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Anticipating the occurrence and type of critical
transitions
Florian Grziwotz1†, Chun-Wei Chang2,3†, Vasilis Dakos4, Egbert H. van Nes5,
Markus Schwarzländer6, Oliver Kamps7, Martin Heßler7,8, Isao T. Tokuda9, Arndt Telschow1,10*,
Chih-hao Hsieh3,11,12,13*

Critical transition can occur in many real-world systems. The ability to forecast the occurrence of transition is of
major interest in a range of contexts. Various early warning signals (EWSs) have been developed to anticipate
the coming critical transition or distinguish types of transition. However, no effectivemethod allows to establish
practical threshold indicating the condition when the critical transition is most likely to occur. Here, we intro-
duce a powerful EWS, named dynamical eigenvalue (DEV), that is rooted in bifurcation theory of dynamical
systems to estimate the dominant eigenvalue of the system. Theoretically, the absolute value of DEV approaches
1 when the system approaches bifurcation, while its position in the complex plane indicates the type of transi-
tion. We demonstrate the efficacy of the DEV approach in model systems with known bifurcation types and also
test the DEV approach on various critical transitions in real-world systems.
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INTRODUCTION
There is a growing consensus that many real-world systems have a
critical threshold (i.e., tipping point) (1, 2), at which systems sud-
denly shift to a distinct state, i.e., critical transitions initiated by local
bifurcation (3), for example, the outbreak of desert locust (4), devel-
opment of psychiatric disorders (5), or rapid global warming at the
end of glacial periods (6). Critical transitions may shift a system to a
new state with undesirable properties, causing damage and loss in
environmental, economic, and public health resources if corrective
action is not taken in a timely manner. Thus, it is important for
various fields of science and in many applications to forecast occur-
rence and consequence of critical transitions.
Under these circumstances, many early warning signals (EWSs)

have been proposed to anticipate upcoming critical transitions (7).
However, most EWSs can only warn of a critical transition in a qual-
itative way or do not perform consistently for different types of crit-
ical transition. According to bifurcation theory, when the system is
approaching a tipping point, the system starts to recover more
slowly from local perturbations (8–10), as the dominant eigenvalue
goes to 0 in continuous systems or to 1 in discrete systems. This is
called critical slowing down (7), and it can be revealed by the

increase of generic EWS (8), such as increasing autocorrelation
[e.g., AR1 (2)] and variability [e.g., SD (11)] in time series. Previous
studies (2, 7) suggest that AR1 and SD will reach 1 and infinity, re-
spectively, at the tipping point, provided that the dynamical systems
can be locally approximated by a first-order stochastic process.
However, these thresholds were usually not met in real-world crit-
ical transitions (2) or even in model systems (12, 13). For example,
AR1 does not reach 1 for Neimark-Sacker bifurcation (fig. S1). The
existing EWSs are developed for anticipating the critical transitions
in fold bifurcation (14) [i.e., catastrophe shift (1)], but it is still dif-
ficult to distinguish fold bifurcation from more complex types of
bifurcations (14, 15) (e.g., Hopf or Neimark-Sacker bifurcation).
With understanding that different types of bifurcation bring di-

vergent consequences to our focal systems that need different cor-
responding management to minimize potential losses, a recent
study using deep-learning approach shows skill to distinguish
types of bifurcation (15); however, this approach cannot tell the up-
coming critical transition and is not rooted in the theory of dynam-
ical system. Moreover, the method based on deep-learning strongly
depends on the training set and is so far difficult to be applied in
high-dimensional cases. Practically, there is no method providing
a precise threshold for indicating how large the raised EWS shall
be, beyond which critical transition is deemed to occur, and simul-
taneously indicating the type of transition.
The solution for the challenge is hinted in bifurcation theory—

the types and conditions for the occurrence of critical transition are
quantitatively determined on the basis of the dominant eigenvalue
derived from locally linearized dynamical systems around an equi-
librium (e.g., fixpoint or limit cycle) (3, 16) (i.e., Jacobian matrices;
Fig. 1). When the critical transition occurs at the tipping point, the
absolute value of the dominant eigenvalue increases to 1 (in discrete
systems) (17). Moreover, different bifurcation types are distinguish-
able by examining the dominant eigenvalue on complex plane (17).
While these theoretical arguments are well established, a critical
challenge in their implementation remains that such dominant ei-
genvalue can only be derived if numerical values of the equilibrium
and all parametric equations governing dynamical systems can be
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determined. However, equilibrium values are often difficult to esti-
mate and the equations (or the parameters of the equations) are
generally unknown (or difficult to estimate) in real-world systems.
Recent advances in time series analysis of dynamical systems in-

dicate that Jacobian (interaction) matrix as well as its dominant ei-
genvalue can be estimated by the recently advanced lag-embedding
empirical dynamical modeling (EDM) (18, 19). This approach re-
quires neither knowledge of the underlying equations nor numeri-
cal estimates of the equilibrium since the local Jacobians of the
current state of the system are directly estimated from time series.
However, the existing method of computing dominant eigenvalue
(known as local Lyapunov stability) (18) requires full information of
all interacting components (e.g., time series data of interacting
species) that is usually not readily available, especially in large
systems. Therefore, the existing method used to quantify dominant
eigenvalue (18) might not be a suitable EWS and cannot be easily
applied in majority of systems.
We propose dynamical eigenvalue (DEV) as a novel EWS

derived from EDM that analyzes time series data requiring no spe-
cific model assumption (20) [e.g., no need to assume time-varying
autocorrelated stochastic process (21)]. As above, local Jacobians are
estimated by state space reconstruction (SSR) and without calculat-
ing equilibrium values. The proposed DEV thus directly estimates
the dominant eigenvalue of focal systems instead of indirectly quan-
tifying those phenomena accompanying with critical slowing down
as previous EWS. Therefore, as suggested in bifurcation theory, this
novel EWS has a quantitative threshold for the occurrence of critical
transition (the absolute value of the estimated dominant eigenvalue
|DEV| = 1) and enables to differentiate types of critical transition by
examining DEV on complex plane (Fig. 1 presents the critical tran-
sitions induced by fold, period-doubling, and Neimark-Sacker bi-
furcations). The presence of DEV threshold enables us to not
only present a qualitative increasing/decreasing trend of EWS in a
relative sense (like most existing EWS) but also explicitly quantify
system resilience in an absolute sense. That is, the absolute value of

DEV itself is meaningful and can be directly compared to a theoret-
ical threshold rather than just compared to values estimated in pre-
vious time windows. Unlike the existing EDM method in
computing dominant eigenvalue (18), DEV recovers the whole
system dynamics from a single time series using lag embeddings
[i.e., Takens embedding theorem (22)], requiring no full informa-
tion of interacting components. Implementation of DEV also
relaxes the assumption underlying general EDM methods (18, 19)
that critical properties of the system (e.g., model parameters) are
constant throughout the sampling period. This assumption unlikely
holds in critical transition, during which at least one bifurcation pa-
rameter changes with time (12). Therefore, the proposed DEV
enables to track temporal changes in system resilience (see details
in Materials and Methods) and is rooted in bifurcation theory
that quantitatively reveals both the occurrence condition and type
of critical transition (17).
To validate the efficacy of DEV approach, we used three model

time series datasets demonstrating known fold, period-doubling,
and Neimark-Sacker bifurcations. Then, we empirically tested the
DEV method in real-world cases of critical transitions from cell-
level experiments to global-scale paleoclimatic events (tables S1
and S2). For each dataset, we computed DEV that anticipated the
occurrence and type of critical transition in both model and empir-
ical cases, following procedures summarized in fig. S2.

RESULTS
Validation of DEV using model data
We examined three discrete-time nonlinear dynamical models
(table S1), Noy-Meir model, Hénon map, and Rosenzweig-Mac-
Arthur model (Fig. 2, A and B), representing the fold, period-dou-
bling, and Neimark-Sacker bifurcation, respectively. Our analyses
indicated that the derived DEV reliably estimated the dominant ei-
genvalues of nonlinear dynamical systems and mimicked its dy-
namical behavior when approaching bifurcation. Specifically,
|DEV| monotonically increased when approaching the tipping
point and reached 1 when the system was at the tipping point
(Fig. 2C). Moreover, mapping DEV to the complex plane distin-
guished various types of bifurcations (Fig. 2D), where
Re(DEV) → 1 and Im(DEV) → 0 for fold bifurcation,
Re(DEV)→ −1 and Im(DEV)→ 0 for period-doubling bifurcation,
and Im(DEV) ≠ 0 and |DEV| → 1 for Neimark-Sacker bifurcation.
Consequently, the estimated DEV as a reliable EWS anticipated the
occurrence of critical transition (i.e., tipping point) (Fig. 2C) re-
gardless of bifurcation type. Results obtained from discrete-time
models were similar to that obtained from their continuous-time
analogs (fig. S3). These analyses indicated that DEVwas an effective
EWS that anticipated the occurrence of critical transition with a
certain threshold (|DEV| = 1) and correctly distinguished various
types of bifurcation in model systems. Being able to distinguish
types of bifurcation is critical; for example, catastrophic shift (fold
bifurcation) and increasing fluctuation (period-doubling bifurca-
tion leading to chaos) cause different consequences in systems
and require different ways of responses.
Next, we evaluated efficacy of the method when including noise

(e.g., observation error and process noise). In the presence of noise,
DEV remains a proper EWS (figs. S4 to S6) that monotonically in-
creases when approaching the tipping points, but the quantitative
threshold of |DEV| was not necessarily equal to 1 at the tipping

Fig. 1. Schematic illustration of the dominant eigenvalue in complex plane at
the bifurcation point for different types of bifurcation. Mathematically, bifur-
cation can be recognized by changes in the dominant eigenvalue, λ, of the Jaco-
bian matrix, J, at the equilibrium. See the “Information about bifurcations” section
in Materials and Methods for more detailed explanation.
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point. Nevertheless, under small to moderate levels of noises, DEV
still correctly identified types of bifurcation (fig. S7). On the basis of
this sensitivity analysis, the estimated DEV in model systems re-
mained effective under noises, except for the Rosenzweig-Mac-
Arthur model, which was more sensitive to observation noise (fig.
S6). Perhaps the Rosenzweig-MacArthur model showing Neimark-
Sacker bifurcation has more complicated mathematical normal
form (23) with higher-order terms likely amplifying impacts of
noises. Nonetheless, under reasonable degree of noises, our DEV
method remains effective in revealing Neimark-Sacker bifurcation
that occurred in real-world cases (e.g., Fig. 3, D to F).

DEV analysis of empirical time series
We investigated five empirical examples, including a cyanobacteria
microcosm experiment under light stress, a physical experiment of
voice production during phonation onset, cytosolic adenosine tri-
phosphate (ATP) dynamics in living plant tissues under progressive
hypoxia, calcium carbonate (CaCO3) abundance by the end of
greenhouse Earth, and bus voltage frequency before power grid
failure (tables S1 and S2) and anticipated the occurrence and type
of critical transition (Fig. 3). For empirical systems, |DEV| increased
when approaching to the tipping point and almost reached 1 at the
tipping point (Fig. 3, B, E, H, K, and N). Therefore, we inferred that

the theoretical threshold (|DEV| = 1) was still meaningful in empir-
ical systems, despite noises in empirical data. In addition, the com-
puted DEV differentiated the types of critical transition in empirical
cases (Fig. 3, C, F, I, L, and O). Among these examples, only the
voice experiment had Neimark-Sacker bifurcation (with nonzero
imaginary part), whereas all others demonstrated fold bifurcation.
Furthermore, this conclusion was robust against various choices of
embedding parameters (e.g., E, τ, and window size) (figs. S8 to S12).
Identification of bifurcation type provided important insight into
foreseeing the coming new state of the system. Fold-type critical
transition shifts systems to a new regime with a distinct state (e.g.,
Fig. 3J), whereas a Neimark-Sacker bifurcation shifted the system to
a new regime exhibiting higher temporal variability (e.g., Fig. 3D).
Therefore, with information regarding bifurcation type, more ap-
propriate management strategies can be prepared to cope with
new regimes.

Reliability tests of DEV method
Although DEV is a quantitative EWS with theoretical threshold, its
efficacy is likely undermined by observation and process noises
(e.g., |DEV| < 1 and more gradual increase of |DEV| when ap-
proaching bifurcation; figs. S4 to S6). Underestimation of DEV
under strong noises was likely due to the dominant eigenvalue of
pure stochastic processes being 0, which leads the synthesized
signals with the DEV less than 1 at the tipping point. Hence, a pre-
cautionary approach is needed when considering the derived DEV,
especially at the tipping point. Here, we suggest that the uncertainty
of DEV can be evaluated by its predictability on future states [e.g.,
the correlation coefficient (ρ) between observed and predicted one-
step forward future states; Fig. 4] because predictability is an effec-
tive indicator to evaluating the uncertainty of reconstructed dynam-
ical systems (24). There was a high association between the
predictability and the uncertainty of estimated DEV defined as
how far the estimated DEV was to the analytically solved dominant
eigenvalue (when without noise). When predictability was high,
|DEV| reached almost 1 before transition; in comparison, |DEV|
did not reach 1 (figs. S4 to S6) when the predictability was low
under strong noises (Fig. 4). Thus, system predictability gives an in-
dication for a precautionary decision of the threshold.

DISCUSSION
Implications from analyzing empirical data
On the basis of analyses of empirical data, the DEV method can be
applied to various fields of science (Fig. 3). This is remarkable
because of not only diverse underlying systems but also the huge
differences with respect to the temporal and spatial scales that
range from milliseconds and micrometers in cellular processes to
millions of years and thousands of kilometers in climate dynamics.
Nonetheless, there was consistently one common feature: Underly-
ing dynamics are governed by feedback mechanisms, a typical char-
acteristic of nonlinear dynamical systems. Such feedback
regulations might lose controls due to external forcing; consequent-
ly, a critical transition occurs (16). Therefore, an analytical frame-
work that acknowledges feedbacks and nonlinearity, e.g., our DEV
method rooted in nonlinear time series analysis (25), has wide ap-
plicability for anticipating occurrence of critical transition under
various spatiotemporal scales.

Fig. 2. Efficacy of DEV method as EWS indicating critical transitions in the
three mathematical models. (A) Exemplary time series of the Noy-Meir model
(blue), Hénonmap (red), and Rosenzweig-MacArthur model (purple). (B) The bifur-
cation diagram illustrates effects of changing bifurcation parameters (see table S1
for parameter values) on the averaged variable states calculated from moving
windows. (C) Estimated |DEV| increase over time and approach 1 at the bifurcation
point [shown in (A) and (B)]. (D) Classification of bifurcation types based on |DEV|
estimates on the complex plane (sensu Fig. 1). The |DEV| estimates move from in-
terior of the unit circle toward the border through time, signaling critical transition;
the color gradients from light to dark present time progression from initial time to
the time right before critical transitions. Note that for each eigenvalue with a
nonzero imaginary part, a pair of conjugated eigenvalues exists and shows
mirror symmetry on the complex plane. In (D), the minor values in the imaginary
axis appear in the Noy-Meir model (blue) and Hénon map (red), owing to process
noises included in the models. Black lines within the circle labeled the theoretical
dominant eigenvalues.
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Existing methods for anticipating a critical transition are quali-
tative in the sense that statements can be made only about whether
or not a system is moving toward a tipping point. In comparison,
themost novel aspect of the DEVmethod is that a quantitative state-
ment can be made about how far the current DEV values from the
theoretical threshold (i.e., |DEV| = 1) that presents a more rigorous-
ly defined bifurcation (17) (i.e., critical transition). In addition to

being an EWS, this quantitative feature makes assessing system re-
silience possible even if the analysis was only done within one time
window including a few portions of time series data. For example,
the |DEV| values estimated from the last time windows before crit-
ical transition (300 data points) are equal to 0.99, 0.99, 1.01, 0.91,
and 0.99 for the microcosm data, the voice data, the cellular
energy data, the climate data, and the power grid data, respectively,

Fig. 3. Empirical evaluations showing that |DEV|s can be
EWS for critical transition and indicate type of bifurca-
tion. |DEV|s signal: fold bifurcation in a microcosm experi-
ment of a cyanobacteria population undergoing dilution
perturbations and increasing light stress (A to C), Neimark-
Sacker bifurcation in an experiment of voice onset under
increasing flow rate (measured subglottal pressure) (D to F),
fold bifurcation in an in vivo biosensing experiment of cy-
tosolic ATP at progressing hypoxia (G to I), fold bifurcation
in climate data of CaCO3 abundance in sediments from the
end of the last greenhouse Earth (J to L), and fold bifurca-
tion in electricity data of “1996 Western North America
blackouts” (M to O). (A), (D), (G), (J), and (M) illustrate time
series data; the red dashed area delineates the regime after
critical transition. In (A), arrows indicate external perturba-
tions, and we estimated |DEV|s from the 250 data points (~1
day) before each perturbation (gray area). (B), (E), (H), (K),
and (N) illustrate the time series of estimated |DEV|; the red
lines derived from the linear regression of |DEV| versus time,
and the |DEV| value of 1 (gray dash line) indicates the bi-
furcation point. (C), (F), (I), (L), and (O) indicate type of bi-
furcation. For better visualization, in (C), we averaged |DEV|
estimates associated with the same perturbations event; in
(F), (I), (L), and (O), |DEV| estimates are averaged in time
intervals before the bifurcation [delineated by dashed lines
in (D), (G), (J), and (M)]. The color gradients from light to
dark present time progression from initial time to the time
right before critical transitions.
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indicating that all examined system states were either approaching
or just at a tipping point. In other words, the DEVmeasures correct-
ly anticipated the ongoing critical transition without relying on
measures estimated in previous time windows (i.e., a need to
uncover a trend of declining system resilience in a relative sense).
Although great care must be taken with estimates, the DEV
method is a major step forward in improving the accuracy of the
resilience and risk assessment of a wide variety of empirical systems.
DEV analysis of the microcosm experiment presents a novel way

to quantitatively forecast catastrophic consequences of biological
populations. A central issue in population biology is to predict
fates of populations (e.g., sustained or extinction of species or
species invasion) when facing various stressors. Although predic-
tions can be made from numerous models, implementation of
most population models requires correct identification of both
model structure and parameters (26), which is seldomly possible
in empirical cases. In contrast, our DEV analysis characterized pop-
ulation dynamics in the absence of detailed information about
model structure and parameter. Nonetheless, unlike most model-
free EWS (27), DEV as an empirical estimate of dominant eigenval-
ue allows them to be analyzed as in theoretical population models
(e.g., bifurcation analysis). Therefore, the proposed DEV links
model-free EWS to the analysis of parametric models and offers a
novel and promising research direction.
Exceptionally good results were achieved for cellular energy

status and voice production (Fig. 3, D to I). This may hint toward
cell biology and physiology as promising areas for future DEV ap-
plications. Both research fields have been rarely mentioned in pre-
vious EWS literature, although many types of time series data with
high spatiotemporal resolution can be generated using modern
imaging and omics techniques. Therefore, DEVmay have broad ap-
plications, including investigating various cellular and physiological
switches that are critical to organism functions. These switches
often lead to diseases (e.g., cancers), whereas dysfunction in
energy transformation within mitochondria has well-established

links to aging (28) or disease (29). Along this research line, our pro-
posed DEV may serve as a warning signal in the early stages of
disease development, as treatment timing is often crucial for treat-
ment responses.
Critical transition has important roles in driving climate events

at global scales (Fig. 3, J to L). Our findings confirmed the previous
report (2) that a critical transition occurred by the end of the last
greenhouse Earth phase. Our proposed method further character-
ized this global-scale shift as a case of fold bifurcation. In this case,
mean air temperature underwent abrupt declines and then termi-
nated greenhouse Earth. Compared to the analyses of other empir-
ical cases (Fig. 3, B, E, H, and N), the DEV measures derived from
paleoclimate data, though substantially increased, had noticeable
underestimation around the tipping point (i.e., <1 in Fig. 3K).
Such underestimation may have been caused by the noises intro-
duced when inferring ancient climate conditions from geological
climate proxy or by lacking spatial information (i.e., time series
from a single site) in analyzing global-scale climate dynamics that
is inherently spatial.
Our analysis of voltage frequency data right before a power grid

failure (Fig. 3, M to O) suggested a critical transition of electric
systems. Maintaining a stable power grid requires sophisticated reg-
ulation to balance supply and demand of electricity, considering the
complex interactions between meteorological and socioeconomic
factors and the various sources of energy. Considering urgent
needs in electricity management, particularly in changing environ-
ments, our DEV analysis provided an opportunity for monitoring
the resilience of power grids at millisecond scales. For example, a
real-time grid resilience based on our quantitative warning signal
could help network operators to prevent power grid failures when
the whole grid is moving toward a tipping point.

Efficacy of DEV as EWS
Our proposed DEV is a proper EWS, showing consistent early
warning patterns (e.g., monotonic increase trend) when approach-
ing the tipping point, in both models and empirical datasets (Figs. 2
and 3). Compared to previously proposed generic EWS, such as au-
tocorrelation (e.g., AR1) and variability (e.g., SD), autocorrelation
and variability had reliable early warning patterns in fold and
period-doubling bifurcation (fig. S1) as suggested in previous
studies (7, 30); however, they did not perform well in Neimark-
Sacker bifurcation wherein the increasing trend of AR1 was
minor and did not reach 1 and the increasing trend of variability
was less marked (fig. S1). When applying AR1 and variability
indices on empirical cases (fig. S13), early warning patterns were
not always observed (e.g., fig. S13, B, H, and I). Perhaps this reflect-
ed distinct sensitivity of the generic EWS to various types of bifur-
cation. In addition, some EWSs relying on variability (e.g., SD) are
likely more sensitive to process noises (e.g., figs. S4E and S5E).
It is worthy to discuss the theoretical connection between DEV

and AR1.Mathematically, if a dynamical system can be approximat-
ed by a first-order linear stochastic process (i.e., AR1 process) for
the chosen time window, the matrix J (Eq. 1 in Materials and
Method) governing the evolution of dynamical system can be for-
mularized as a simple diagonal matrix (i.e., JAR1) with all diagonal
elements equal to the estimated AR1. Here, JAR1 was assumed fixed
within the analyzed time window, in contrast to the matrix J esti-
mated in DEV that can vary within a time window. Obviously,
the dominant eigenvalue of this matrix JAR1 is equal to AR1.

Fig. 4. Uncertainty of DEVas a function of predictability (ρ) for themathemat-
ical models with different combinations of noises. The results of the Noy-Meir
model (blue), Hénon map (red), and Rosenzweig-MacArthur model (purple) under
a specific combination of observation noise and process error are shown. Each
curve was obtained by plotting the uncertainty (defined as the Euclidean distance
between the analytic eigenvalue and the estimated DEV in complex plane) as a
function of predictability (ρ) measured within each moving window in the DEV
analysis. For all combinations of noises, the uncertainty decreased by increasing
the one-step forward predictability. In addition, there is no noticeable difference
between the analytically solved and DEV derived eigenvalue when the predictabil-
ity was high (e.g., ρ > 0.8). Thus, the one-step forward predictability can be used to
evaluate the reliability of DEV as quantitative EWS.
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Therefore, according to bifurcation theory, AR1 theoretically
reaches 1 at the tipping point in fold bifurcation, as suggested (2,
7). However, convergence of AR1 to 1 requires that the dynamical
system can be well approximated by first-order stochastic process
for the chosen time window. Following the same mathematical rea-
soning, AR1 approaches to −1 for period-doubling bifurcation
because the dominant eigenvalue will reach −1 around the
tipping point; this was confirmed by our analysis of Hénon map
(fig. S1). However, in any case, the approximation of AR1 process
can only obtain the real-valued dominant eigenvalue because the
estimated AR1 can never be a complex number. This explains
why AR1 cannot be applied to Neimark-Sacker or other types of
bifurcations in which the imaginary parts of dominant eigenvalues
are always preserved. Thismathematical reasoning also suggests that
only fold bifurcation can exhibit high similarity between the current
and previous system states (Xt and Xt + 1) (2) (i.e., increasing AR1)
before critical transition. However, this phenomenon might not
necessarily occur in the other types of bifurcation that manifested
only minor increases (e.g., Neimark-Sacker bifurcation in Rose-
nzweig-MacArthurmodel) or even decreased (e.g., period-doubling
bifurcation) in AR1 (fig. S1). Therefore, from the bifurcation theory
viewpoint, application of AR1 for detecting critical transition is a
special case of DEV.

Limitations of DEV and forward looking
To evaluate the efficacy of DEV approach on more complex models,
we first investigated a stochasticity-driven, patch dynamics model
that exhibited no early earning signal (quantified as variance)
before critical transition (see details in text S1 and fig. S14A) (31).
For such a system with explicit spatial information, we examined
whether our DEV approach was still effective. In our study, DEV
derived from embedding time series of multiple patches (i.e., mul-
tivariate DEV; fig. S14, B and C) had a distinct EWS near the tipping
point, but the DEV derived from embedding time series of a single
patch (i.e., univariate DEV; fig. S14D) did not work. This confirmed
previous analysis (32), suggesting that explicit spatial information is
necessary to detect the EWS of the critical transition originating
from strong spatial processes (32). In that sense, multivariate
DEV can be complimentary to other EWS relying on spatial pat-
terns (33, 34). Multivariate DEV can be applied not only in a dy-
namical system with explicit spatial information but also in
systems consisting of more than one variable, such as a Hénon
map (fig. S15). Along this research line, we noted that several new
EWSs based on multivariate time series data perform better than do
classic EWSs (AR1 and variance), for example, multiple spatial
times series (35) or multiple species time series (36). Therefore, a
more general DEV framework combing both univariate and multi-
variate DEV paves a new research direction that may help detect
critical transition emerging from diverse mechanisms, such as
spatial processes or multispecies interactions. Regardless, more de-
tailed investigations are needed for developing EWS in more
complex systems.
Then, we explored the influences of system dimensionality on

the efficacy of DEV, based on analysis of dynamical models with
higher dimensions. Specifically, we investigated multispecies
Ricker models composed of various numbers of species (see
details in text S2 and fig. S16). Model analyses suggested that the
efficacy of DEV in anticipating the upcoming period-doubling bi-
furcation was not equally good among all interacting components

(i.e., various species in the model), although the increments of
|DEV| were mostly positive (fig. S16, E to H). Such divergences
can bemore readily apparent in systems with higher dimensionality,
wherein more |DEV|s did not reach 1 before the tipping. Declines in
DEV efficacy when increasing system dimensionality were probably
caused by the localization phenomenon in interaction networks (37,
38), meaning that influences of bifurcation that occurred in some
network nodes may not necessarily propagate across the entire net-
works but be localized within a group of nodes. In that regard, some
network nodes with certain topological features (38) can be less sen-
sitive to dynamical changes compared to other network nodes, es-
pecially in a weakly coupled interaction network, e.g., multispecies
Ricker model. Nonetheless, identifying species that enable to dem-
onstrate clear bifurcation patterns remains a challenging task (39)
and thus warrants more detailed investigations from a network per-
spective. Although we investigated only the period-doubling bifur-
cation usingmultispecies Ricker models, the difficulty when dealing
with high-dimensional systems likely also occurs in fold and
Neimark-Sacker bifurcation. In addition to the issue of spatial pro-
cesses and the issue of high dimensionality, we also addressed the
limitations of DEV for ill-posed cases in text S3.
The embedding approach has been used to evaluate system

stability; these studies estimated the dominant eigenvalues based
on the single time window (i.e., using the whole time series) (18,
40). Here, we show that, as the standard procedure used for EWS
estimations, the moving window approach used to compute DEV
(fig. S2) was necessary. Further analyses indicated that the domi-
nant eigenvalue derived from the single time window approach
(fig. S17) cannot reveal reliable early warning patterns and failed
to identify the period-doubling bifurcation (fig. S17F). These
results confirmed that a moving window approach is necessary
for computation of EWS, as some important properties [e.g., non-
linearity (41)] of dynamical systems changed when the system ap-
proached a tipping point.
Interpretation of DEV findings requires knowledge of differenc-

es between classical bifurcation theory and the model-free EDM
framework used in our DEV analysis. Although the DEV method
is motivated in large part by mathematical bifurcation theory, im-
plementation of DEV method based on a model-free EDM analysis
is very different from classic bifurcation analysis. In classical bifur-
cation theory, stability of a dynamical system (usually around equi-
libria) is determined by the standard analysis of Jacobian matrices
(Fig. 1) that can be derived only when the governing equations (e.g.,
a system of coupled differential equations) are known. In contrast,
the model-free framework of EDM used in DEV facilitates access to
the stability of dynamical system via the estimated dominant eigen-
value without explicitly identifying the governing equation or equi-
libria. In addition, compared to the classical bifurcation analysis
around equilibria, EDM-based approaches can be more generally
applied in real-world systems with complicated dynamics because
the local Lyapunov stability derived in DEV can even be evaluated
in chaotic systems (42) in which nontrivial equilibria may not exist.
Our DEV approach performed reasonably well in models and

empirical data; however, its underlying mathematical evaluation
has not been fully established. Although local Lyapunov stability
derived from time-delayed embedding is theoretically invariant to
that from the original system (42), the DEV approach, strictly speak-
ing, cannot simply borrow the mathematics of classic bifurcation
theory, for the following reasons. First, the DEV approach is
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based on EDM with model-free features (20); although model-free
features provide flexibility to investigate more general dynamical
systems, such features hinder deeply rooting DEV in specific math-
ematical proofs. Second, although DEV can be used to anticipate
the bifurcations under a certain degree of noise (figs. S4 to S7),
the transient dynamics induced by noises may change system
states suddenly and discontinuously. Because those new states can
be so different from its original trajectory, it might cause a transient
increase in a nondominant eigenvalue or make the dominant eigen-
values temporarily >1 (i.e., “unstable” DEV values), although the
system has not gone through a critical transition. In other words,
an unstable eigenvalue does not necessarily indicate a critical tran-
sition; rather, it could just be a consequence of rapid movement
toward a distant equilibrium. Consequently, the classic interpreta-
tion of eigenvalues with respect to bifurcation points no longer
holds, and our decision about whether those states are close to
the bifurcation or not can be qualitatively changed. Regardless,
the problems of transient dynamics are, to some extent, alleviated
in our DEV method as revealed in our analyses (figs. S4 to S7)
because the dominant eigenvalues estimated at each time point
were averaged over a certain interval within the time window. Fur-
thermore, if a system consistently stayed near the critical boundary
(i.e., falling near the margin of the unit circle) due to slowly chang-
ing bifurcation parameters, then it is almost certainly being pushed
either toward an equilibrium (or limit cycle). In such cases, the
dominant eigenvalue will shrink or be drawn toward a critical tran-
sition when exceeding the critical threshold. These complexities
create a challenging task to provide detailed mathematical evalua-
tion for application of DEV in anticipating bifurcations and thus
require further investigations.
In conclusion, the DEV approach developed in this study pro-

poses an empirical EWS with the quantitative threshold to antici-
pate the occurrence of critical transition and simultaneously
identify type of bifurcation. Although the efficacy of DEV is likely
undermined by measurement and process noises, DEV has great
potential to effectively anticipate the occurrence and type of critical
transition with a more precautionary defined threshold. Because
both occurrence condition and bifurcation type can be unambigu-
ously revealed, this approach potentially brings great values to real-
world management, making timely and effective responses when
facing new regimes.

MATERIALS AND METHODS
Information about bifurcations
Critical transition is initiated from local bifurcation, which results
from destabilization of equilibria of dynamical system accompanied
with appearance and disappearance of invariant sets (Fig. 1) (43).
Mathematically, bifurcation can be recognized by changes in the
dominant eigenvalue, λ, of the Jacobian matrix, J, at the equilibri-
um. The Jacobian matrix J of an n-dimensional dynamical system is
defined as

J ¼
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where n functions f1(x1,…, xn),…, fn(x1,…, xn) describe the dynamics
of n variables x1,…, xn, respectively. On the basis of the dominant
eigenvalues of Jacobianmatrices at equilibrium, three types of bifur-
cation, including the fold (or saddle-node), the period-doubling (or
flip), and the Neimark-Sacker (or Hopf) bifurcations (43), can be
explicitly distinguished in complex plane (Fig. 1).
However, recent studies indicated that the dominant eigenvalue

at each time point can be inferred from local Jacobian matrices at
the current state of the system based on time series by reconstruct-
ing the local linear approximations of the dynamics in state space
(see the “EWS based on the dominant eigenvalue” section). Such
estimated time-dependent dominant eigenvalue has been used to
infer local Lyapunov stability. Because time series data are discrete,
the absolute value of the dominant eigenvalue reaches 1 (i.e., |λ|→1)
at the bifurcation point in all types of bifurcations. Note that the
time series data simulated from continuous systems, such as differ-
ential equations, are also discrete as they are solved numerically. The
properties of dominant eigenvalues inferring the bifurcations in
continuous systems are described in fig. S3.

Empirical dynamic modeling
Our DEV approach is rooted in the framework of EDM. According
to the theory of dynamical systems, a system can be described as a
set of states (e.g., attractor), whose evolution over time is deter-
mined by a set of rules (e.g., equations). These rules describe how
the state of attractor changes as a function of interacting variables.
Motion on the attractor can be projected onto the coordinate axis of
associated variables, forming time series; conversely, time series of
the interacting variables can be projected back to the multidimen-
sional state space to recover the attractor (44). Therefore, knowing
the state and the set of rules that govern the underlying system is
equivalent to knowing the time series of all interacting variables.
When studying empirical systems, the set of rules is unknown.
Meanwhile, very likely, only one or few variables are measured,
and their interactions are unknown a priori. However, it is possible
to reconstruct a topologically invariant shadow version of the attrac-
tor using time delayed scalar measurements of a single dynamical
variable: Xt = (xt, xt − τ, …, xt − (E − 1)τ)′, where xi are observations at
time point i, E is the embedding dimension, and τ is the time lag.
This idea, called SSR, is based on Sauer et al.’s extension (45) of
Takens’ theorem (22) for dynamical systems. An illustration of
the SSR concept is apparent in the following animation: tinyurl.
com/EDM-intro. Because of topological invariance, the recon-
structed attractor preserves the essential mathematical features of
the original dynamical system. SSR enables investigation of
dynamic properties of the system, such as interactions [e.g. Jacobian
(25)] and stability (18, 19), as well as transitions between stable and
unstable states (41).

EWS based on the dominant eigenvalue
Among properties of dynamical systems, a critical issue of practical
importance is being able to identify and predict critical transition.
Mathematically, critical transitions are associated with local bifur-
cations, i.e., qualitative changes in system behavior due to changes
in parameter. Bifurcations result from appearance and disappear-
ance of invariant sets due to changes in stability (46) and can be
recognized by changed eigenvalues of the Jacobian matrix derived
from local linear approximation around a fixed point (i.e., local Ja-
cobian) (9).
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Critical transitions can be classified according to changes in the
dominant eigenvalue, λ, of local Jacobian. In general, three types of
critical transitions/bifurcations can be defined: the fold (tangent),
the period-doubling (flip), and the Neimark-Sacker (Hopf) bifur-
cations (43). If a discrete system undergoes a fold bifurcation, stable
and unstable equilibriums collide and annihilate, or an equilibrium
appears suddenly. Fold bifurcation is indicated by the dominant ei-
genvalue reaching Re(λ) = 1 and |λ| = 1. For period-doubling bifur-
cation, a regularly repeating series of points double in its period
when the bifurcation occurs. Consecutive period-doublings lead
to chaos in dynamical systems. The period-doubling bifurcation is
indicated by the dominant eigenvalue reaching Re(λ) = −1 and |
λ| = 1. If a system undergoes a Neimark-Sacker bifurcation, a
closed invariant curve appears from an equilibrium. This is indicat-
ed by a pair of conjugated dominant eigenvalues with Im(λ1/2) ≠ 0
reaching |λ1/2| = 1.
A methodological challenge is then how to estimate local Jaco-

bian in each time point so as to track its change through time. In
state space, the Jacobian is the local linear approximation of the dy-
namical system. To reconstruct the Jacobian at point XN, Eckmann
and Ruelle (47) proposed an idea that minimizes the squared error,
error2 ¼ 1

#U

P
Xi[U
kXiþ1 � JXi � vk2, with respect to the coeffi-

cients of matrix J and some offset vector v, given the set U of all
neighbors of XN with a distance smaller than a defined value,
ϵ. 03F5;. This basic idea has been adapted in a previous algorithm
(48) to calculate local Jacobians and to estimate Lyapunov expo-
nents from observed time series. However, a critical issue of these
algorithms is to determine the size of U . If U is too small, the system
is underrepresented, the coefficients of matrix J cannot be reliably
estimated, and the algorithms are sensitive to noises. In contrast, if
U is too big, noise becomes less important, but one might lose track
of the underlying nonlinear dynamics (46).
In this study, we estimated the local Jacobian using an S-map (19,

25), which has been shown to overcome problems associated with
selecting U and to account for system nonlinearity. In detail, S-map
involves generating an E-dimensional embedding (univariate or
multivariate). The state space at time t is given by Xt = [xt, xt − τ,
…, xt − (E − 1)τ]T. For each target time point ta, the S-map algorithm
computes a local linear model C that predicts the future value Yta + τ
using the vector Xta from the reconstructed state space. That is

Ytaþτ ¼ C0 þ
XE

j¼1
Cj xta � ðj� 1Þτ

The linear model is fitted to the other vectors in the state space.
However, in contrast to linear regression models, linear approxima-
tion in S-map is done only locally by giving greater weighting to the
points that are close to the target point, Xta. The model C is the sin-
gular value decomposition solution to the equation

B ¼ A � C

where B is an n-dimensional vector (n is the number of observa-
tions) of the weighted future values of Yti for each historical
point, ti, given by

Bi ¼ wðkXti � Xtk
2
ÞYtiþτ

and A is then n × E dimensional matrix given by

Aij ¼ wðkXti � Xtk
2
Þxti � ðj� 1Þτ

The weighting function w is defined by

wðdÞ ¼ exp �
θd
d

� �

where ‖ ⋅ ‖2 denotes the Euclidean distance and d is the average dis-
tance between Yt* and all other vectors on the attractor. The extent of
this weighting is tuned by the nonlinear parameter θ≥ 0. Note that the
model C is separately calculated for each time point, t*. Thus, C po-
tentially differs for each time point of the time series. As recently
shown, the coefficients of the local linear model provided by C are
an approximation of local Jacobians (18, 25) that can be used as a
proxy of the interaction strength between embedded variables.
The original algorithm proposed in Deyle et al. (25) aimed to

estimate local Jacobians of the current state of the system using mul-
tivariate time series of interacting variables. However, the same al-
gorithms can be used for embedded time series from a single
variable following the concept of lagged coordinate embedding
(i.e., univariate embedding). Here, we aimed to estimate the coeffi-
cients of Xt + τ = JXt + v with respect to matrix J and offset vector v.
Since the reconstructed state space is a delay embedding space of a
univariate time series, almost all elements of the Jacobian, J, are
zero, except the lower-off diagonal, which are unity, and except
the first row, which contains the nontrivial linear approximation.
The same argument holds for the offset vector v. Here, the linear-
ized dynamics read
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Following the S-map algorithm, matrix J of parameters j11,…, j1E
can be calculated as the associated S-map coefficients (18, 25).
Because J is evaluated at each time point [i.e., local Jacobian J(t)],
it is time varying.With the Jacobians, we can calculate the dominant
eigenvalue for each local Jacobian through time and evaluate the
system’s local Lyapunov stability (as an EWS of critical transition),
and we can further identify the type of critical transition (Fig. 1). As
the dominant eigenvalue changes through time, we name this indi-
cator DEV. DEV allows us to anticipate occurrence and type of crit-
ical transition (fig. S2).
Our approach focused on local estimates of the Jacobian matrix

around the actual state of the system, rather than around a putative
equilibrium point implied by the local Jacobian matrix [e.g., follow-
ing a similar concept proposed by Cenci and Saavedra (19)]. The
mathematics behind the classic bifurcation theory are rooted at
the analysis at equilibrium conditions, whereas our DEV approach
evaluated the local Lyapunov stability. Thus, strictly speaking, the
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DEV approach cannot simply borrow the mathematics of classic bi-
furcation theory; thus, further mathematical study is warranted.

Model data
To demonstrate the efficacy of the DEV approach, we analyzed three
representative models with distinct types of critical transition, in-
cluding Noy-Meir model (fold bifurcation), Hénon map (period-
doubling bifurcation), and a discrete version of the Rosenzweig-
MacArthur model (Neimark-Sacker bifurcation). In these model
simulations, bifurcation parameters are chosen to demonstrate crit-
ical transitions. Equations of the three models are demonstrat-
ed below.
The Noy-Meir model (49) is described by the following equa-

tions

Ntþ1 ¼ Ntexpð0:75 � 0:1NtÞ � F
N2

t
N2

t þ 0:752
þ ωtζNt ð2Þ

The bifurcation parameter F was linearly increased from 0 to 2
throughout the whole simulated time series.
The Hénon map (50) reads as

xtþ1 ¼ 1 � ax2t þ yt þ ωtζxt ð3Þ

ytþ1 ¼ 0:3xt ð4Þ

The bifurcation parameter a was linearly increased from 0.1 to
0.4 throughout the whole simulated time series.
Last, the Rosenzweig-MacArthur model (51) reads as

xtþ1 ¼ ð1þ lÞxt � 4xt
2 �

xtyt
1þ 0:5xt

þ ωtζxt ð5Þ

ytþ1 ¼ � 2yt þ
6xtyt

1þ 0:5xt
ð6Þ

The bifurcation parameter l was linearly increased from 3.48 to
3.78 throughout the whole simulated time series. Following Dakos
et al. (41), we used a stochastic modeling framework. We applied
process noise on the state variable (xt or Nt) based on Gaussian
white noise, ωxt. The noise was multiplied by ζ as ζxt or ζNt. As a
consequence, the SD of the noise is ζ times of the value of the pre-
vious time step.
For each model, we generated the time series. First, we chose the

fixed parameters (i.e., the parameters other than the tuning bifur-
cation parameter) by determining the equilibrium in the absence of
noise with the bifurcation parameter at the initial value. Subse-
quently, we used the time series variables at equilibrium as the
initial values for modeling the stochastic system. By doing so, we
avoided the burn-in period. Last, we generated the time series
while gradually changing the bifurcation parameter. For each sim-
ulation, we generated a time series of 10,000 points as in the study of
Dakos et al. (30).

Empirical data
We applied the DEV approach (explained in the DEV analysis
section below) on five empirical datasets: (i) cyanobacteria under
light stress in a microcosm (27), (ii) phonation onset under increas-
ing flow rate, (iii) cytosolic ATP dynamics in living plant tissues
under progressing hypoxia (52), (iv) calcium carbonate (CaCO3)

concentrations in sediments before the end of last greenhouse
Earth (2), and (v) bus voltage frequency before the North
Western U.S. power grid failure in 1996 (53).
Cyanobacteria under light stress
We reanalyzed the response of a cyanobacteria population in che-
mostats to dilution events under a regime of gradually increasing
light level (27, 54). Population density was determined as the light
attenuation coefficient calculated from continuous measurements
of the outgoing light intensity. In total, this time series includes
7784 data points spanning overall 28.86 days with time interval
equal to 0.0035 day (5 min) (54). It is noteworthy that the overall
time series consists of six segments separated by dilution events
(Fig. 3A and table S1). Since dilution events are not part of the pop-
ulation dynamics, we only analyzed time series segments after re-
covery from the previous dilution event and before undergoing
the new dilution event. Because the shortest continuous segment
(the one before dilution event P2) was 250 time points long (~1
day), to be consistent for all dilution events, we used only the last
250 data points before each dilution event when analyzing all the
segments (P1 to P6; in total 6 × 250 = 1500 data points).
Phonation onset under increasing flow
Phonation onset (i.e., onset of vocal fold oscillation) is regarded as a
Hopf bifurcation in the framework of dynamical systems (55). To
experimentally realize the phonation onset using a physical
replica of the vocal folds, the EPI (i.e. “epithelium”) model was con-
structed following an established procedure (56). In accordance
with the real vocal fold physiology, the EPI model had a body-
cover structure. The cover layer was based on an extremely flexible
superficial layer of the lamina propria (SLLP), covered by a thin ep-
ithelium layer. The SLLP layer was attached to the body layer with a
support of ligament layer. The individual layers having different
stiffness and strength were produced by silicone materials. With
the detailed multilayer structure, the EPI model oscillates with a
pronounced convergent-divergent motion, resembling the real
vocal fold oscillations.
The experimental setup to realize flow-induced oscillations of

the vocal fold model has been described (57). In this experiment,
no supraglottal tube was attached. The subglottal pressure was mea-
sured by a pressure transducer (differential pressure transducer,
PDS 70GA, Kyowa; signal conditioner, CDV 700A, Kyowa),
located 2 cm upstream of the vocal fold model, and recorded with
44-kHz sampling rate. During the experiment of phonation onset,
the flow rate was slowly increased until the vocal folds started to os-
cillate. From this experiment, we obtained time series data includ-
ing 7501 data points, spanning an overall of 0.375 s with time
interval equal to 5 × 10−5 s (Fig. 3D and table S1).
Cellular energy status under hypoxia
The data represent the dynamics of ATP concentration in the
cytosol of living leaf cells over time and were measured by fluorim-
etry using an intracellular Förster resonance energy transfer (FRET)
sensor that responds to MgATP2−. In the dark, leaves respire and
gradually deplete the ambient oxygen within a sealed compartment.
This leads to an onset of cellular hypoxia and triggers a drop in
energy charge. The ATP remained relatively stable while oxygen
was gradually depleted and then suddenly dropped (Fig. 3G).
This drop appeared to occur before the oxygen concentration
became limiting for the mitochondrial respiratory chain, which is
responsible for most cellular ATP production. How the stabilization
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and the collapse of ATP are modulated mechanistically in the living
cell remains to be resolved.
The data represented the fluorescent readout of a genetically

encoded fluorescent protein-based FRET sensor that indicated
ambient concentration of the biological energy carrier molecule
ATP (i.e., its dominant bioavailable form in the cell, MgATP2−)
(58). The sensor (ATeam 1.03 nD/nA) consisted of a blue fluores-
cent protein [the cyan fluorescent protein (CFP) derivative
mseCFP], a yellow fluorescent protein (YFP; the YFP derivative
cp178-mVenus), and an ATP-binding domain (ε-subunit from Ba-
cillus subtilis FoF1-ATP synthase) (58). The more MgATP2− is
present in the direct environment of the protein, the higher the
FRET, meaning that the fluorescence emission of the YFP acceptor
increased, whereas that of the CFP donor simultaneously decreased.
For the measurement, the sensor protein is genetically expressed in
the cytosol of leaves of the model plant Arabidopsis thaliana (5- to
6-week-old plant) (59). Leaf slices (30-mg fresh weight) were placed
in a single well of a 96-well multititer plate (52). The well was filled
withmedium and sealed with a transparent, air-tight film to prevent
oxygen diffusion. In the dark, the tissue respires off the available
oxygen in the medium, which turns gradually hypoxic. After
sealing the well and initiating fluorescence recording, the sensor in-
dicated a slight gradual decline of cytosolic MgATP2− up to a point,
at which the FRET ratio suddenly decreased, indicating that cytosol-
icMgATP2− concentrations collapsed (Fig. 3D). The fluorescence of
the leaf tissuewas measured every 40 s, the background fluorescence
was subtracted for isolating the sensor signal, and the fluorescence
emission ratio YFP/CFP was calculated. Five biological replicates
were measured with similar observations, and the experiment was
repeated twice. The dataset analyzed here was reported recently
(52). From this experiment, we obtained time series data including
271 data points, spanning an overall of 3 min with time interval
equal to 0.011 min (Fig. 3G and table S1).
Calcium carbonate in the end of greenhouse Earth
We reanalyzed the calcium carbonate (CaCO3) time series associat-
ed to the end of greenhouse Earth (2) that marked the transition of
an ice cap–free Earth to an Earth with ice caps on the poles. In this
study, the authors had reported that the time series had an increase
in autocorrelation while approaching the climate shift. In total, this
time series includes 462 data points, spanning an overall of 5.9
million years with time interval equal to 0.013 million years
(Fig. 3J and table S1).
Bus voltage frequency before power grid failure
We analyzed bus voltage frequency data measured before the
Western Interconnect Blackout of August 1996. The time series
consisted of ~10 min of measurements at a sampling rate of
∆t = 0.05 s from the Bonneville Power Administration territory,
until the point of separation. A similar time series (with a
∆t = 0.02415 s) have been shown to exhibit critical fluctuation ap-
proaching the point of blackout (60). For our study, data were pre-
pared in the same way as in the previous study (60). In total, this
time series included 11301 data points, spanning an overall of 565
s (Fig. 3M and table S1).

DEV analysis
The most critical step for the DEV approach is to reconstruct the
attractor. As system dynamics may change through time, we used
a windowing approach, instead of estimating the Jacobians using
the whole time series at once, as was done by Ushio et al. (18).

Thus, a proper window size, w (i.e., length of time series segment
for estimating DEV), is needed to be chosen for each time series
analysis to best describe the associated dynamics of the system. In
addition, best embedding dimension, E, and time lag, τ, are needed
to be estimated.
As in previous publications applying S-map (see detailed expla-

nation in the “EWS based on the dominant eigenvalue” section), we
screened for the parameter orchestration resulting in the best per-
formance [i.e., S-map prediction skill (61)]. To determine the
optimal window size for computation, we screened various
window sizes. For each window size, we evaluated S-map skill (pre-
dictability, ρ) for various combinations of embedding dimensions E
(1 to 12) and time lags τ (1 to 12) and obtained the highest ρ (ρmax).
During this stage of searching the optimal window size, for simpli-
fying the calculation, we chose θ = 0 in S-map, following the recom-
mendation of Hsieh et al. (61). When θ = 0, S-map is equivalent to
an autoregressive model of order E (61). The optimal window size
(w) close to the plateau was determined visually, beyond which in-
creasing the window size leads to very minor improvement of the
predictability (fig. S2A). Considering the paucity of time series
data and avoiding the risk of overfitting, we chose the window
size closest to the plateau phase. The best E and τ associated with
the optimal window size resulting in best ρ were used throughout
the analysis. Then, sensitivity analyses for various E, τ, andw should
be done to ensure the robustness of results. Selected parameters for
the SSR of each dataset are summarized in table S1.
After determining w, E, and τ, we proceeded to estimate the time

series of Jacobian for the window segment (fig. S2, B to D). To
account for changing nonlinearity of the reconstructed attractor
(41), for each time series segment defined by the moving window,
S-map analyses were run for various θ (0 to 2.5); the best θ giving the
best S-map forecast skill was chosen. After obtaining the time series
of Jacobian, we subsequently calculated the dominant eigenvalue at
each time point within the window. Then, we averaged all eigenval-
ues derived in the timewindow as our DEV indicator. The averaging
process smoothed out the uncertainty of estimating DEV at each
time point; in addition, the averaged DEV indicated the vulnerabil-
ity to critical transition for that region of attractor. Last, moving the
window forward and repeating the calculation for every time step,
we obtained the time series of DEV. The absolute value of DEV ap-
proaching 1 is indicative of critical transition. Using time series seg-
ments of the chosen window size, we consecutively estimated the
EWSs. The signals were reported and matched to the time index as-
sociated with the last point of the window. For practical purposes,
one can use a simple linear regression between DEV versus time to
make an extrapolation (Fig. 3), to visualize and anticipate the occur-
rence of critical transition. It is also possible to fit a nonlinear curve,
if the DEV approaches 1 nonlinearly.

Sensitivity of DEV approach to stochasticity
Noise (process and observation error) may undermine the efficacy
of DEV. Thus, we examined effects of noise on the three mathemat-
ical models. To create observation error, after generating a time
series, observation error was added by substituting each time
point xt by a normally distributed random value with mean xt
and SD ϕ, where ϕ determines the level of observation noise. The
process error was intrinsically included in our stochastic models. To
increase process noise, we increased the parameter ζ (see the “Model
data” section).
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For a given combination of process noise and observation error
(see figs. S4 to S7 for the combinations), 100 simulations were run
for each model. For each run, the DEV estimates at the first window
and the window immediately before bifurcation were used for
further analyses. By this procedure, we demonstrated (i) quantita-
tive and (ii) qualitative properties of the DEVas an EWS: (i) Because
mathematically the absolute value of the dominant eigenvalue is 1 at
bifurcation, the estimated DEV should be close to 1, too, to be a
robust quantitative indicator. (ii) Furthermore, the eigenvalues are
expected to increase before bifurcation. Thus,∆DEV, defined as the
difference between DEV before bifurcation and the DEV at the
initial phase of the simulation, was calculated to demonstrate that
DEV was a qualitative EWS.
Note that for the Rosenzweig-MacArthur model, even interme-

diate level of process noise results in breakdown of the system (in-
finite values); thus, only limited level of process noise can be
examined (fig. S6).

Comparison with AR1 and variance
For comparative purposes, all data were also analyzed using the two
most commonly used resilience indicators, autocorrelation and var-
iance. We estimated one-lag autocorrelation (AR1) as the Pearson
correlation for lagged time series at one point, and variance as the
SD. We used the same window size as that for the DEV approach to
make results comparable. Before analysis, linear trends in the time
series segment were removed using simple regression.

Computation
All analyses were done with R (version 3.1.2). The S-map analyses
were implemented using rEDM. AR1 and variances were computed
using the built-in functions in R. Documentation of all the analyt-
ical procedures and R codesmentioned above is provided in Zenodo
repository, https://doi.org/10.5281/zenodo.7379358.
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