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Clark et al. criticize several aspects of

our study [1], and specifically challenge

our assertion that the degree of pervasive

transcription has previously been overstat-

ed. We disagree with much of their

reasoning and their interpretation of our

work. For example, many of our conclu-

sions are based on overall sequence read

distributions, while Clark et al. focus on

transcript units and seqfrags (sets of

overlapping reads). A key point is that

one can derive a robust estimate of the

relative amounts of different transcript

types without having a complete recon-

struction of every single transcript.

In this brief response, we first revisit

what is meant by pervasive transcription,

and its potential significance. We then

discuss the major points raised by Clark

et al. in the order presented in their

critique. Finally, we demonstrate that

conclusions very similar to those of our

original study are reached with a dataset

with far greater read depth, obtained by

strand-specific sequencing of rRNA-de-

pleted total RNA from a single cell type.

The Meaning of ‘‘Pervasive’’,
and the Importance of
Transcript Abundance

Clark et al. define pervasive transcrip-

tion of a genome to mean ‘‘that the

majority of its bases are associated with

at least one primary transcript’’, which is

the same definition used in the ENCODE

1% paper [2]. We believe that this specific

claim is not contested, nor is it particularly

interesting. First, it has long been assumed

that roughly half of the human genome

comprises introns [3]. Second, the mech-

anisms that control the positions of

initiation and termination of Pol II

transcription, as well as RNA processing,

are imperfect, such that low-level back-

ground transcripts from both physiologi-

cally relevant and non-canonical sites arise

[4–6]. Blockage of surveillance mecha-

nisms that normally degrade such ‘‘cryp-

tic’’ transcripts greatly increases their

abundance [7,8].

We acknowledge that the phrase quoted

by Clark et al. in our Author Summary

should have read ‘‘stably transcribed’’, or

some equivalent, rather than simply ‘‘tran-

scribed’’. But this does not change the fact

that we strongly disagree with the funda-

mental argument put forward by Clark

et al., which is that the genomic area

corresponding to transcripts is more im-

portant than their relative abundance. This

viewpoint makes little sense to us. Given the

various sources of extraneous sequence

reads, both biological and laboratory-

derived (see below), it is expected that with

sufficient sequencing depth the entire

genome would eventually be encompassed

by reads. Our statement that ‘‘the genome

is not as not as pervasively transcribed as

previously reported’’ stems from the fact

that our observations relate to the relative

quantity of material detected.

Of course, some rare transcripts (and/

or rare transcription) are functional, and

low-level transcription may also provide a

pool of material for evolutionary tinkering.

But given that known mechanisms—in

particular, imperfections in termination

(see below)—can explain the presence of

low-level random (and many non-random)

transcripts, we believe the burden of proof

is to show that such transcripts are indeed

functional, rather than to disprove their

putative functionality.

Contradiction of Previous
Reports

The fact that our analyses contradict

previous reports is precisely why we

emphasized the lack of abundant pervasive

transcription in our study. Clark et al. cite

papers that have previously documented

pervasive transcription, and point out that

several different approaches have been

used as confirmation. We believe that Clark

et al. misinterpret what can be claimed

from much of the literature in this area, and

fail to acknowledge known weaknesses in

some of these studies. We previously

reviewed these issues [9]. For example,

the number of transfrags detected in

permuted tiling array data can be as high

as it is in the real data [10]. In addition, a

common form of ‘‘validation’’ in these

papers is RT-PCR or RACE, but these

approaches are generally semi-quantitative

at best and are prone to artefacts such as

template switching, which readily produces

chimeric transcripts in vitro ([11] and

references therein). Indeed, we note that

in the ENCODE 1% study [2] repeatedly

cited by Clark et al., 75 of the 100 negative

controls (randomly selected non-transfrag

regions) were actually detected by RACE,

making the ‘‘validation’’ rate for negative

controls only slightly lower than that for the

intronic and intergenic transfrags (86%–

88%). Thus, either the tiling arrays or

RACE assays are highly error prone. The

contention of Clark et al. that ‘‘any estimate

of the pervasiveness of transcription re-

quires inclusion of all data sources’’ is

flawed, because if one introduces erroneous

data from even a single source, the estimate

becomes worse.

Accuracy of Tiling Arrays

We agree that results obtained from

tiling arrays should improve with increased
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Figure 1. rRNA-depleted RNA-Seq analysis of HEK-293T cells. (A) Proportion of reads with a unique match to known genes (left), or known
genes supplemented with mRNAs and spliced ESTs (right). Reads were sequentially matched against a non-redundant set of known genes, mRNA
and spliced EST data. Any remaining reads were classified as ‘‘other’’. The known gene set was derived from the UCSC, NCBI, and ENSEMBL genome

PLoS Biology | www.plosbiology.org 2 July 2011 | Volume 9 | Issue 7 | e1001102



tiling probe coverage. Nonetheless, the

study by Agarwal et al. [12], which is

highlighted by Clarke et al., shows that

RNA-Seq is more accurate than tiling

arrays, even when using arrays with the 5-

nt resolution that Clarke et al. emphasize is

important. Agarwal et al. also found that

‘‘about 4 million reads are required to

match the sensitivity of two tiling array

replicates’’, which is counter to the argu-

ments Clarke et al. raise regarding sam-

pling artefacts in RNA-Seq (also see below).

Even the precision recall curves shown for

the new data generated by Clark et al.

display a higher AUC for RNA-Seq than

for tiling arrays. We believe that previous

conclusions based on tiling array data that

are not confirmed by RNA-Seq should be

revisited.

Depth of Sequencing, Analysis
of Poly-A RNA, Dismissal of
Introns, and Lack of Strand
Specificity

Our previous paper acknowledged these

caveats [1], and we included an analysis of

previously published rRNA-depleted sam-

ples [13], which seems to have been

ignored by Clark et al. It is important to

note that assessment of the relative

abundance of different transcript types

would not be greatly affected by the depth

of sequencing; it is the detection of very

rare transcripts that is compromised.

Most of these concerns can be further

addressed with additional data, and we

present such an example here. We used

strand-specific SOLiD sequencing to an-

alyze rRNA-depleted RNA from a homo-

geneous cell line (293T cells), obtaining

,131 million uniquely mapping 50-base

reads. A conventional estimate is that 1

RPKM (reads per kb per million reads) of

mRNA represents approximately one

transcript copy per cell in human cells

[14]. If we liberally estimate that there

could be twice as much ‘‘dark matter’’ as

there is mRNA, then 0.5 RPKM would

be approximately equivalent to one copy

per cell (rRNA, tRNA, snRNA, and

snoRNA were removed from this analy-

sis). Thus, for a 1-kb transcript present at

one copy per cell, we expect ,65.5 reads;

for one copy per 10 cells, we expect

,6.55 reads, etc.

We repeated our previous analysis

pipeline on this dataset, adapting to strand

specificity. We find that ,40% of all

uniquely mapping reads are from coding

exons, and ,50% are from introns

(Figure 1A). Measured by area detected

by at least one read, the majority of the

transcribed area corresponds to introns

(Figure 1B). The density of intronic reads

is 9.7% that of the exons from the same

gene, on average, with a strong correlation

between the read count from introns and

exons from the same gene over several

orders of magnitude (Figure 1C). Given

that a typical mRNA is present at one or a

few copies per cell, this shows that we are

detecting unstable processing intermedi-

ates of even rare transcripts. Only ,2% of

all reads are antisense to genes (Figure 1A),

while ,4% are intergenic (taking into

consideration areas corresponding to all

known genes, ESTs, and mRNAs). As we

observed previously, the majority of these

intergenic reads (53.6%) are found within

10 kb of a gene end. Figure 1D shows the

distribution of intergenic reads relative to

gene ends.

The data presented in Figure 1D sug-

gest that incomplete termination is likely

responsible for transcripts extending far

beyond 10 kb, as the enrichment over

baseline in the sense orientation after the

TTS extends to roughly 30 kb. In addi-

tion, at distances from 10 kb to at least

80 kb from gene ends, there is a tendency

for intergenic transcripts to be oriented

toward the gene being assessed. This is

easily explained as a result of incomplete

termination from neighboring genes: if the

neighboring gene is oriented towards the

gene being assessed, it is more likely to

produce intergenic transcripts, which will

also be oriented towards the gene being

assessed. Many antisense transcripts also

appear to be explained by incomplete

termination of neighboring genes: 54.3%

of antisense reads are within 20 kb of the

39 end of a neighboring gene.

As we reported previously, the reads per

Kb for singleton (i.e., isolated) distal

intergenic transcripts (.10 kb from genes)

is nearly identical to a Poisson (i.e.,

random) distribution, while a relatively

small number of loci contain dozens to

hundreds of reads per Kb (Figure 1E, 1F).

As Clark et al. note, assembling full

transcripts from short-read data remains

a challenging computational problem.

Our initial assessment, however, suggests

that many of these transcripts are likely to

represent unannotated exons of coding

genes, lincRNAs, and enhancer-derived

RNAs (unpublished data).

In summary, we disagree with the

fundamental assertion that it is the total

area of transcribed sequence that is most

important. Our published claim that most

‘‘dark matter’’ transcripts can be ex-

plained as by-products of the process of

transcribing known genes holds: whether

they are functional remains to be seen,

but the notion that because they exist they

are likely to be functional violates Oc-

cam’s Razor. We do not dispute that

many new independent intergenic tran-

scripts may be functional, nor that new

functional RNAs can reside within in-

trons. Indeed, the discovery of new RNAs

is changing our view of how the genome

functions and evolves, and the original

motivation of our previous study [1] was

to identify and characterize novel tran-

scripts. Nonetheless, in contrast to the

conclusions of previous studies, we ob-

serve that the abundance of ‘‘dark

matter’’ transcripts is low, in aggregate,

and the number of well-supported inde-

pendent RNAs is still relatively small. It is

also worth noting that a recently quoted

estimate for the total number of GEN-

CODE lincRNAs is ,12,000 [15]. This

number is substantially smaller than the

number of known genes and ncRNAs,

and given that lincRNA genes are typi-

cally shorter than protein coding genes

[16], the number of lincRNA exons is an

order of magnitude less than the number

of known exons of protein-coding genes—

which only represent ,2% of the ge-

nome. In our view, a compelling wealth of

evidence now supports our statement that

‘‘the genome is not as pervasively tran-

scribed as previously reported’’. We

believe that the results from our study

will facilitate more focused efforts directed

at the characterization of biologically

important transcripts.

Acknowledgments

We thank Eduard Nedea for the preparation of

the RNA-Seq samples.

databases and did not include any lincRNA annotations or processed transcripts. (B) Same as in (A), but considering the total amount of transcribed
genomic area. (C) Correlation between RPKB (reads per Kb) for introns and exons of known genes. (D) Relative enrichment of RNA-Seq read frequency
in intergenic regions as a function of the distance to 59 and 39 ends of annotated genes in the human genome. The median of read frequencies in
either orientation between 80 and 100 kb was used as baseline. (E) Rootograms showing the distribution of the total number of RNA-Seq reads per
kb of intergenic sequence outside 10-kb gene-flanking regions, compared to the expected random distribution for the same number of reads (red
line). (F) Same as (E), but considering only intergenic transcribed regions with single-read coverage (singletons).
doi:10.1371/journal.pbio.1001102.g001
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