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Prediction of turbulence eddy 
dissipation of water flow 
in a heated metal foam tube
Meisam Babanezhad1,2, Iman Behroyan3, Ali Taghvaie Nakhjiri4, Mashallah Rezakazemi5, 
Azam Marjani6,7* & Saeed Shirazian8,9

The insertion of porous metal media inside the pipes and channels has already shown a significant 
heat transfer enhancement by experimental and numerical studies. Porous media could make a 
mixing flow and small-scale eddies. Therefore, the turbulence parameters are attractive in such cases. 
The computational fluid dynamics (CFD) approach can predict the turbulence parameters using the 
turbulence models. However, the CFD is unable to find the relation of the turbulence parameters to 
the boundary conditions. The artificial intelligence (AI) has shown potential in combination with the 
CFD to build high-performance predictive models. This study is aimed to establish a new AI algorithm 
to capture the patterns of the CFD results by changing the system’s boundary conditions. The ant 
colony optimization-based fuzzy inference system (ACOFIS) method is used for the first time to reduce 
time and computational effort needed in the CFD simulation. This investigation is done on turbulent 
forced convection of water through an aluminum metal foam tube under constant wall heat flux. The 
ANSYS-FLUENT CFD software is used for the simulations. The x and y of the fluid nodal locations, 
inlet temperature, velocity, and turbulent kinetic energy (TKE) are the inputs of the ACOFIS to predict 
turbulence eddy dissipation (TED) as the output. The results revealed that for the best intelligence of 
the ACOFIS, the number of inputs, the number of ants, the number of membership functions (MFs) 
and the rule are 5, 10, 93 and 93, respectively. Further comparison is made with the adaptive network-
based fuzzy inference system (ANFIS). The coefficient of determination for both methods was close 
to 1. The ANFIS showed more learning and prediction times (785 s and 10 s, respectively) than the 
ACOFIS (556 s and 3 s, respectively). Finding the member function versus the inputs, the value of TED 
is calculated without the CFD modeling. So, solving the complicated equations by the CFD is replaced 
with a simple correlation.

The transport phenomena and heat transfer within the permeable media are vital in several engineering applica-
tions such as membranes, packed-bed catalytic reactors, electronic cooling, and adsorption. Thermal manage-
ment goal aims to ensure that each part’s temperature in a chemical/physical system remains within the definite 
operational  domains1,2, or to guarantee the improved enforced convective heat transfer in different applications 
such as heat exchangers, cooling towers, and solar  collectors3,4.

The utilization of metal froth-filled improved tubes is broadly examined in  literature5–7. Calmidi et al.8, Zhao 
et al.9, and Kim et al.10 conducted convection heat transfer implementation of metal foam-occupied channels 
with various structures experimentally and numerically to understand the underlying phenomena. The system’s 
parameters such as pore density, metal froth porosity, and channel geometry were extensively included affect-
ing the fluid flow as well as heat transport. Moreover, Zhao et al.11,12 assessed heat transfer and boiling flow in 
foam-filled horizontal metal tubes, where those elements affecting heat transfers and pressure drops were totally 
tested and studied.
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Computational fluid dynamics (CFD) tools are commonly used to predict thermal and hydrodynamic param-
eters of convective  flows13,14. The CFD tools prevent the extra expenses of the experiments coming from the 
trial and error processes. However, the CFD approach has its own expenses, especially for complex cases (e.g. 
two-phase flows, turbulent flows, complicated geometries, etc.). Modeling such complicated cases require a lot 
of computational efforts and high-performance computers. Although the CFD method predicts the fluid flow 
characteristics (e.g. temperature, velocity, pressure, turbulence parameters, etc.), this approach cannot find the 
relationship of such parameters with each other at an accepted level.

Nowadays, scientists studied the effects of artificial intelligence (AI) algorithms on evaluating fluid charac-
teristics to avoid solving complicated CFD cases and saving computational efforts. Once the CFD results are 
obtained, the AI algorithm can learn the data and find the general pattern of the CFD data changes. Besides, the 
AI algorithm can find the relationship between the flow characteristics. In new researches, a combination of Fuzzy 
Inference System (FIS) as the main core of intelligence with new meta-heuristic algorithms such as ant colony opti-
mization, differential evolution, genetic, and particle swarm optimization algorithms were considered to study 
fluid dynamics and heat transfer. Changing in FIS parameters are important for achieving the best intelligence.

Recently some studies considered the contribution of the ANFIS (adaptive network-based fuzzy inference 
system) with the CFD to predict fluid flow  characteristics15–17. The studies just simply discussed the application 
of the ANFIS for the facilitation of the CFD. But there is no discussion about the details of the algorithm setup 
and the effect of using the other trainers (i.e. ant colony optimization, differential evolution, genetic, and particle 
swarm optimization algorithms). Besides, there are not any studies to present the ability of artificial intelligence 
for correlating fluid flow characteristics.

According to the above discussion, for filling the research gaps, this study tries to use the ant colony optimi-
zation-based fuzzy inference system (ACOFIS) method for the first time to help the CFD model by the reduc-
tion of the number of the simulations. The efficiency of ACOFIS is compared with the ANFIS. The heat transfer 
and hydrodynamics of water flow inside an aluminum metal foam tube exposed to a fixed heat transfer flux is 
selected as a case study. The simulation is done for several inlet velocities and inlet temperatures. The x and y of 
the fluid nodal locations, the temperature at the inlet (T), the velocity (V), and turbulent kinetic energy (TKE) 
are the inputs of the ACOFIS to predict turbulence eddy dissipation (TED) as the output. Finally, a correlation 
is developed for finding the values of TED as a function of x, y, T, V, and TKE.

Methodology
Geometry and boundary conditions. The geometry of the case study is a cylindrical tube with a diam-
eter of 10 mm, and a length of 1 m. The fluid with uniform temperature of  T0 and uniform velocity of  u0 enters 
the pipe. It is assumed that the heat flux at the wall  qw is constant. The summary of the simulation cases and the 
boundary conditions are given in Table 1.

CFD method. The assessment is carried out for fluid with the conditions: steady state, incompressible, 3D 
and turbulent regime within a tubular geometry completely occupied with porous material submerged with a 
one-phase Newtonian fluid. Furthermore, the introduced porous material in the tube is supposed homogenous 
and isotropic with a uniform permeability magnitude and porosity. The characteristics of porous media includ-
ing material, porosity, permeability, and PPI are aluminum, 0.8, 5 × 10–8  m2, and 10, respectively. Moreover, 
temperature-caused change in the thermo-physical features of the solid matrix and the working fluid is consid-
ered negligible. Furthermore, it is assumed that viscous dissipation, natural convection gravitational effects, and 
radiation heat transfer will have an insignificant impact on temperature and velocity distributions as well as the 
solid and fluid are regarded in local thermodynamic equilibrium. The equations of mass, energy, and momen-
tum conservations may be expressed  as18–22:
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Table 1.  CFD cases.

Case no. Wall (kW/m2) Tinlet Vinlet (m/s)

1

q = 95

295 k

0.91
2 305 k

3 325 k

4 335 k
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where K is the permeability and C is the inertial coefficient given  as23,24:

where dl is the ligament and dp is the pore size obtained as:

In Eq. (6), ω denotes pore density. Also, PPI stands for pores per inch.
Energy conservation equation:

where effective thermal conductivity parameter is calculated as:

where subscripts s and F refer to the solid and fluid, respectively.
The equations for water properties are written  as25:
Density:

Viscosity:

where A = 2.414 × 10–5, B = 247.8, and C = 140.
Specific heat:

Turbulence modelling. The turbulence effect is simulated by the standard k–ɛ model reported by Launder 
and  Spalding26,27 as follows:

where G is the production of turbulence due to the liquid shear stress.

Numerical methods. All numerical methods, using in this study are available in the CFD package of 
ANSYS-Fluent. Fluent is finite volume (FV) scheme for converting the partial differential equations (PDEs) into 
algebraic equations for numerical solutions. Second-order upwind scheme is adopted for discretization of the 
momentum, energy, TKE and turbulent dissipation rate equations. SIMPLE algorithm is employed for the pres-
sure–velocity coupling scheme. ANSYS Design Modeler is used for meshing process. The discretization grid is 
included 250, 10 and 50 nodes in the axial, radial and circumferential directions, respectively.
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Ant colony optimization (ACO). The artificial agents are used by the generic ACO algorithm cooperating 
to discover the decent solutions of continuous/discrete optimization tasks. In this optimization approach, the 
agents are termed ants mimicking searching performance of biological systems in discovering the shortest path-
way to reach the source of food in nature. AS (Ant system)28 is used for the Traveling Salesman Problem (TSP), 
in which the ants make solutions via an iterative manner, and produce a certain quantity of pheromone over 
the traveled pathways. Selecting the path is a stochastic process in terms of two parameters of the heuristic and 
pheromone values for a product. When ant k presently place at i city for TSP, selects city j with a probability  as29:

In Eq. (16) α and β denote 2 modification parameters determining the relative significance between the 
heuristic in formation ηij , the pheromone trail τij , and Nk

i  is the asset of city contestants not met by the ant k. 
The pheromone value indicates the number of ants choosing the trail presently; however, the heuristic value is 
a problem-based quality action. Reaching a decision point, it probably selects the trail with the greater heuristic 
and pheromone values. When the ant reaches the destination, the equivalent solution to the path passed by the 
ant is assessed and the equivalent pheromone value on the pathway is updated  as29:

where ρ represents the pheromone trail perseverance and �τ kij (m) shows the quantity of pheromone deposited 
by the ant k on the traversed arc ij. Stutzle et al.30 indicated that the enhanced behavior could be attained by 
robust use of the best solutions, along with an operative mechanism to avoid initial search stagnation. It should 
be noted that despite numerous changes in the initial ant system to various problems, only fewer related  reports31 
exist on using ACO for estimating the parameters as detailed in this work.

Fuzzy inference system (FIS). Fuzzy inference system (FIS) is a common computing framework in terms 
of the fuzzy set theory concepts, fuzzy reasoning, and fuzzy if–then rules. It was successfully utilized in fields 
like automatic control, data classification, computer vision, expert systems, and decision analysis. Three various 
kinds of fuzzy reasoning exist implementing Sugeno and Takagi if–then rules in FIS  structure32. In this study, x- 
and y-direction, inlet temperature, turbulence kinetic energy (TKE) and velocity (V) are considered to acquire 
TED as output. The signals incoming are multiplied based on the AND rule. For instance, the ith rule’s function 
 is33:

where wi represent outcoming signal and µAi , µBi , µCi , µDi and µEi denote the signals incoming from MFs run 
over the inputs x-direction (X), y-direction (Y), inlet temperature  (Tin), TKE and velocity (V).

The relative value of each rule’s firing strength is obtained equal to the weight over the overall quantity of the 
firing strengths of all  rules33:

where −wi denotes the normalized firing strength. The defuzzication step used the function of a consequence 
if–then rule provided by Takagi and  Sugeno32.

Hence, the node function  is33:

where pi , qi , ri , si , ti , and ui denote the parameters of if–then rules.

Results and discussion
Figure 1 illustrates different steps of the fuzzy inference system (FIS) using the ant colony optimization (ACO) 
algorithm for learning the CFD results. Primarily, the inputs and the output of the ACOFIS are defined. The 
subtractive clustering is selected as the type of data clustering and for the inertia FIS. According to the CFD 
results, 2148 data are available for learning. The ACOFIS trains 70% of the CFD data for 60 iterations. The sub-
tractive clustering parameters including the cluster influence range, the squash factor, the accept ratio, and the 
reject ratio are determined. For the ACO parameters, the number of ants and the pheromone effect are 10 and 
0.2, respectively. Then the training process of the FIS is done based on the ACO algorithm. The TED predicted 
by the ACOFIS is compared with that predicted by the CFD. All errors of the ACOFIS predictions are calculated 
based on the CFD results. It should be noted that the values of ACO and FIS parameters are adjusted until the 
best intelligence is obtained. The sensitivity test for this adjustment is not considered in this study. The best 
intelligence of the ACOFIS is related to the highest coefficient of determination. Further validation is done by a 
comparison of the ACOFIS results with another artificial intelligence algorithm. This algorithm is also consid-
ered in this study for more comparison. In the end, the relation of the TED to the TKE and the inlet boundary 
conditions (velocity and temperature) is obtained. So, solving the complicated equations by the CFD is replaced 
with a simple correlation.
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Table 2 summarized all parameters that have been adopted for the setup of ANFIS and ACOFIS parameters. 
According to Table 2, the values of all parameters are equal for both methods. The type of FIS, membership 
function, and clustering are also similar for both of them.

As shown in Fig. 2, the values of the correlation coefficient (R) and the coefficient of determination  (R2) of the 
ANFIS (R = 0.99994 and  R2 = 0.99988) are a little higher than those of the ACOFIS (R = 0.99353 and  R2 = 0.98711). 
Figure 3 shows the prediction of the TED of both ANFIS and ACOFIS benchmarking the CFD results. Magni-
fying the graph, the ANFIS prediction shows a little more compatible results with the CFD than the ACOFIS. 
Table 3 shows a better comparison between the ANFIS and the ACOFIS. Based on the information of this table, 

Figure 1.  Flowchart of ACOFIS method.

Table 2.  ACOFIS and ANFIS initial parameters.

Methods ACOFIS ANFIS

Number of inputs 5 5

Maximum of Iteration 60 60

Percentage of data in learning processes 70 70

Programming software Matlab Matlab

Type of FIS Sugeno Sugeno

Clustering type Subtractive clustering Subtractive clustering

Type of membership functions Gaussmf Gaussmf

Number of input membership function 94 111

Number of rules as FIS parameter 94 111

Cluster influence range as a subtractive clustering parameter 0.2 0.2

Squash factor as a subtractive clustering parameter 1.25 1.25

Accept ratio as a subtractive clustering parameter 0.5 0.5

Reject ratio as a subtractive clustering parameter 0.15 0.15

Number of ants as a ACO parameter 10 –

Pheromone effect as a ACO parameter 0.2 –
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for roughly the same values of R and  R2 for both methods, the ANFIS takes more learning and prediction times 
(785 s and 10 s respectively) than the ACOFIS (556 s and 3 s respectively).

The integration of the ACOFIS artificial intelligence with the CFD modeling in prediction of heat transfer 
and hydrodynamics of water flow through an Aluminum metal foam tube is investigated. The CFD modeling is 
done by ANSYS-FLUENT CFD software. The ACOFIS method uses the x and y of the fluid nodal locations, the 

Figure 2.  Regression plot of training and testing processes for the best FIS trained by ant colony optimization 
algorithm and the best result of ANFIS.

Figure 3.  Validation of ANFIS and ACOFIS prediction for prediction of turbulence eddy dissipation in each 
node.

Table 3.  ACOFIS and ANFIS different errors and learning and prediction times.

Methods ACOFIS ANFIS

Training correlation coefficient (R) 0.995558913 0.999947369

Training coefficient of determination  (R2) 0.99113755 0.99989474

Testing correlation coefficient (R) 0.993532369 0.999941344

Testing coefficient of determination  (R2) 0.987106569 0.999882692

Learning time (s) 555.8053779 785.4094361

Prediction time (s) 2.8730278 10.402829
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temperature at the inlet (T), the velocity (V) and TKE as the inputs to predict TED as the output. Figure 4a,b 
show that the best intelligence could be obtained if all five inputs are included. Besides, the number of ants, and 
the number of membership functions (MFs) and the rule should be 10 and 93, respectively. According to Fig. 4, 
the regression number is roughly equal to 1 for both training and testing.

A comparative study is done between the CFD and the ACOFIS prediction of TED (shown in Fig. 5a–e). The 
results revealed that the predicted TED by the ACOFIS is in a good agreement with those by the CFD model 
for all 5 inputs.

The schematic diagram of the data clustering is illustrated by Fig. 6. The number of MFs for all inputs and 
the output, and the number of rules is equal to 93.

Figure 7 shows the degree of MFs for all inputs and all number of clustering. According to Fig. 7, the value of 
the Gaussian membership function can be determined for each value of the input. It should also be noted that 
there is a domain for all inputs. For example, the x and y are between ± 5 cm. The temperature limitation is from 
295 to 335 K. The velocity must be selected from 0.006 to 0.02 m/s. The TKE is from 0 to 1  m2/s2.

in which 
(21)
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∑

93
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∑
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)

Figure 4.  (a) Training process of ACOFIS using five inputs when number of ants is 10 and pheromone effect is 
0.2. (b) Testing process of ACOFIS using five inputs when number of ants is 10 and pheromone effect is 0.2.
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Figure 5.  Comparison of ACOFIS output with CFD data (turbulence eddy dissipation) based on (a) x-direction 
as first input of ACOFIS, (b) y-direction as second input of ACOFIS, (c) inlet temperature as third input of 
ACOFIS, (d) Turbulence kinetic energy (TKE) as fourth input of ACOFIS, (e) velocity (V) as fifth input of 
ACOFIS.
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Figure 5.  (continued)

Figure 6.  FIS structure trained by ACO algorithm as trainer in the highest level of intelligence.
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According to Eq. (21), turbulence eddy dissipation (TED) as the output is correlated to the x and y of the fluid 
nodal locations, the temperature at the inlet (T), the velocity (V), and TKE as the inputs. Table 4 shows the 
Gaussian function and its parameters.

Table S1 (Supplementary Information) illustrates the values of C and σ as the parameters of Gaussian func-
tion at each cluster and for the best intelligence condition. Table S2 (Supplementary Information) illustrates 
consequent parameters (p, q, r, s, t, and u) at each cluster. After the determination of the value of the Gaussian 
membership function (µ), the value of TED is calculated by Eq. (21) without using the CFD. This leads to a lot 
of reduction in time and computational effort.

Conclusion
This study was aimed to offer a straightforward way for the reduction of the number of CFD simulations. This 
could be useful for complex cases like 3D geometries or turbulent flows. So, the 3D modeling of turbulent forced 
convection of water in a pipe was considered. In addition, the CFD approach is unable to find the relation-
ship of the fluid flow parameters (i.e., velocity, temperature, turbulence parameters, etc.) with each other. This 
investigation aims to show the contribution of the ACOFIS artificial intelligence method, for the first time, in 
the prediction of heat transfer and hydrodynamics of water flow inside a metal foam tube. The ACOFIS was 
integrated with the CFD modeling. Once the CFD results are obtained, the ACOFIS can learn the data and find 
the general pattern of the CFD data changes.

The ANSYS-FLUENT CFD software was used for simulation of forced convection of water inside the metal 
foam tube. The water enters the tube by different inlet temperatures (i.e. 295, 305, 325 and 335 K). The x and 
y of the fluid nodal locations, the temperature at the inlet (T), the velocity (V), and turbulent kinetic energy 
(TKE) were considered as the inputs. The turbulence eddy dissipation (TED) was selected as the output. All the 
predictions were done on a cross-section in 0.3 m of the tube length. For more comparison, the efficiency of 
ACOFIS is compared with the adaptive network-based fuzzy inference system (ANFIS). The following results 
can be found from this investigation:

• The best intelligence (i.e. R ~ 1) could be obtained for the number of inputs equal to five. In addition, the 
number of ants, and the number of membership functions (MFs) and the rule should be 10 and 93, respec-
tively.

• The comparative study between the CFD and the ACOFIS prediction of TED revealed that the predicted 
TED by the ACOFIS is in a good agreement with those by the CFD.

µ1i = e
−(x−ci)

2

2σ2 ,µ2j = e
−(x−cj)

2

2σ2 ,µ3k = e
−(x−ck)

2

2σ2 ,µ4l = e
−(x−cl)

2

2σ2 , andµ5n = e
−(x−cn)

2

2σ2

Table 4.  Gaussian membership function equation in ACOFIS learning process.

Membership function Equation

Gaussian
e
−(x−c)2

2σ2

Figure 7.  Degree of membership in the highest level of intelligence.
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• The function of the degree of MFs versus all inputs and numbers of clustering was graphically determined. 
Once the values of the inputs are determined, the value of TED can be calculated without the CFD modeling. 
So, solving the complicated equations by the CFD could be replaced with a simple correlation.

• The coefficient of determination and the correlation of coefficient for both methods of ANFIS and ACOFIS 
were close to 1 at the best intelligence. The ANFIS showed more learning and prediction times (785 s and 
10 s, respectively) than the ACOFIS (556 s and 3 s, respectively).
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