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Purpose: The goal of this study was to develop an ex vivo system capable of rapidly

evaluating arterial drug levels in living, isolated porcine carotid arteries.

Methods: A vascular bioreactor system was developed that housed a native porcine

carotid artery under physiological flow conditions. The ex vivo bioreactor system was

designed to quantify the acute drug transfer of catheter-based drug delivery devices

into explanted carotid arteries. To evaluate our ex vivo system, a paclitaxel-coated

balloon and a perfusion catheter device delivering liquid paclitaxel were utilized. At 1-h

post-drug delivery, arteries were removed, and paclitaxel drug levels measured using

liquid chromatography-tandem mass spectrometry (LC-MS/MS). Parallel experiments

were performed in a pig model to validate ex vivo measurements.

Results: LC-MS/MS analysis demonstrated arterial paclitaxel levels of the drug-coated

balloon-treated arteries to be 48.49 ± 24.09 ng/mg and the perfusion catheter-treated

arteries to be 25.42 ± 9.74 ng/mg at 1 h in the ex vivo system. Similar results were

measured in vivo, as arterial paclitaxel concentrations were measured at 59.23 ± 41.27

ng/mg for the drug-coated balloon-treated arteries and 23.43 ± 20.23 ng/mg for the

perfusion catheter-treated arteries. Overall, no significant differences were observed

between paclitaxel measurements of arteries treated ex vivo vs. in vivo.

Conclusion: This system represents the first validated ex vivo pulsatile system

to determine pharmacokinetics in a native blood vessel. This work provides

proof-of-concept of a quick, inexpensive, preclinical tool to study acute drug tissue

concentration kinetics of drug-releasing interventional vascular devices.

Keywords: ex vivo, methods, pharmacokinetics, interventional devices, drug delivery, paclitaxel, drug

coated balloon

INTRODUCTION

Patients and primary care physicians have acknowledged the clinical burden of peripheral artery
disease (PAD) and coronary artery disease (CAD) for over many decades (1, 2). Both PAD and
CAD are caused by atherosclerosis, a buildup of cholesterol plaques in the inner vessel wall (3). Due
to atherosclerosis affecting multiple vascular beds, different therapeutic approaches are essential.
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Percutaneous intervention (balloon angioplasty and stenting)
has been the standard treatment for this arterial disease for
the past 25 years. The use of drug-eluting stents (DES) was a
major breakthrough in reducing the risk of restenosis following
stent-induced injury (4, 5). This injury induces the inflammatory
response that in turn activates the restenotic cascade; amidst
this cascade, neointimal proliferation, extracellular matrix
production, and reendothelization occur (6, 7). To combat
the unwanted growth, DES utilize the stent scaffold to deliver
antiproliferative drugs over several weeks to months (8).

In coronary artery application, clinical results of second-
generation DES show the risk of restenosis to be <10%, yielding
the DES five times more effective than the uncoated bare-metal
stent (9, 10). This success is credited to the metallic scaffold
that holds open the arterial lumen and the drugs that reduce
the smooth muscle cell proliferation that leads to restenosis.
Conversely, DES have failed to have the same clinical success
for the treatment of PAD (11). This shortfall is attributed to the
stents’ high risk of strut fracture, mediated by the biomechanical
stress (flexion and extension) that peripheral arteries undergo in
the lower extremities (12, 13).

Stent fractures in combination with poor stent deployment
alter drug release kinetics. Drugs eluted from stents are also
constrained by the strut-to-artery surface ratio and thus are
only able to deliver antiproliferative drugs to <20% of the
luminal surface (14). Furthermore, small diameter peripheral
vessels, often occluded in diabetic patients, are not conducive
to stent intervention which precludes their use in below-
the-knee applications. Revascularization of these arteries are
essential for limb salvage in diabetic patients (15, 16). All
together, these limitations of DES have revived ideas of delivering
antiproliferative drugs without the use of a metallic stent
platform in the treatment of PAD.

Alternatives for DES include drug-coated balloons (DCBs),
perfusion catheters and other drug-delivery platforms (17–
19). These devices are adept at treating various vascular beds
including those affected in PAD (20–23). The fundamental
approach of these non-stent platforms is to deliver
antiproliferative drugs, typically paclitaxel, directly to the
lesion site. Regardless of the approach, the success of non-stent
drug delivery devices directly correlates to the retention of
paclitaxel at the lesion post-procedure. Several studies have
been published showing a variation of parameters to optimize
and increase arterial drug retention. These variables include the
use of drug carriers (excipients), duration of delivery, balloon
pre-treatments, and balloon coating techniques (24–28).

Preclinical evaluation of drug-delivery devices is vital to
understanding the safety and efficacy of these devices. Currently,
biological testing of these devices is mostly limited to in vivo
animal models. While these procedures are effective, the
evaluation of non-stent drug delivery systems is lacking an
ex vivo system capable of testing pharmacokinetic performance
in a biologically relevant model. The success of DCBs and
perfusion catheters is dependent on the initial acute transfer and
the temporal retention of the therapeutic drug into the vessel,
underscoring the need for pharmacokinetic evaluation in these
non-stent delivery systems.

The use of organ culture of vascular tissue to evaluate
stent performance is well-established as there are currently no
man-made vessels that can duplicate the cellular organization,
structure, and elasticity of the native artery. Swanson et al.,
were one of the first groups to use an ex vivo organ culture
model to study the integration of the stent and the host artery
in living tissue (29). They evaluated drug uptake and cellular
proliferation in explanted human internal mammary artery.
Characterization of stent-induced vascular injury response using
an ex vivo arterial perfusionmodel has also been performed using
harvested porcine carotid arteries (30, 31). Harvested porcine
arteries can maintain functionality up to 7 days under perfusion
conditions (31). More recently, explanted rabbit carotid arteries
have been used to evaluate the degradation and cellular response
to biodegradable stents (32).

This study was designed to evaluate non-stent drug delivery
platforms, including a commercially available DCB and a
perfusion catheter, via a novel ex vivo system that simulates and
maintains cardiovascular conditions. Parallel in vivo studies were
then performed using a pig ilio-femoral injury model. The data
obtained from this study will establish the efficacy of the ex vivo
bioreactor system.

MATERIALS AND METHODS

Vessel Harvest
Porcine carotid arteries were harvested from large pigs (110–
160 kg) at a local abattoir and transferred in sterile PBS with 1%
antibiotic-antimitotic (Gibco, Grand Island, NY, 14072). Vessels
were then rinsed in sterile PBS in a culture hood. The excess
fat, connective tissue, and fascia were dissected from each vessel.
Vessels were cut into ∼8 cm segments and stored in 15-mL
centrifuge tubes at −20◦C until needed. Frozen vessels were
thawed in a 37◦C water bath and placed into the bioreactor
system to be studied.

Ex vivo Bioreactor System
The bioreactor system used in this study consisted of a flow
reservoir, gear pump (Ismatec Cole Parmer, Vernon Hills, IL),
vessel housing compartment, and a distal flow constrictor. The
setup is shown in Figure 1A. The pressure was monitored via
a catheter pressure transducer (Millar Instruments, Houston,
TX). The flow was monitored by an ultrasonic flow meter
(Transonic Systems Inc., Ithica, NY) positioned prior to the
bioreactor. A custom LabVIEW program allowed us to generate
any flow waveform and control and monitor the mechanical
conditions (flow and pressure) within our bioreactor system.
The bioreactor medium consisted of Dulbecco’s Modified Eagle’s
Medium (DMEM) containing low glucose, L-glutamine, 110
mg/L sodium pyruvate, pyridoxine hydrochloride 10% fetal
bovine serum (Gibco), and 1% antibiotic-antimycotic (Gibco).

Drug Delivery
To deliver paclitaxel locally to selected regions, a multi-
lumen balloon perfusion catheter (Advanced Catheter Therapies,
Chattanooga, TN) and a DCB (Lutonix, BD, Covington, GA)
were utilized. The perfusion catheter, as described previously
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FIGURE 1 | Schematic diagram of the ex vivo bioreactor system. (A) A computer controls a gear pump (a) that is capable to generate pulsatile flow conditions. The

tubing from the gear pump passes through a port (b) of the CO2 incubator. The culture medium then passed through a low-pass filter (c) and through the lumen of the

explanted arteries in the bioreactor housing compartment (d) and into the flow reservoir (e). The flow is monitored via pressure sensor (f) and an ultrasonic flowmeter

(g). (B) A representative signal of the pressure within the flow system. (C) A representative signal of the flow rate within the flow system.

(33, 34), temporarily occludes the target area from blood flow
by deploying occlusion balloons (Figure 2). The delivery of
therapeutic agent with the perfusion catheter is accomplished by
pressure differences from an increase in luminal pressure, which
drives the drug molecules across tissue layers and into the medial
wall. The inflation pressure of the DCB was determined by the
manufacturers’ specifications to achieve a 5–10% overstretch of
the arterial lumen for 30 s of inflation. Prior to DCB deployment,
the diameter of the explanted artery was evaluated by ultrasound.
The position of the treated arterial segments was marked on the
outer sheath of the vessel housing compartment to record the
specific region of the harvested artery exposed to paclitaxel. Ex
vivo treated arteries (n = 4 per time point) were harvested at 1 h
post-treatment for pharmacokinetic evaluation.

Pig Injury Model
This study was approved by the Institutional Animal Care and
Use Committee (IACUC) and conformed to the current Guide
for the Care and Use of Laboratory Animals. The experimental
preparation of the animal model has been previously reported
(35, 36). Four female pigs (12.3–14.1 kg) were anesthetized, and
the right carotid artery was exposed under a sterile field. The
caudal end of the right carotid artery was tied-off. Using micro
scissors, a small incision was made to the right carotid artery
and a 6 French (F) guide sheath was inserted. A NITREXTM

0.014 guidewire (ev3 Inc., Plymouth, MN) was inserted and,
under fluoroscopic guidance, endothelial denudation using a 4
× 12mm angioplasty balloon catheter (Abbot Vascular, Abbott
Park, IL) was performed to the left and right iliac arteries.
Following denudation, drug-delivery devices were tracked to
each of the iliac arteries and deployed for 2min. Antiplatelet
therapy consisted of aspirin (40 mg/day) given orally 24 h

FIGURE 2 | Deployed drug delivery devices. (A) Representative photograph of

the perfusion catheter. (B) Image of the perfusion catheter system deployed

within the explanted pig artery. Due to the optical clarity of the system, the

proximal and distal occlusion balloons are clearly visible and can be identified

in the artery. (C) Representative photograph of the drug-coated balloon. (D)

Image of the drug-coated balloon deployed within the explanted pig artery.

before catheterization with continued dosing throughout the
in-life phase of the study, while single-dose intra-arterial heparin
(150 IU/kg) and lidocaine were administered at the time of
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catheterization. Animals were anesthetized and euthanized by
intravenous Fatal-Plus (Vortech Ltd., Dearborn, MI) injection
(85–150 mg/kg) at 1 h. Treated segments were excised following
geographic landmarks determined by angiography and stored
at−80◦C.

Quantification of Paclitaxel Tissue
Concentrations
Paclitaxel tissue concentrations were quantified using a validated,
previously described high-performance liquid chromatography
(HPLC)-electrospray ionization- tandem mass spectrometry
system assay (LC-MS/MS). The instrument setup and the assay
principles have been described previously (37). The system was
made up of a series 1260 HPLC system (Agilent Technologies,
Santa Clara, CA) and an ABSciex 5000 triple-stage quadrupole
mass spectrometer (ABSciex, Concord, ON). Paclitaxel-D5 was
purchased from Toronto Research Chemicals (Toronto, ON)
to be used as the internal standard. Untreated pig arteries
were used to prepare calibration curves consisting of paclitaxel
concentrations ranging from 0.5 to 100 ng/mL (38).

Briefly, 100 µL of sample was injected onto a 4.6 × 12.5mm
5µm extraction column (Eclipse XDB C-8, 5µm particle size,
Agilent Technologies, Palo Alto, CA). Samples were then washed
with a mobile phase of 15% methanol and 85% 0.1% formic
acid. The flow was 3 mL/min and the temperature for the
extraction column was set to 65◦C. After 1min of washing the
samples, the column switching valve (Rheodyne, Cotati, CA)was
activated, and the analytes were then back-flushed from the
extraction column onto a 150 × 4.6mm C8, analytical column
(Zorbax XDBC8, 3.5µmparticle size, Agilent Technologies, Palo
Alto, CA). The following gradient was run: 60% methanol/0.01%
formic acid to 98% methanol/0.01% formic acid within 2min
and stayed at 98% methanol/0.01% formic acid until 5.9min.
Hereafter, from 6.0 to 7.0min, the analytical column was re-
equilibrated to starting conditions. The flow rate was 1.050
mL/min and the analytical column was kept at 65◦C. Paclitaxel
was detected in the positive multi-reaction mode using the
following ion transitions: m/z = 876.6 [M+Na]+ → 308.2. The
internal standard, Paclitaxel-D5, was detected using the transition
m/z = 881.6 [M+Na]+ → 313.1. Paclitaxel concentrations
were quantified based on the analyte/ internal standard ratios
using the calibration curves that were included in each batch.
The LC-MS/MS instrument was controlled, ion chromatograms
were recorded, and the analyte peaks were integrated using
Sciex Analyst (version 1.6.2.). Calibration data were fit using a
quadratic regression with 1/x weighting.

Statistical Analysis
All values were expressed as mean ± standard deviation (SD).
Quantitative data were analyzed with an unpaired t-test using
GrapPad Prism 9 (GraphPad Software, La Jolla, CA, USA) and
assuming the values follow a Gaussian distribution. A value of p
≤ 0.05 was considered statistically significant.

RESULTS

Figure 2 shows representative images of porcine carotid arteries
being treated by a perfusion catheter and a DCB within the

FIGURE 3 | Representative angiographic images. (A) Angiogram of the

perfusion catheter during delivery. (B) Angiogram of the drug-coated balloon

during delivery.

ex vivo bioreactor system. The explanted vessels were pulsed
for 1 h in the ex vivo system, where they were subjected to
physiological flow conditions. The flow consisted of a systolic
pressure of 120 mmHg and a diastolic pressure of 80 mmHg
(Figure 1B) with flow rates ranging from 15 to 150 ml/min
(Figure 1C). The mean wall shear stress value ranged from 1.3 to
19.0 dynes/cm2, which is similar to reported pig wall shear stress
values (39).

To evaluate tissue drug retention, treated arterial segments
were removed 1 h post-drug delivery by the perfusion catheter
and the DCB. Due to the optical clarity of the bioreactor, the
treatment area could be clearly identified to ensure only the
portion of the artery treated by the drug was excised (Figure 2).
Arterial tissue paclitaxel concentrations of the ex vivo pig arteries
were measured at 25.42 ± 9.74 ng/mg and 48.49 ± 24.09 for the
perfusion catheter and the DCB, respectively.

To validate tissue paclitaxel levels ex vivo, parallel in vivo
studies were performed using the pig ilio-femoral injury model.
Paclitaxel delivery using the perfusion catheter, with similar
dosing and delivery parameters, and the DCB were repeated. An
angiogram of the delivery devices within the ilio-femoral artery
is shown in Figure 3. Arteries were again explanted at 1 h. In vivo
arterial paclitaxel concentrations were measured at 23.43± 20.23
ng/mg for the perfusion-treated arteries and 59.23± 41.27 ng/mg
for the DCB-treated arteries. Bar graphs displaying both the
ex vivo and in vivo arterial paclitaxel concentrations are shown
in Figure 4. Overall, no statistically significant differences were
observed between paclitaxel measurements of arteries treated
ex vivo vs. in vivo with either the perfusion catheter (p = 0.87)
or the DCB (p= 0.67).

DISCUSSIONS

The study’s main objective was to develop an ex vivo system
capable of rapidly evaluating arterial drug levels comparable to
their in vivo counterparts. The results demonstrate that paclitaxel
can be delivered successfully to native porcine arteries within our
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FIGURE 4 | Ex vivo and in vivo arterial drug retention. (A) Scatter plots

displaying measured arterial paclitaxel concentrations within the perfusion

catheter-treated segments expressed as ng/mg. (B) Scatter plots displaying

measured arterial paclitaxel concentrations within the drug-coated

balloon-treated segments expressed as ng/mg. Each bar represents the mean

± standard deviation.

bioreactor system using a DCB and a perfusion catheter. Similar
arterial paclitaxel concentrations were observed between the
in vivo and ex vivomodels. Our arterial paclitaxel concentrations
also compared to results reported in the literature (20, 40).
Overall, these results demonstrate a viable platform for evaluating
drug release kinetics of interventional vascular devices in an
ex vivo setting.

This technology will serve as an intermediate step to rapidly
assess the pharmacokinetics of drug delivery devices while
limiting animal usage and cost of testing. For any short-term
in vivo experiment (<7 days), months of preparation time is
needed to obtain approval from the IACUC, order animals,
quarantine, and schedule the procedure to implant and retrieve
the device or tissue. Each step of this process (animal housing,
staff support, operating table time) increases the cost and
duration of the study. By using fresh swine arteries from local
slaughterhouses, costs and animal usage are minimized to nearly
zero. Fresh swine arteries are readily available in abundant
quantities and typically at no cost.

The motivation for the current work is to demonstrate the
viability of an ex vivo system for pharmacokinetic evaluation
of acute arterial drug retention. The current paradigm for
evaluating the pharmacokinetics of vascular devices (preclinical)
was relatively non-existent prior to animal testing. Bench testing
of non-stent devices (such as DCB and perfusion catheters)
is confined to mechanical testing of balloons (burst pressure,
fatigue), tracking of particulate matter, and biocompatibility
of drugs and carriers using cell culture and static techniques
(41–43). These factors are important in the development of
new devices, but drug pharmacokinetics is the distinguishing
factor of a successful device. The total drug-coated on a balloon
can be quantified by it being eluted from the balloon into
a saline bath of controlled volume. However, the transfer of
the drug from the device to an artery differs greatly from
those measurements. Simulated in vitro elution can be very

FIGURE 5 | Diameter measurement of explanted arteries. (A) An ultrasound

probe can be directly placed on the outer sleeve of the bioreactor housing to

measure the diameter. (B) Ultrasound image showing the inner diameter of the

explanted artery.

inaccurate compared to in vivo elution. Many factors, such
as blood-drug interaction, blood-tissue interaction, and drug-
medium solvation, are not taken into account. These limitations
are the reason drug delivery parameters are tested and verified
in vivo by removing treated vessels at several time points
to determine the acute transfer of drug and drug retention.
Although these trials are essential in determining drug delivery,
they are often prolonged, costly, and utilize many animals. New
ex vivomethods to decrease the time and cost of evaluating such
devices are desirable.

The developed ex vivo bioreactor system described here
permits the use of explanted living native pig arteries as the test
section. This study demonstrated that the explanted arteries can
mimic the acute transfer of the drug from the device, which is
the most significant aspect of acute non-stent platforms. The
minimal therapeutic levels of tissue paclitaxel have been reported
in the range between 0.01 and 1 ng/mg (26, 44). Although this
range should bemaintained for up to 28 days, themost influential
aspect of pharmacokinetics is the acute transfer of paclitaxel from
the device to the tissue since the majority of drug loss occurs in
the first hours and days (45).

Non-stent delivery platforms are seen as an alternative
approach to overcome the limitations of stents in the treatment
of PAD. Stents in the periphery are subject to biomechanical
stress increasing the risk of fracture and leading to device failure
(12). Recently, DCBs have emerged as a therapeutic alternative
for treatment of PAD (21). The primary advantage of this
technology is the uniformity and short-term transfer of drug
to the luminal surface without the need for a stent platform
and a polymer carrier (18). The perfusion catheter also has
similar characteristics in its ability to deliver the drug of choice
uniformly, but also the added advantage of being able to load and
deliver any drug at any concentration.

Other benefits of the system include: the ability to evaluate
any commercially available vascular device, to run multiple
experiments simultaneously, obtain results in days, and the
low cost associated with performing ex vivo experiments as
opposed to in vivo experiments. Additionally, due to the design
of the system, the inner diameter of the explanted arteries
can be monitored and measured using ultrasound (Figure 5).
This feature is crucial for the deployment of DCBs as they
are designed to be inflated with respect to the vessel diameter.
Under deployment of the DCB can directly alter drug transfer to
the artery.
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FIGURE 6 | Arterial drug retention of a drug eluting stent. (A,B) Image of the

drug eluting stent deployed within the explanted pig artery. (C) Ultrasound

image showing the stented explanted artery.

Overall, our results demonstrated no significant differences
between ex vivo and in vivo outcomes for the two tested
drug delivery devices. To further highlight our ex vivo system,
we performed additional studies on the drug retention of a
commercially available DES (SynergyTM, Boston Scientific). The
Synergy stents (n = 4) were successfully deployed in the ex vivo
arteries, and arterial segments were analyzed for drug retention
using pharmacokinetic analysis at 3-day time points (Figure 6).
These results from the Synergy Monorail DES (everolimus):
1.862 ± 1.317 ng/mg, matched the manufacturers published
results (46). These results further indicate the platform’s ability
to accurately measure arterial drug levels at extended time points
while accommodating various devices, such as DES.

Some limitations of our system include that the working fluid
is culture medium, rather than whole blood, and that the current

studies only used healthy arteries (not diseased). Despite these
limitations, evaluation of the drug delivery, elution, and retention
can be accomplished. Off-the-shelf vascular devices can be
deployed in an ex vivo native artery, conditioned at physiological
mechanical conditions, and evaluated for drug pharmacokinetics.

To conclude, this system represents the first validated ex vivo
pulsatile system to determine pharmacokinetics in a native
blood vessel. We assert that this system can dramatically
reduce the time and expense associated with in vivo testing
of vascular devices, particularly in measuring and quantifying
vessel drug retention. Future studies will include monitoring
smooth muscle cell proliferation, endothelialization, and other
biomarkers to understand the acute response of explanted
arteries to arterial drug delivery systems. More advances in this
type of technology will undoubtedly continue with the hope of
reducing the preclinical trial expense and the time-to-market of
many vascular devices.
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