These data were
collected in the Laboratory of Dario Ringach at UCLA and
downloaded from the CRCNS website.) Plots of interspike
interval histograms are given in Figure 4.

Results.To evaluate the accuracy of ourmethod for spike sort-
ing, we compute the classification accuracy of the best match
between the set of true clusters and the set of putative clusters
identified by our procedure.Quantitative performance results
for the WaveClus dataset are given for the baseline GMM

Table 2: Simulation parameters for interspike interval data.

Cluster Parameters Mean ISI (ms)
𝜇 𝜎

2

1 1.5814 2.4203 24.5342
2 2.1610 1.9380 30.0564
3 1.9651 2.7068 33.9112

Table 3: Classification error rates for the WaveClus semiartificial
dataset.

Dataset SNR GMM WaveClus
method Proposed

Easy1

Clean 0.93% 0.00% 0.97%
10 dB 0.72% 0.00% 0.77%
5 dB 0.89% 0.00% 0.85%
0 dB 0.81% 0.21% 0.85%
−5 dB 1.25% 0.52% 0.97%
−10 dB 8.18% 3.47% 6.20%

Difficult1

Clean 3.18% 0.45% 2.58%
10 dB 4.83% 0.94% 3.46%
5 dB 6.89% 1.36% 5.32%
0 dB 19.77% 20.0% 37.21%

procedure and for our joint waveform and firing rate method
in Table 3. We compare our proposed approach to a GMM
baseline clustering (i.e., the waveform-only initialization)
and to the state-of-the-art superparamagnetic clustering or
“WaveClus” method [22]. Gaussian noise was added to both
the “Easy1” and “Difficult1” datasets at various SNR levels
with the original WaveClus dataset labeled “Clean” in the
table.

Overall, we find that our method, which extends the
waveform-only baseline by incorporating a hidden point
process model for each neuron, reduces the error rate in the
presence of noise. The error rate for the “Easy1” dataset at
higher SNR levels (SNR > 0 dB) is not significantly changed
from the baseline initialization by our joint waveform and
firing ratemethodwith respect to the initial clustering, which
was already quite low (less than 1.0% error). The absolute
difference in error rate for the baseline GMM clustering and
our proposed method is less than 0.05% (i.e., 1 out of 2483
spikes in the dataset) at higher SNR levels. Since this dataset
was particularly easy to classify, we added noise at −5 dB and
−10 dB SNR. In the presence of high noise (−10 dB SNR), we
reduce the error rate from 8.18% to 6.20% by incorporating
temporal information.

A similar trend is seen with the “Difficult1” dataset, but
at higher SNR levels. At 10 dB SNR and 5 dB SNR, we reduce
the error rate with respect to the baseline by 1.37% and 1.57%,
respectively. However, when SNR is reduced to 0 dB for the
“Difficult1” dataset, we see a significant increase in the error
rate. The WaveClus method, however, performs significantly
better on this dataset overall.
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Figure 3: First 2 PCA coefficients of action potential wave forms plus noise at various SNR levels for the “Easy1” and “Difficult1” semi-artificial
data sets.
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Figure 4: Inter-spike interval histograms for both the “Easy1” and “Difficult1” data sets. Spike firing times were generated according to a
log-normal ISI distribution with parameters listed in Table 2, and a minimum refractory period of 3msec.

3.2. Continuous Extracellular Traces. To evaluate our meth-
ods on real, continuous data, we use a publicly available
dataset of cortical electrical traces taken from hippocampus
of anesthetized rats, hereafter referred to as “HC1” [23]. The
HC1 dataset consists of traces of extracellular (EC) electric
potentials, as well as intracellular (IC) traces for 1 of 𝐾

neurons in the vicinity of the EC electrodes. We use two
subsets of the HC1 dataset, each 4 minutes in length, to
evaluate our spike sorting procedure. Both the EC and IC
electric potential signals for Datasets 1 and 2 were recorded at
a sample rate of 20 kHz.We use a high-pass filter to eliminate
waveform drift for the extracellular signals. A plot of a 1.79
s segment of simultaneously recorded EC and IC signals

from Dataset 1 is given in Figure 5. Three peaks in the lower
panel of Figure 5 indicate firing times of the “IC neuron” and
correspond to 3 of the peaks in the EC signal in the upper
panel.

Methodology.Wedetect neuronal action potentials as “spikes”
in the extracellular signal exceeding a threshold of 5𝜎, where
𝜎 is an estimate of the standard deviation as defined in
[22]. In all spike sorting experiments, we extract observed
action potential events as 4ms waveforms centered at the
peak point in each extracellular spike. To locate spikes on
the intracellular channel in each data subset, we take the first
backward difference of the IC signal and apply a peak-picking
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Table 4: Classification error rates (FP + FN) for the HC1 dataset.

Dataset SNR GMM WaveClus Method Proposed
Wavelets PCA

Dataset 1

Clean 10.64% 32.02% 17.98% 5.60%
15 dB 9.73% 24.5% 16.79% 4.77%
10 dB 9.73% 31.84% 21.47% 4.95%
5 dB 11.28% 31.93% 32.02% 6.51%
0 dB 10.19% 32.11% 31.56% 9.27%
−5 dB 20.09% 32.11% 32.02% 15.23%
−10 dB 31.93% 67.98% 31.93% 32.11%

Dataset 2

Clean 2.09% 8.49% 6.56% 1.86%
15 dB 1.96% 7.56% 6.20% 1.76%
10 dB 1.99% 7.59% 6.27% 1.89%
5 dB 2.29% 19.62% 11.04% 2.06%
0 dB 3.51% 19.42% 14.29% 3.45%
−5 dB 6.99% 19.65% 19.52% 5.87%
−10 dB 32.55% 19.59% 19.56% 30.53%
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Figure 5: Simultaneous extracellular (EC) and intracellular (IC)
electric potential traces taken from Dataset 1 of completely real data
set HC1. True firing times of the “IC neuron” are known with near
certainty.

algorithm to it. EC action potentials occurring within 1ms
of an IC spike are labeled as belonging to the IC neuron. In
Dataset 1, we detected 1090 total extracellular firings and 396
intracellular firings. In Dataset 2, we detect 3017 EC firings
and 1100 IC firings. In each dataset, there are𝐾 = 3 neuronal
clusters.

For EC waveforms, we use principal components anal-
ysis (PCA) for dimensionality reduction. We keep the first
3 principal components as features for X, the matrix of
observed action potential waveforms. For our spike sorting
experiments, we add Gaussian noise to the waveform at
various SNR levels before applying PCA. Scatter plots of the
first two principal components at various SNR levels are given

in Figure 6; extracellular waveform features corresponding
to firings of the IC neuron are distinguished with black “X”
markers.

Evaluation. Given only a partial labeling of the data, we can
evaluate the performance of a spike sorting result in terms
of false positive (FP) and false negative (FN) errors for the
labeled IC neuron. When a spike corresponding to the IC
neuron ismisclassified, a FN error is counted; inversely, when
a spike is erroneously classified as belonging to the IC neuron,
a FP error is counted. The error rate is defined as the sum of
the FN and FP counts, divided by the number of EC firings.

Results.Quantitative performance results, in terms of the total
(FP + FN) error rate, are given in Table 4. For the WaveClus
method, we use both a wavelet-based parameterization (the
default choice for the WaveClus software package) of action
potential waveforms and PCA features for a more direct
comparison with the other results.

Our proposed joint waveform and firing rate approach
performs the best in all cases except at the lowest SNR level
for both data sets 1 and 2. The WaveClus method results in
very high FN error counts, but low FP counts (only the total
error rate, FP + FN, is shown in Table 4). We see a larger
improvement over the GMM baseline (nearly 5% at some
levels) for Dataset 1, which is ostensibly the more difficult set
of the two, as evidenced by higher overall error rates for all
classifiers.

3.3. Empirical Study of Parameters. Our clustering approach
involves retaining a large number of paths, 𝐿, and a time
history window of length 𝜏 of recent firings. In all of our
previously reported results, we have used a fixed value of
𝐿 = 10000 paths chosen on the basis of computational
and memory constraints. The value of 𝜏 was determined to
cover 99% of the area of the estimated interspike interval
probability density curve, as described in Section 2.4. In this
section, we perform an empirical study on the impact of our
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Figure 6: PCA waveform features plus noise for Dataset 2 of HC1. Features for the “IC neuron” are shown with black “X” markers.

two free parameters 𝐿 and 𝜏 on spike sorting performance on
theWaveClus dataset. We first study the impact of increasing
𝐿 on classification accuracywith 𝜏 determined as described in
Section 2.4.Then, with a fixed value of 𝐿 (we chose 𝐿 = 1000)
we study the effect of 𝜏 on the accuracy over a reasonable
range. To evaluate, we simply compute the classification
accuracy for the best match between the set of true clusters
and the putative result.

In Figure 7, we plot the classification error rate for our
spike sorting method with the value of 𝜏 determined empir-
ically for values of 𝐿 ranging from 100 to 10000 paths on a
logarithmically scaled ordinate axis. For the Easy1 dataset and
at higher SNR levels, the performance is largely unaffected
by the number of paths 𝐿. For Difficult1 dataset, the value of
𝐿 has a much more significant impact on the outcome. The
impact is more pronounced for lower SNR levels, reducing
the error rate for Difficult1, 5 dB SNR case, from 7.5% to
5.3% across the extremes of the range. The results in Figure 7
illustrate a trade-off of accuracy against computation and
memory requirements, both of which increase with 𝐿, and
suggest that except in difficult, high-noise conditions, the
number of paths 𝐿 can be effectively reduced with minimal
impact on performance.

To evaluate the impact of the history window length 𝜏, we
apply our spike sorting procedure to theWaveClus data over a
range of values, this time holding the number of paths 𝐿 fixed.
Choosing a value of 𝐿 = 1000, we implement our procedure

for values of 𝜏 ranging up to 300ms. Plots of the error rates
obtained on the WaveClus dataset are given in Figure 8. As
with 𝐿, the accuracy is less sensitive to the value of 𝜏 in easier,
low noise conditions.

4. Discussion

Our probabilistic method for spike sorting is motivated by
the idea that both the spike waveforms and their corre-
sponding firing times constitute observed data useful for
making inferences about the underlying hidden process of
which neurons produced them. In doing so, we incorporate
relevant data largely unused bymany traditional spike sorting
approaches. We combine a single Gaussian model of spike
waveforms and a first-order renewal process model of firing
times for each neuron into a joint probabilistic model of
several neurons in the vicinity of an electrode. The observed
firing times are modeled as the aggregation of𝐾 independent
point processes.

Our method is designed to improve accuracy over
waveform-only spike sorting methods, especially under con-
ditions to which these methods are particularly sensitive,
such as the presence of high noise and having similar wave
shapes for distinct neurons. Our method consists of a joint
probabilistic model of multivariate single Gaussians for the
first two principal components of neural spike waveforms
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Figure 7: Error rate versus 𝐿, the number of paths.
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and log-normal and Poisson ISI models for the neural spike
trains. To study the impact of incorporating neural spike
trainmodels we compared the performance of ourmethod to
a waveform-only clustering of multivariate Gaussians using
the expectation-maximization GMM (EM-GMM) algorithm
and the state-of-the-art WaveClus algorithm. First, we evalu-
ated all methods on a modified version of the semiartificial
WaveClus dataset, for which all neuronal labels and firing
times are known with certainty. While the state-of-the-art
WaveClus method outperforms our method on this dataset,
we achieved significant reductions in the error rate versus the
EM-GMM waveform-only model in two general cases: (1)
“Easy” waveforms (i.e., distinct wave shapes for distinct neu-
rons) in the presence of high additive background noise and
(2) “Difficult” waveforms with relatively low noise. In both of
these cases, there is significant overlap in the waveform fea-
ture space, but the firing times,which are determined through
detecting threshold-crossing spikes, are not significantly
impacted. Under these conditions, our model uses all of the
information and converges on a better result after an iterative
procedure.

In the second dataset, composed of completely real
data, our method consistently achieves better performance
than both the baseline waveform-only EM method and the
WaveClus method. It should be restated here that error rates
reported on this dataset reflect only one out of three neurons
and are only a partial measure of total classification or
clustering performance. We achieve considerable reductions
in the error rate versus the baseline on Dataset 1 at all noise
levels and on Dataset 2 in relatively high noise (i.e., −5 dB
SNR). As with the “Easy” data set from the semiartificial
WaveClus data, when the baseline EM-GMMmethod already
achieves a low error rate, our proposedmethod achieves only
a small improvement. With Dataset 1 and the high noise or
“Difficult” configurations of the WaveClus set, the baseline
error is already relatively high, and our model reduces it
significantly (as much as 1.98% for the WaveClus data and
5.04% for Dataset 1). However, in extremely high noise
(−10 dB for both real datasets and 0 dB for the “Difficult”
WaveClus dataset) our method obtains high error rates
(greater than 30% error rate). The likely cause for the failure
in extremely high noise is that our method is sensitive to its
initial clustering (recall that the waveform-only EM-GMM
method is actually used to provide the initial clustering
for our proposed procedure) and our iterative parameter
estimation procedure described in Section 2.2 is unable to
converge. Therefore, our spike sorting procedure, which uses
models of neural spike trains, achieves the most impact-
ful reductions in error rate on problems of intermediate
difficulty.

Contributions of this work include modeling the likeli-
hood of the observed point process of firing times as the
joint likelihood of an ensemble of spike trains; amathematical
derivation of the joint likelihood of waveforms, firing times,
and labels in terms of previous data points; and the derivation
of an iterative clustering and parameter estimation procedure
using a piecewise ISI likelihood expression. Our procedure
for clustering and parameter estimation operates by alter-
nately maximizing the data likelihood and estimating new

parameters based on the result. While the basic idea is simi-
lar to expectation-maximization or Viterbi-based parameter
estimation in HMMs, our procedure is suboptimal with
respect to the data likelihood. Since our approach depends
on retaining a large number of the highest likelihood paths,
performance, then, depends on the available computational
resources. For this reason, we studied the impact of the
number of stored paths on spike sorting performance and
found that, except in themost difficult, high-noise conditions,
we could reduce the number of paths by a factor of 10 without
a significant loss in accuracy.

It should be noted that some issues important to the
spike sorting problem, and to clustering problems in gen-
eral, have not been directly addressed here. Using datasets
each containing the same number of neurons, we have not
addressed determining the number of neurons automatically.
Since we initialize our procedure with a waveform-only
GMM clustering, determining the number of clusters using
the Aikake information criterion (AIC), the Bayesian infor-
mation criterion (BIC), or several other methods requires
only a simple extension. However, the iterative clustering
procedure can potentially prune out clusters dynamically.
A measured approach to pruning out clusters (including
initializing with a high number of clusters) is a topic for
future study. Overlapping spikes, changes in waveform shape
due to electrode drift, and waveform attenuation, especially
due to bursting activity, are also important topics for future
research. Though our findings suggest that our algorithm,
which incorporates firing information, might be particularly
robust to electrode drift and waveform attenuation, since it
improves over the baseline with difficult waveform shapes
and high noise, this should be verified experimentally in
future research.

4.1. Comparisons to Related Work. In this paper, we have
proposed and demonstrated a novel spike sorting method
motivated by the idea that both observed spike waveforms
and observed information about the timing of spike events
are potentially useful for the spike sorting task. A number of
other recent studies have introduced spike sorting methods
based on this general idea and, in this section, we contrast
these approaches and their merits to ours.

In [14], Sahani introduced a statistical model of neuronal
action potentials, particularly well suited for “bursts” of
neural firings, that is, sequences of very rapidly occurring
action potentials. The method for spike sorting proposed
in [14], termed Sparse Hidden Markov Models (SHMMs),
is a special case of the well-known hidden Markov model
(HMM), but with the restriction that the majority of outputs
are expected to be in a null state corresponding to nonfirings.
The SHMM, as applied to modeling neural firings in [14]
involves partitioning the neural firing activity into relatively
long (0.5ms) equal length time bins. Transitions between
states are then restricted in the HMM transition matrix
in such a way as to model neural bursting behavior. The
SHMM has multiple nonnull states to model changes in the
amplitude expected during bursting behavior and multiple
null states which effectively keep track of how much time
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has passed since the last firing. In this study, the author
recommends using simpler models for nonbursting neural
cells. Sahani’s approach is different from ours in several
important ways. Instead of explicitly modeling transitions
between states using a discrete set of transition probabilities
as with anHMM,we incorporate temporal information using
a likelihoodmodel of the continuous-valued interval between
firings. This means that we model the precise timing of
firing events, rather than grouping them into short time bins.
Furthermore, our approach models the joint likelihood of an
ensemble of point processes, which differs significantly from
both the SHMMapproach used in [14] and the general HMM
approach as well.

Bar-Hillel et al. introduced a nonstationary method for
spike sorting designed to account for the apparent nonsta-
tionary nature of spike waveform data [15]. The method,
referred to in the study as a “chain of Gaussian mixtures,”
first segments neural firing data into short frames, which are
either equal in length or contain an equal number of neural
firings. The authors fit a separate GMM to the data in each
frame (thus assuming stationaritywithin the frame), compute
a set of transition probabilities between frames, and finally
solve for the best maximum a posteriori clustering across
the whole dataset using a variant of the Viterbi algorithm.
This study directly incorporates temporal information into
the spike sorting operation and is particularly well suited
to account for waveform drift, where the amplitude and
shape of the spike waveform are affected by movements in
the electrode over time. While this method incorporates
temporal information into spike sorting, it does so not
by modeling either time occurrences of neural firings or
the neural firing rate. Rather, the method is essentially a
nonstationarymodel of spike waveforms, in which waveform
parameters change over time. Similar toHMMs, the approach
in [15] explicitly models transitions between time frames,
which is very different from our approach. Furthermore,
although our approach is explicitly designed to model tem-
poral information in the extracellular signal, it is actually a
stationary probabilistic model. As discussed in Section 2.3, all
of the parameters 𝜆 = {𝜃, 𝜙isi, 𝜙init} for the joint model belong
individually to stationary distributions. The ISI and “first
firing” distributions, which account for temporal information
in the data, are both stationary models of point processes.

Ventura introduced a method in [18], in which neural
firing rates are incorporated into the spike sorting operation.
The method consists of a probabilistic model of spike wave-
forms and an analyticmodel 𝜆

𝑖
(𝑐) of the firing rate for neuron

𝑖 as modulated by covariate information in the value 𝑐, such
as an applied stimulus or a tuning curve or some other known
experimental condition that impacts neural firing rates. The
firing rate model 𝜆

𝑖
(𝑐) in Ventura’s method, which can be

either parametric or nonparametric, is used to determine the
probability of each possible combination of the𝐾 neurons in
the vicinity of the electrode firing in short, equal length time
bins. Modeling all possible combinations of spikes makes the
method particularly well suited to accounting for overlapping
spike waveforms. Since firing activity is incorporated in the
form of 𝜆

𝑖
(𝑐), given in units of spike per msec, the method

implicitly models neural firing as an inhomogeneous Poisson

process. The paper introduces an expectation-maximization
procedure for estimating all of the parameters of the model.
In experiments with simulated data, Ventura showed that a
parametric model of firing rates 𝜆

𝑖
(𝑐) could be used when

the form of the firing with respect to the covariate quantity is
known and that a nonparametric model can be used in more
general cases. Ventura’s approach is based on simultaneously
performing spike sorting and tuning in an integrated pro-
cedure and, as such, it depends directly on modeling some
known experimental condition or covariate quantity; this
is in contrast with our proposed approach which does not
depend onmodeling or observing any covariate information.
Instead, we assume only a general analytic form of the
observed firing times as point processes. Also, an important
part of our approach is explicitly modeling the distribution of
the observed firing times.Weused the lognormal distribution
in this paper for its facility in modeling the necessary
minimum refractory period, but our method is not limited
to this or any other distribution assumptions.

A probabilistic model of spike peak amplitudes and
firings was presented by Pouzat et al. in [16]. In that study,
the authors advocatemodeling the temporal behavior of spike
timings using a probability distribution for the interspike
interval duration. Also, since it is known that spike amplitude
depends on the elapsed time since the last firing, the paper
models variation in spike peak amplitude based on ISI
durations as well. Much of the development in this study
focuses on the use of Markov chain Monte Carlo (MCMC)
methods, which allow considerable flexibility in the choice
of probability distributions for the data. The MCMCmethod
consists of simulating the posterior density of the model
parameters and sampling from that distribution for param-
eter estimation. The authors use a lognormal distribution
for neural firing ISIs and evaluate their model on simulated
data. In another study [17], the authors extend the MCMC
methodology for spike sorting, this time using an HMM. In
[17], sequences of ISI duration observations for each neuron
were modeled with a 3-state HMM having the lognormal
distribution as the emission probability density function for
each state. The HMM method was applied to a real dataset,
exhibiting bursty neural firings recorded from Purkinje cells
in rats, achieving high accuracy. While these two studies use
continuous-valued ISI distributions for temporal modeling,
they use MCMC sampling for parameter estimation, in
lieu of an analytical development for the model. While the
MCMCmethodology generally allows considerable freedom
in constructing compound probabilistic models, methods
developed analytically are inherently simpler and more
transparent. A key contribution of our approach is the
mathematical development of a recursive likelihood model
of the data, including a piecewise ISI term, and an iterative
procedure for clustering and parameter estimation based on
that model.

4.2. Summary. We have developed a model of observed,
threshold-crossing neuronal firing times as the aggregation of
𝐾 point processes and incorporated it into a joint waveform-
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and ISI-based framework. We developed an analytic expres-
sion of the joint likelihood of the observed and hidden data
and formulated a recursive expression for the likelihood
at any time 𝑛 in terms of previous data. The ISI likeli-
hood at time 𝑛 is a piecewise expression that depends on
whether previous spikes occur in a time history window. We
developed an iterative procedure for clustering the data and
estimating parameters based on finding the best path through
a lattice structure. Our method outperformed the baseline,
waveform-only GMM in noisy and otherwise difficult signal
conditions on a semiartificial data. On a completely real
dataset, our proposed approach outperformed both the
baseline and a state-of-the-art method. We showed that we
can obtain improvements in accuracy and computational
efficiency by tuning our model’s 2 hyperparameters. Our
future work includes developingmore sophisticatedmethods
of pruning the search space for the best path and developing
a more rigorous clustering method.
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