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Abstract: Oligometastatic (OM) disease is defined by a low metastatic tumor spread. OM non-small cell 
lung cancer (NSCLC) treatment aims to improve the patient’s prognosis and quality of life, in an attempt-
to-cure objective. Oncogenic-driven metastatic NSCLC accounts for about 20–25% of NSCLCs, with an 
ever-increasing number of potentially druggable molecular alterations. Due to specific targeted therapy, the 
care and prognosis of mutated NSCLC is quite different from non-oncogenic-driven NSCLC. However, 
OM-NSCLC treatment guidelines do not specifically discuss oncogenic-driven OM-NSCLC patients. 
We conducted a narrative review regarding retrospective and prospective studies published from inception 
to May 2020 dealing with oncogenic-driven OM-NSCLC in order to: (I) describe the specific patterns of 
metastatic spread of oncogenic-driven NSCLC (i.e., bone and pleural tropism in EGFR mutated NSCLC 
and serous and brain metastases in ALK NSCLC); (II) review the low level of current evidence for local 
ablative therapy (LAT) strategies in patients with oncogenic-driven OM-NSCLC, focusing on the benefit/
risk of tyrosine kinase inhibitors (TKI) and LATs combination and (III) present strategies to help to select the 
best candidate for an attempt-to-cure approach. Finally, the optimal strategy may be to introduce a targeted 
therapy, then treat all tumor sites with LAT, and finally continue TKI for unknown prolonged duration in an 
attempt to prolong progression free survival in most patients, improve overall survival for some patients, and 
potentially lead to a cancer cure for a few patients.
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Introduction

The oligometastatic (OM) stage is a rare and intermediate 
stage of cancer that reflects a moderate risk of the disease’s 
metastatic spread. Treating OM non-small-cell lung 
cancer (NSCLC) aims to improve the patient’s prognosis 
and quality of life by implementing long-term disease 
control. Thanks to advances in interventional radiology 
and radiotherapy, the combination of systemic therapy with 
local ablative therapy (LAT) improves survival. Finally, 
systemic treatment may be interrupted through an “attempt” 
rather in an “intent”-to-cure approach, although currently 
there is no evidence to achieve this goal in the setting of 
oncogenic addictions. 

Recently, the European Society of Medical Oncology 
(ESMO) introduced guidelines for treating synchronous 
OM-NSCLC (1,2). These recommendations are “general” 
and do not consider specific NSCLC subgroups, such 
as oncogenic-driven lung cancer, and long-term tumor 
responses to immunotherapy.

In recent years, the prognosis of oncogenic-driven 
metastatic NSCLC has continuously improved, owing to 
widespread molecular tumor assessment when lung cancer 
is diagnosed, and the use of the latest-generation targeted 
therapy. Oncogenic-driven metastatic NSCLC accounts 
for about 20–25% of NSCLCs, with an ever-increasing 
number of potentially druggable molecular alterations. It 
usually occurs in non-smokers or light-former smokers, 
females and persons from Asian countries presenting with 
metastatic primary lung adenocarcinoma. Actually, the 
most common therapeutic alterations are the epidermal 
growth factor receptor (EGFR) mutation (10–30%), anaplastic 
lymphoma kinase (ALK) rearrangements (4–6%), c-ROS 
oncogene 1 (ROS1) rearrangements (2–3%), B-Raf proto-
oncogene serine/threonine kinase (BRAF) mutations (2–4%), 
rearranged during transfection (RET) gene rearrangements 
(1–2%), human epidermal growth factor receptor 2 (HER2) 
mutation and amplification (1–2%), mesenchymal-to-epithelial 
transition gene (MET) exon 14 alteration and amplification 
(3–4%), and recently, neurotrophic tropomyosin receptor kinase 
(NTRK) mutations (1–2%) (3-5).

Osimertinib, a third-generation tyrosine kinase inhibitor 
(TKI), has demonstrated superiority in metastatic-naïve 
EGFR-mutated NSCLC, compared to first-generation 
TKIs, with median overall survival (OS) of 38.6 months 
versus 31.8 months, respectively [hazard ratio (HR) for 
death: 0.80; P=0.046] (6). In metastatic naïve ALK-positive 
NSCLC, alectinib and brigatinib prolong progression free 

survival (PFS), compared to crizotinib, but OS data are still 
immature (7,8).

Despite the significant activity of these new-generation 
TKIs, these treatments remain palliative, but they enable 
the prolonged control of the cancer and improve quality 
of life through significant improvement in OS. However, 
tumors are molecularly heterogeneous and invariably 
develop a mechanism of resistance under pressure from a 
TKI and subsequently progress (9). Several strategies are 
being evaluated to maximize the prognosis of advanced 
NSCLC with oncogenic addiction, such as the continuation 
of treatment beyond progression, which is associated with 
LAT (2), and more recently, first-line drug combinations 
to delay molecular resistance and improve OS (10-13).  
Although these strategies improve the prognosis of 
metastatic oncogenic-driven NSCLCs, they have not yet 
achieved the curative goal, as opposed to cancer that is 
controlled by immunotherapy, in which a plateau in the OS 
curves has been observed. As previously seen, the care and 
prognosis of mutated NSCLC is quite different from non-
oncogenic-driven NSCLC. In our opinion, the management 
of oncogenic-driven OM-NSCLC also requires specific 
recommendations.

This review aims to present and discuss the strategy of 
care for oncogenic-driven OM-NSCLCs that are treated 
using a LAT. Utilization of a LAT is only possible when the 
disease has not extended, so we will first define different 
OM diseases using a care-taking lens. The features of 
NSCLC with addiction will then be described to guide 
different strategies in this specific population. Next, an 
analysis of the literature will discuss strategies, particularly 
with regards to treating OM-NSCLC with addiction. 
Finally, the paper presents the specifics of LAT that are 
associated with targeted therapies.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/tlcr-20-1152).

Literature review

A systematic Medline search using PubMed, the Cochrane 
database, and Google Scholar was performed from inception 
to May 2020. All retrospective and prospective studies, 
systematic reviews, and meta-analysis series in English 
dealing with oncogenic-driven OM-NSCLC were included. 
Case reports, editorials, studies with fewer than 10 patients, 
studies without LAT were excluded. Bibliographies from 
selected articles were screened for relevant publications. 

http://dx.doi.org/10.21037/tlcr-20-1152
http://dx.doi.org/10.21037/tlcr-20-1152
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However, data extracted from meeting abstracts were only 
minimally used. Finally, 32 publications were deemed to be 
relevant to the topic of OM-NSCLC with addiction and 
are the subject of this systematic review. All articles were 
reviewed by at least two authors (JC, VF, LM, and AS).

Should we change the definition of OM disease 
in oncogenic-driven NSCLC?

No specific definition has been proposed for OM disease in 
oncogenic-driven NSCLC. Currently, it is widely accepted 
that this is defined by the presence of ≤5 metastases and 
the involvement of three organs, which reflects a moderate 
risk of metastatic disease spread. All metastases should 
be treated using LAT (14,15). However, in our opinion, 
metastatic sites are not all equal. For example, pulmonary 
lymphangitis, pleural/serous effusion, and meningitis are 
not accessible to LAT. Mediastinal node involvement is an 
essential adverse prognostic factor for OS in patients with 
OM-NSCLC (16).

OM disease also represents an umbrella term for a dynamic 
state model of disease spreading (17). Synchronous metastases 
are detected within ≤6 months of the initial cancer diagnosis; 
if they are detected later, they are considered metachronous. 
Guckenberger et al. performed a subclassification into oligo-
recurrence, oligo-progression, and oligo-persistence, while 
taking into account whether OM disease is diagnosed during 
a treatment-free interval or during the first line of active 
systemic therapy, and whether an OM lesion has progressed on 
current imaging or not (Figure 1).

In our opinion, fluorodeoxyglucose F 18 positron emission 
tomography (18FDG-PET) and brain magnetic resonance 
imaging (MRI) imaging should be considered mandatory, 
especially in the context of oncogenic-driven cancers. Brain 
MRI is significantly superior to brain computed tomography 
(CT) in terms of detecting brain metastases, as the former 
detects lesions that are not visible on CT, especially for 
ALK-rearranged lung cancer (see below). The quality of the 
initial staging assessment of OM patients is essential (14,18).
Unfortunately, most studies do not provide details of initial 
staging, or they were conducted prior to the widespread us of 
modern imaging techniques (19,20).

Are metastatic sites different in oncogenic-driven 
OM-NSCLC than in other cancers?

It is particularly complicated to define patterns of OM-

NSCLC with oncogenic addiction, because the data 
about this population are poor. Since some mutations are 
extremely rare, there are no available studies concerning 
every currently known oncogene alteration. There is 
also heterogeneity within cohorts of the same oncogene 
driver alteration, with different mutations and different 
associated prognoses, such as in EGFR mutations between 
the L858R and del19 subgroups. In their meta-analysis, 
which included 21 studies, Giaj-Levra et al. collected data 
from six studies focused on OM-NSCLC with oncogenic 
addiction, corresponding to only 5.6% of the total analyzed 
population. This only concerned patients with EGFR 
mutations or ALK gene rearrangements (21). The mean 
number of metastatic disease sites seemed to be significantly 
higher in the ALK-positive cohort than in the triple-
negative cohort, with 3.6 sites in one study that investigated 
209 patients, including 41 with ALK-positive NSCLC (22). 
The number of lesions per metastatic site from these studies 
is often unknown. It is also unclear whether 18FDG-PET 
is widely used to determine the initial metastatic status, 
the proportion of patients with brain imaging is low or 
unknown in these studies, and the technique used on those 
who benefited is often not specified. 

At diagnosis, EGFR-mutated NSCLC (Figure 2) 
is likely to be significantly associated with metastatic 
bone and pleural disease, and possibly with liver disease, 
too (22-25). Results are contradictory concerning the 
association between brain metastases and EGFR-mutated 
status (23,24,26-28). ALK-positive NSCLC (Figure 2) is 
associated with a metastatic serous tropism, with higher 
incidence of pericardial and pleural metastases, extra-
thoracic nodes, liver metastases brain and lung metastases 
compared with non-, EGFR-, or KRAS-mutated patients 
(22,23,24). In the KRAS-mutated population (Figure 2), 
there are more pulmonary metastases (24). 

In the case of recurrent disease after surgery, we found 
the same trend with pleural and pericardial spreads in the 
ALK group, as well as with liver spreads in the ALK- and 
EGFR-mutated groups (22). It seems that patients with an 
EGFR mutation have more often disease progression in the 
brain after surgery and less often adrenal gland metastases, 
compared to non-mutated patients (29). Disease free-
survival after surgery appears to be significantly longer 
for EGFR-mutated patients. The subtype of the EGFR 
mutation could influence the recurrence pattern, with a 
lower risk of distant-spread disease and better local control, 
in patients exhibiting exon19 Del (29).
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Figure 1 Schematic of different definitions of OM disease.

Is the prognosis for OM oncogenic-driven 
NSCLC different than that for cancers without 
addiction?

Large trials concerning the treatment of OM-NSCLC have 
only included a small number of patients exhibiting cancers 
with addiction, mainly those with an EGFR mutation 
or ALK rearrangement (19,20,30-33). The presence of 
oncogenic addiction was a good prognostic factor for OS. 
In a Phase 2 trial of OM-NSCLC, 49 patients with less than 
four metastases after first-line treatment were randomized 
to receive either LAT or standard treatment (maintenance 
or monitoring). LAT was radiotherapy (hypo-fractionated 
or stereotaxic) and/or surgery. After a median follow-up of 

38.8 months, median updated OS was 41.2 months in the 
LAT arm (18.9 months–not reached) versus 17.0 months in 
the maintenance arm (10.1–39.8 months; P=0.017) (20,30). 
This trial included five patients with addiction: three with 
an EGFR mutation and two with an ALK rearrangement. 
The median OS was not reached in this group. Despite this 
small number of patients with addiction, multivariate analysis 
demonstrated that the presence of ALK/EGFR alterations and 
a small number of metastases were associated with better OS 
in the LAT treatment arm (HR: 0.46; 0.21–0.99; P=0.048).

Parikh et al. prospectively analyzed 186 patients with 
OM-NSCLC, which was defined as ≤5 metastases. Overall,  
20 patients (12%) exhibited EGFR mutations and four (20%) 
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Figure 2 Distribution of metastasis sites according to mutation status in patients with Stage IV non-squamous NSCLC. Frequency of 
metastasis spread in (I) Dormieux et al. (23); (II) Doebele et al. (22); and (III) Kuijpers et al. (24).
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received LAT for a primary tumor. Achieving LAT does not 
appear to have been influenced by EGFR status. LAT on the 
primary tumor and EGFR mutation were associated with 
prolonged OS (HR: 0.65; P=0.043 and HR: 0.46; P=0.001, 
respectively). Poor prognosis factors were PS2 (HR: 2.43; 
P=0.02), N2N3 lymph node status (HR: 2.16; P<0.001), 
epidermoid subtype (HR: 1.97; P=0.001) and the presence of 
metastasis in several organs (HR: 2.11; P=0.001) (31).

Finally, no trials reported over-toxicity when comparing 
patients that received the combination of LAT and targeted 
therapy, with those who received chemotherapy (19,20,30-35).  
As in the multi-metastatic stage, the presence of an EGFR 
or ALK addiction seems to be a factor of good prognosis in 
OM disease. However, it is difficult to identify whether such 
better prognosis is directly related to the presence of addiction, 
associated factors (i.e., ethnicity, gender, or non-smoker status), 
or the major and prolonged effect of targeted therapy.

Therapeutic strategies for OM oncogenic-driven 
NSCLC

Two first-line strategies have been described in the 

literature. OM disease is either defined at the initial 
assessment, which is known as “synchronous” OM, or in 
response to systemic treatment, which is referred to as 
“oligo-persistent” status. LAT may also differ according 
to the intention-to-treat strategy, which can vary between 
lesions from all sites, only lesions at the primary site, or 
lesions at all the metastatic sites being treated. The main 
studies combining LAT and targeted therapy in the first-
line setting are summarized in Tables 1-3, according to 
the intention-to-treat LAT strategy. To date, all studies 
evaluating strategies for OM with addiction concern 
EGFR-mutated NSCLC.

Therapeutic strategies for synchronous  
EGFR-mutated OM-NSCLC

LAT of at least one tumor site is associated with better 
prognosis

Hu et al. analyzed 231 EGFR-positive OM-NSCLCs (one 
organ and <6 metastases) in a retrospective cohort. All patients 
received a first-generation EGFR-TKI. LAT was administered 



3462 Fallet et al. Strategies in oligometastatic NSCLC with addiction

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(7):3457-3472 | http://dx.doi.org/10.21037/tlcr-20-1152

T
ab

le
 1

 S
el

ec
te

d 
st

ud
ie

s 
of

 lo
ca

l a
bl

at
iv

e 
th

er
ap

y 
fo

r 
m

et
as

ta
se

s 
in

 E
G

FR
 o

lig
om

et
as

ta
tic

 n
on

-s
m

al
l-

ce
ll 

lu
ng

 c
an

ce
r:

 c
ha

ra
ct

er
is

tic
s 

an
d 

cl
in

ic
al

 o
ut

co
m

es

S
tu

dy

N
um

be
r 

of
 p

at
ie

nt
 

n 
(L

AT
)/n

 
(c

on
tr

ol
)

S
tu

dy
 ty

pe
 

O
M

 ty
pe

O
M

 d
ef

in
iti

on
 a

nd
 

or
ga

n 
in

vo
lv

ed

M
an

da
te

d 
18

FD
G

 P
E

T/
br

ai
n 

M
R

I
Ty

pe
 o

f L
AT

A
dd

ic
tio

n 
an

d 
sy

st
em

ic
 

th
er

ap
y 

co
nc

om
ita

nt
ly

P
FS

 (m
ed

ia
n)

O
S

 (m
ed

ia
n)

H
u,

 X
u,

  
et

 a
l. 

20
19

14
3/

88
R

et
ro

sp
ec

tiv
e 

si
ng

le
-c

en
te

r
O

lig
om

et
as

ta
tic

 
sy

nc
hr

on
ou

s 
(n

=
96

) 
an

d 
ol

ig
or

ec
ur

re
nt

 
(n

=
13

5)

<
1 

or
ga

n 
an

d 
<

6 
m

et
as

ta
se

s;
 

bo
ne

 (3
7%

), 
br

ai
n 

(3
4%

), 
lu

ng
 (2

2%
)

N
o/

N
o

O
nl

y 
m

et
as

ta
se

s;
 

ra
di

ot
he

ra
py

 o
r 

su
rg

er
y

TK
I E

G
FR

  
1st

 G
e 

15
 v

s.
 1

0 
m

on
th

s 
(P

=
0.

00
0)

34
 v

s.
 2

1 
m

on
th

s 
(P

=
0.

00
1)

H
u,

 L
i, 

 
et

 a
l. 

20
19

62
/6

5
R

et
ro

sp
ec

tiv
e 

si
ng

le
-c

en
te

r
O

lig
om

et
as

ta
tic

 
sy

nc
hr

on
ou

s 
(n

=
79

) 
an

d 
ol

ig
or

ec
ur

re
nt

 
(n

=
48

)

<
6 

m
et

as
ta

se
s 

on
ly

 b
on

e 
N

o/
N

o
B

on
e 

m
et

as
ta

se
s;

 
ra

di
ot

he
ra

py
 9

1.
9%

); 
su

rg
er

y 
(4

.8
%

); 
bo

th
 

(2
.2

%
)

TK
I E

G
FR

  
1st

 G
e 

14
.0

 v
s.

 8
.1

 m
on

th
s 

(P
=

0.
01

)
36

.3
 v

s.
 2

1.
0 

m
on

th
s 

(P
=

0.
01

)

Ji
an

g 
 

et
 a

l. 
20

19

47
/4

5
R

et
ro

sp
ec

tiv
e 

si
ng

le
-c

en
te

r
O

lig
om

et
as

ta
tic

 
sy

nc
hr

on
ou

s 
(n

=
64

) 
an

d 
ol

ig
op

ro
gr

es
si

ve
 

(n
=

71
)

<
5 

m
et

as
ta

si
s 

 
on

ly
 li

ve
r 

N
o/

N
o

Li
ve

r 
m

et
as

ta
se

s;
 

ra
di

ot
he

ra
py

, R
FA

, 
in

te
rv

en
tio

na
l 

th
er

ap
y,

 o
r 

su
rg

er
y

TK
I E

G
FR

  
1st

 G
e 

13
.8

 v
s.

 8
.6

 m
on

th
s 

(P
=

0.
00

1)
31

.2
 v

s.
 1

8.
5 

m
on

th
s,

 (P
=

0.
00

1)

R
FA

, 
ra

di
of

re
qu

en
cy

 a
bl

at
io

n;
 T

K
I 

E
G

FR
 1

st
 G

en
er

at
io

n:
 e

rlo
tin

ib
 ic

ot
in

ib
 o

r 
ge

fit
in

ib
; 

O
M

, 
ol

ig
om

et
as

ta
tic

; 
LA

T,
 lo

ca
l a

bl
at

iv
e 

th
er

ap
y;

 P
FS

, 
pr

og
re

ss
io

n-
fr

ee
 s

ur
vi

va
l; 

O
S

, 
ov

er
al

l s
ur

vi
va

l; 
TK

I, 
ty

ro
si

ne
 k

in
as

e 
in

hi
bi

to
r;

 E
G

FR
, e

pi
de

rm
al

 g
ro

w
th

 fa
ct

or
 re

ce
pt

or
.

to 143 (61.9%) patients (all radiotherapy modalities or 
surgery). No treatment of T and N was delivered in this study. 
Oligo-progressive patients who had undergone initial surgery 
and relapsed in the OM stage were included (n=135/231, 
58.4%). Metastatic sites were bone (n=87), brain (n=80), and 
lung (n=51). The LAT group exhibited more brain metastases. 
Median PFS and OS were significantly increased in the LAT 
group, with median PFS of 15 months versus 10 months 
(HR: 0.610; P<0.001) and median OS of 34 months versus  
21 months (HR: 0.593; P=0.001) (25). No difference was found 
according to the EGFR mutation type (del19 or L858R). 
The OS benefit of LAT was also found for the same group 
in EGFR NSCLCs, with only bone or hepatic metastases. 
Analysis revealed a median OS of 36.3 versus 21.0 months (HR: 
0.537; P=0.01) and median PFS of 31.2 versus 18.5 months 
(P=0.001) (36,37).

Elamin et al. compared the outcomes of 12 patients 
with EGFR-mutated OM-NSCLC who were treated with 
a combination of an EGFR-TKI consolidative LAT with  
129 patients were treated with only an EGFR-TKI (38). 
Positive thoracic nodes counted as one lesion. In the 
consolidative LAT group, eight patients (66.7%) had less 
than four metastases. LAT consisted of hypo-fractioned 
radiotherapy (n=11) or lung surgery (n=1), either on the 
primary site or metastases. Median PFS significantly 
improved in the LAT group (36 vs. 14 months; P=0.0024), 
but median OS was not significantly different. No 
significantly increased toxicity was observed (38).

Combined with EGFR- or ALK-TKI, a study by 
Borghetti et al. found that stereotaxic radiotherapy (SRT) 
to at least one tumor site was a better factor of OS than 
palliative radiotherapy (RT). Nearly half of patients (n=52, 
49.1%) were defined as OM or oligo-progressive, with less 
than five metastases. OS was 79% at one year and 62% at 
two years in this subgroup (39).

Recently, a Chinese randomized multicenter Phase 2 trial  
evaluated concomitant SBRT and EGFR-TKI, versus 
EGFR-TKI alone, for EGFR OM-NSCLC (up to three 
metastatic sites). The results were presented at the 2019 
World Conference for Lung Cancer (WCLC) (40). After 
three months of TKI with controlled disease, 61 patients 
were randomized to either SBRT combined with TKI or 
TKI alone. Investigators decided which sites would be 
irradiated (primary tumor, metastasis, or both). Median 
follow-up was 22.3 months. Median PFS of patients with 
SBRT combined with TKI (n=30) was superior to that for 
those on TKI alone (n=31; 17.4 vs. 8.9 months; P=0.042). 
In multivariable analysis, PFS varied according to the 
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irradiation field. PFS was longer in patients irradiated for 
just primary lesions, compared to those irradiated for both 
primary and metastatic lesions, or for those irradiated 
for metastatic lesions only (21.8, 18.3, and 10.6 months, 
respectively; P=0.006). OS data were not presented. The 
combined SBRT and TKI treatment was safe, and no 
patients experienced Grade 3 SBRT-related toxicities.

In all of these studies, which mostly employed a 
retrospective design, using LAT associated with TKI 
invariably improved prognosis, in terms of both PFS and 
OS. However, in these studies, not all tumor sites received 
LAT, so the goal cannot be curative. Some other studies 
evaluated this maximizing strategy.

LAT of all residual tumor sites in EGFR-mutated  
OM-NSCLC is associated with the best prognosis

The first study involving a retrospective cohort of 
EGFR-mutated OM-NSCLC who received LAT in all 
oligometastatic sites was performed in China (41). This study 
collected all cases of synchronous OM-NSCLC, which was 
defined as less than five metastases sites with a common 
EGFR mutation. All patients received a first-generation TKI 
(erlotinib, gefitinib, or icotinib) and were non-progressive 
at first evaluation. LAT was performed with curative intent, 
either by RT or surgery. Overall 145 patients were included: 
51 received LAT at all tumor sites (including primary lesions 
[all site-LAT]), 55 received LAT either at the primary sites 
or on metastasis sites (part-LAT), and 39 did not receive 
LAT (non-LAT). More than 90% of patients presented 
≤2 metastases. The T1/T2 stage (n=40, 78%) and N0/N1 
stage (n=38, 74%) were mainly in the all site-LAT group. 
No patients with more than three metastases received LAT. 
Median PFS in the all site-LAT group improved, compared 
to the part-LAT and non-LAT groups (20.6, 15.6, and  
13.9 months, respectively; P<0.001). Median OS in the all 
site-LAT, part-LAT, and non-LAT groups were 40.9, 34.1, 
and 30.8 months, respectively (P<0.001). The difference 
was statistically significant between patients in the all site-
LAT group and the other groups, but it was not significant 
between the other two groups. In multivariate analysis, 
LAT of primary tumors was an indicator of good prognosis. 
Consolidative LAT for primary tumors, brain metastases, and 
adrenal metastases improved the median OS significantly (41). 
However, it is not clear if TKI was ultimately stopped in the 
all site-LAT group.

The randomized multicenter Phase 2 ATOM trial 
evaluated the feasibility of SRT at persistent active 18FDG-
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PET sites after three months of EGFR-TKI (42). A 
maximum of four sites could be accessible to LAT. The study 
had to be stopped after three years, due to the low number 
of inclusions (16 patients included out of the 34 who were 
expected). A post-hoc analysis compared the 48 screen failure 
patients with the 16 included patients. The one-year PFS 
rate was 68.8%, and median OS was 43.3 months. No Grade 
≥3 toxicity was observed. EGFR-TKI was stopped the day 
before SRT, and it was resumed the following day. The risk 
of progression in the LAT group was reduced, according to 
the post-hoc analysis (HR: 0.41; P=0.0097) (42).

Recently, the multicenter Phase 3 SINDAS trial was 
presented at the 2020 American Society of Clinical Oncology 
(ASCO) meeting, which evaluated the efficacy of up-front SRT 
to all disease sites, along with EGFR-TKI in EGFR-mutated 
OM-NSCLC patients (43). A maximum of five metastatic sites 
were allowed, whereas brain metastases were excluded. In the 
case of complete response, the duration of TKI treatment was 
not specified. The primary endpoint was PFS. Between 2016 
and 2019, 133 patients were randomized: 65 (48.8%) in the 
TKI arm, and 68 (51.1%) in the SRT and TKI arm. Median 
PFS and OS significantly improved in the SRT group: 20.20 
versus 12.5 months (HR: 0.68; P<0.001) and 25.50 versus 
17.40 months (HR: 0.68; P<0.001), respectively, according to 
the interim analysis. In terms of tolerance, adverse events were 
similar, but more pneumonitis cases were noted in the SRT 
group (7.3% vs. 2.9%; P>0.05) (43). 

In EGFR-mutated OM-NSCLC, the strategy of LAT of 
all tumor sites combined with TKI is feasible and appears to 
be associated with a good prognosis. These data need to be 
confirmed by randomized phase 3 trials.

LAT of all residual tumor sites could be performed in 
patients with lymph node involvement if controlled 

Ni et al. specifically evaluated percutaneous microwave 
ablation (MWA) for the treatment of EGFR-mutated 
extracerebral OM-NSCLC, more than 50% of which 
presented lymph node mediastinal involvement (44). In this 
study, 86 patients with extracerebral OM disease and EGFR 
mutation were included, 34 of whom received locoregional 
treatment at the primary site (except for four) and metastatic 
sites after 2 months induction treatment with EGFR-TKI, 
whereas 52 patients were treated with EGFR-TKI alone. 
Patient characteristics were similar in the two groups, and 
most patients presented with less than three metastases 
(n=75, 87%) and advanced lymph node involvement (N2/
N3; n=49, 57%). In the MWA group, the most common 

metastatic sites were in the lung (39.5%) and liver (23.3%). 
Addition of MWA to EGFR-TKI significantly improved 
median PFS and OS, compared to the EGFR-TKI alone 
group: 12.9 versus 6.7 months (HR: 0.44; P=0.02) and 
22.7 versus 4.8 months (HR: 0.45; P=0.04), respectively. 
Multivariate analysis reveals that consolidation MWA LAT 
is an independent predictor of better PFS and OS. MWA 
was well tolerated, and there were no Grade 3 toxicity. 
EGFR-TKI was continued during the intervention. MWA 
of the pulmonary lesions was complicated by pneumothorax 
in 18.6% of cases, which required chest tube aspiration in 
half of cases. The complications of MWA also included pain 
(mild or moderate in 58.8% of cases, and never severe) (44).

As previously described, it is our opinion that the only 
optimal strategy to cure OM patients with EGFR mutations 
is to curatively treat all the tumor sites, both primary and 
metastatic ones, with a combination of TKI. The availability 
of LAT techniques and questions concerning the duration 
of TKI treatment are limitations of this theory.

Which EGFR-TKIs and which timings are associated with 
LAT?

To date, most data concern EGFR-mutated OM-NSCLC 
patients that are treated with first- or second-generation 
EGFR-TKIs. Better control and better OS are obtained 
with osimertinib in metastatic EGFR lung cancer (6,45), 
but there is currently no available data on osimertinib to 
treat OM-NSCLC.

The timing of LAT introduction was not considered in 
the OM studies. A retrospective multicenter trial analyzed 
the optimal sequence of SRS or whole-brain radiation 
therapy (WBRT) and first- and second-generation EGFR-
TKIs in patients with EGFR-mutated NSCLC who had 
brain metastases at diagnosis. Stereotactic radiosurgery 
followed by EGFR-TKI resulted in the longest OS, 
compared with upfront WBRT or EGFR-TKIs (46, 30, 
and 25 months, respectively; P<0.001) (46). However, 
osimertinib’s better blood-brain barrier penetration and 
better activity against brain metastases could change this 
picture (47,48).

As previously explained, for OM-NSCLC with EGFR 
mutation, our proposal is to immediately initiate EGFR-
TKIs, especially osimertinib in the case of brain metastases, 
and to then perform an assessment in order to ensure 
disease control before starting LAT. This reassessment 
must include 18FDG-PET and brain MRI to ensure disease 
control before starting LAT because about 1% and 7% of 
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patients with EGFR-mutated metastatic NSCLC present 
with initial progression (45).

Can we stop EGFR-TKIs after all-site lesions are treated 
with LAT, and if so, when?

If the treatment is aimed to obtain a cure, the question of 
stopping TKI should be raised for patients with completely 
all-site treated lesions. This question had not been studied 
in the literature. However, trials of adjuvant treatment 
in EGFR-mutated NSCLC may provide some answers. 
Currently, adjuvant EGFR-TKI improves disease-free 
survival (DFS), but an improvement in survival is not 
demonstrated yet in these studies (49-53).

The Phase 3 trial CTONG 1104 compared 24 months of 
gefitinib (n=111) with four cycles of a cisplatin–vinorelbine 
doublet (n=111) in adjuvant treatment of Chinese patients 
with completely resected Stage IIA–IIIA (N1–N2) EGFR-
mutated NSCLC (52). The final OS results were presented 
at 2020 ASCO (51). At median follow-up of 80 months, 
adjuvant gefitinib administrated for 24 months significantly 
improved DFS, but this advantage did not translate into a 
significant difference in OS. The updated median DFS was 
30.8 months in the gefitinib group and 19.8 months in the 
CT group (HR: 0.56, 95% CI: 0.40–0.79). The median OS 
was 75.5 months in the gefitinib group and 62.8 months in 
the CT group (HR: 0.92, 95% CI: 0.62–1.36). Grade 3 or 
higher adverse events were less common with gefitinib (12% 
vs. 48%), and there were no cases of interstitial lung disease 
recorded.

This potentially better OS in completely resected N1/N2 
patients with EGFR-mutated NSCLC was also evaluated in 
the EVAN study (53). This randomized, open-label Phase 2 
trial compared erlotinib for 24 months with CT in adjuvant 
treatment of 102 completely resected Stage IIIA EGFR-
mutated NSCLC patients. Median DFS was longer in the 
erlotinib group than in the CT group (42.4 vs. 21.0 months; 
HR: 0.268; P<0.0001). Although data were not mature, 
median OS had not been reached in either group at the data 
cut-off point, even if the HR for OS was 0.165 (95% CI: 
0.047–0.579) in favor of erlotinib (P=0.0013), but.

Finally, in the ADAURA trial, a Phase 3 double-blind 
trial, 682 patients with EGFR-mutated Stage IB to IIIA 
resected NSCLC were randomized to adjuvant osimertinib 
administered for up to three years, versus placebo. Adjuvant 
CT was authorized in both groups. The early results of 
this trial were presented at 2020 ASCO (54,55). The Data 
Safety Monitoring Committee recommended ending the 

study early, due to an improvement of two-year DFS in the 
osimertinib group (89% vs. 53%; HR: 0.21). OS data were 
not yet mature. The recurrence of central nervous system-
related disease was reduced by 82% with osimertinib. 
Osimertinib was well tolerated, with serious adverse events 
observed in 16% of cases, versus 13% in the placebo group.

To date, we do not have any evidence that TKI in an 
adjuvant setting of completely resected EGFR-mutated 
NSCLC receiving or not CT improves OS, although 
it reduces or delay the risk of metastatic relapse, rather 
than locoregional relapse. Therefore, in OM disease, it is 
difficult to administer the EGFR-TKI for less than two or 
three years, and this is probably only applicable to patients 
with good prognosis factors, which are yet to be identified. 
Actually, the place of adjuvant CT should not be challenged. 

Therapeutic strategies for oligo-progressive  
oncogenic-driven NSCLC

Unlike the management of synchronous OM, many 
recommendations describe the management of oligo-
progression in oncogenic-driven advanced NSCLC (2,56). 
At oligo-progression, the aim is not to cure patients, but to 
postpone changing the therapeutic line.

The first retrospective single institution study that 
demonstrated the benefit of LAT in oligo-progression in 
oncogenic-driven NSCLC was published in 2012 (57). 
Weickhardt et al. described the natural history of 38 ALK-
fusion NSCLC and 27 EGFR mutated-driven NSCLC 
patients, after they had progressed within the central nervous 
system (but were not non-leptomeningeal). Patients had <4 
systemic sites under TKI (erlotinib or crizotinib) (58). LAT 
(all but one using RT) was performed in 25 patients with 
oligo-progression (49%; 15 ALK fusion-driven and 10 EGFR 
mutated-driven) with initial TKI continuation. Finally, 19 of 
25 patients progressed after LAT administration in a median 
time of 6.2 months (3.7–8.0 months). LAT was well tolerated, 
with two cases of grade 3 adverse events after WBRT (both 
fatigue).

In a retrospective study of oligo-progressive EGFR 
NSCLC, 46 patients were treated with LAT (all with RT 
except two with radiofrequency ablation of the lung), and 
the same TKI was continued (59). Twenty-four (52.2%) 
patients were treated for brain metastases (there was no 
limit on the number of brain metastases), 16 patients 
(34.8%) were treated for lung metastases, and six patients 
(13%) were treated for bone metastases. Median PFS and 
OS after LAT were 7.0 and 13.0 months, respectively. 
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Two-year OS was 65.2%. Del19 EGFR mutations, brain 
metastases sites of LAT (vs. lung or bone), and a long 
period since the first progression to LAT were all good 
prognostic factors for OS after LAT. Grade 3 pneumonitis 
was observed in two patients (4.3%).

In another retrospective cohort, Rossi et al. reported 
131 patients with disease progression during first-line 
afatinib or gefitinib (60). LAT with high-dose RT and TKI 
continuation were conducted on 30 patients. The sites of 
local RT were the bone (n=11), lung (n=9), brain (n=8), 
lymph nodes (n=8), and liver (n=1). Median OS was longer 
in the LAT patient group than for patients continuing 
TKI beyond progression without LAT or those switching 
to another systemic therapy (37.3, 20.1, and 15.1 months, 
respectively; P<0.0001).

Finally, a Phase 2 trial evaluated SRT for the treatment 
of patients with oligo-progression on erlotinib (61). Twenty-
five out of the 40 patients who progressed with less than five 
sites, including brain metastases, were ultimately treated. 
For most patients (84%), one metastatic site was treated. 
The treated metastases were on the lung (n=15), bone (n=7), 
liver (n=4), and brain (n=2). Median PFS from SRT was  
six months. No toxicity Grade 3/4 was attributed to SRT. 
The study closed early due to poor accrual and because of 
the development of osimertinib. This study demonstrated 
the feasibility of SRT followed by the re-initiation of TKI 
for patients with oligo-progression.

Can we safely combine LAT and kinase inhibitors?

Safety data on the undesirable effects of percutaneous 
ablation in association with targeted therapies needs 
further confirmation, due to the limited amount of 
evidence in the literature (44,62). Most percutaneous 
radiofrequency, microwave ablation, and cryoablation 
procedures were well tolerated in the lungs (57), and the 
rate of major complications was inferior to 10%. Pain was 
the most common complication, mostly of mild intensity 
and observed in one-third of patients. Postoperative 
pneumothorax was recorded in up to 30% of procedures, 
with chest tube drainage only rarely required. No patients 
have died during or within 30 days after these procedures.

Most available data concern RT. A dose-fractionation 
RT regimen with curative intent was dependent on the 
radiation oncologist team, accelerators, experience, and the 
patient’s metastasis (size, motion, location). For example, in 
a combined LAT and TKI retrospective study, the accepted 
definition of RT included standard-fractionation RT  

(60 Gy in 2-Gy fractions), aggressive palliation RT (45 Gy 
in 3-Gy fractions), SRS, and SABR (from 20 to 40 Gy in 1– 
5 fractions) (41).

In lung SBRT for early-stage NSCLC, biological 
equivalent doses of >100 Gy have been associated with high 
local control (63). In a phase 3 randomized trial that included 
101 patients, the efficacy of SABR was shown to be superior 
to conventional RT for localized NSCLC, without excess 
toxicity (64). For brain metastases, data suggest that the 
prescription is the main factor associated with local control 
after SRS (65). Additionally, for bone-metastasis RT, SBRT 
was associated with higher pain relief and local control versus 
conventional palliative RT in a phase 2 trial that included 
160 patients (66). This is similar to SBRT for liver metastasis, 
where conventional RT is scarcely used. However, SBRT is 
associated with high local control rates (67). These data favor 
RT that uses stereotactic techniques and delivers ablative 
doses.

Studies of tolerance with combined targeted therapies 
and SRT are retrospective and heterogeneous. The best 
available safety data for SRS and SABT combined with 
small molecules or antibodies are those with bevacizumab, 
ipilimumab, nivolumab, and EGFR-TKIs (68). The 
heterogeneity of RT concerns the techniques used, doses 
delivered, target organs, and volumes of the treated lesions. 
The majority of recommendations propose a break in TKI 
treatment before and after RT or a sequential treatment 
that starts with SRT for the treatment of brain metastases.

EGFR-TKIs that are associated with extracranial 
SABR may be associated, yet with increased toxicity in the 
irradiated volume when treating abdominal and thoracic 
metastases. Nevertheless, no increased toxicity was observed 
in the cranial SRS (68).

Regarding ALK inhibitors that are associated with SABR 
and SRS, only few safety data are available. An Italian 
RT group conducted a retrospective multicenter study to 
evaluate the impact of RT among 106 NSCLC patients 
that had been treated with RT concomitantly to EGFR- 
and ALK-TKIs (30 days before or after) between 2010 
and 2016. RT was either palliative or stereotaxic. SRT was 
administered to 49 patients (46%). The RT site was in the 
brain (46%), bone (27%), and lung (14%). No TKI was 
stopped for toxicity, and the TKI was continued in most 
patients (38/62, 63%) (39). In multivariate analysis, SRT 
was associated with improved survival (39).

With regards to BRAF inhibitors, high rates of brain 
toxicities (mainly hemorrhagic complications) have been 
described after cerebral SRS in metastatic melanoma 
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patients, which suggests that caution is required. There 
are no data on the combination of BRAF inhibitors with 
extracerebral SABR (68,69), and the limited number of 
patients treated with MEK inhibitors and SRS or SABR 
inhibitors do not allow for conclusions to be drawn about 
the safety of such combinations. In 2016, the Eastern 
Cooperative Oncology Group (ECOG) recommended 
administering both BRAF and MEK inhibitors ≥3 days 
before and after fractionated RT and ≥1 day before and 
after single-dose SRS (70).

In HER2-positive breast cancer patients, lapatinib 
concurrently with brain SRS did not increase radiation necrosis 
rates after a 12-month follow-up (71). On the other hand, 
another retrospective study revealed that TDM1 with brain 
SRS was associated with higher radiation necrosis risk (72). 
In another study, sequential SRS treatment lowered radiation 
necrosis, versus concurrent TDM1 use (29% vs. 50%) (73).

Finally, there are only preliminary published data 
concerning the combination of curative intent RT and 
TKIs. The precautionary principle would be to take a TKI 
break at a maximum of five treatment half-lives before, 
especially when potential TKI and RT interaction toxicity 
can occur in the organ concerned by the RT field (brain, 
lung) (74). In this context, curative intent RT should 
prioritize stereotactic techniques and ablative doses in order 
to optimize local control, reduce irradiated volumes, and 
shorten or maybe avoid the TKI break.

Conclusions

Nowadays, with innovative strategies that include targeted 
therapies and LAT combinations, synchronous OM with 
oncogenic-driven NSCLC might represent an opportunity 
for an attempt-to-cure multimodal therapeutic approach 
to be developed. No studies have specifically examined the 
management of OM patients with addictions (i.e., ALK, 
ROS, or BRAF) other than EGFR-driven NSCLC. This is 
probably due to the rarity of the OM presentation and of 
each of the different known oncogenic addictions. Similarly, 
almost all published data relates to Asian populations 
and should be interpreted with caution for Caucasian 
populations. 

In attempt-to-cure OM EGFR-mutated NSCLC, the 
optimal strategy might be to introduce an EGFR-TKI, 
then treat all tumor sites with LAT, and finally continue 
TKI for at least two or three years. At the very least, this 
strategy will prolong PFS, improve OS for some patients, 
and potentially lead to a cancer cure for a few patients. 

Some clinical factors pattern of OM disease (brain and 
lung), therapeutic aspects (ability to treat all the tumor sites, 
strength of efficacy of the targeted therapy) and molecular 
factors (initial molecular tumor heterogeneity and ability 
to rapidly clear the residual tumor) can help select the best 
candidate for an attempt-to-cure approach. 

Circulating tumor DNA (ctDNA) may be a biomarker 
for minimal residual disease and can reliably identify 
patients at high risk for recurrence. Assessments of EGFR 
mutational status in the ctDNA of patients with NSCLC 
have demonstrated high specificity but limited sensitivity (75).  
ctDNA can identify recurrence significantly earlier than 
routine CT imaging. Development of a highly sensitive 
next-generation sequencing (NGS) technique is required to 
detect low-concentration mutations in ctDNA. For example, 
personalized cancer profiling using deep sequencing (CAPP-
seq), an NGS-based method that tracks multiple mutations 
per patient, can achieve lower limits of detection ~0.002%. 
Postoperative detection of ctDNA has a very high risk of 
future relapse (HR: 43.4, 95% CI: 5.7–341), with a median 
5.2-month lead time over clinical progression (76,77). In 
the future, new strategies should integrate liquid biopsy into 
treatment of OM with oncogenic-driven NSCLC.

Finally, the types of consolidative LAT must be 
determined in multidisciplinary team meetings, depending 
on the technique availability at that site. Prospective, multi-
institutional, randomized trials of LAT combinations with 
a last-generation TKI are needed to establish better OM 
oncogenic-driven NSCLC strategies.
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