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Abstract: Most analyses of spatial patterns of disease risk using health survey data fail to adequately
account for the complex survey designs. Particularly, the survey sampling weights are often ignored
in the analyses. Thus, the estimated spatial distribution of disease risk could be biased and may lead
to erroneous policy decisions. This paper aimed to present recent statistical advances in disease-
mapping methods that incorporate survey sampling in the estimation of the spatial distribution of
disease risk. The methods were then applied to the estimation of the geographical distribution of
child malnutrition in Malawi, and child fever and diarrhoea in Mozambique. The estimation of the
spatial distributions of the child disease risk was done by Bayesian methods. Accounting for sampling
weights resulted in smaller standard errors for the estimated spatial disease risk, which increased
the confidence in the conclusions from the findings. The estimated geographical distributions of the
child disease risk were similar between the methods. However, the fits of the models to the data, as
measured by the deviance information criteria (DIC), were different.

Keywords: survey sampling weights; disease mapping; child malnutrition, fever and diarrhea;
Bayesian spatial smoothing; sub-Saharan Africa

1. Introduction

In epidemiology and public health, the methods for mapping disease have long been
used to estimate spatial patterns of disease risk. Statistical advances in the methods have
included spatial smoothing of disease risk to produce interpretable maps, and extensions to
include temporal components as well as individual and geographical-level data. Estimation
of geographical patterns of diseases in low-resource settings is increasingly important in
guiding decision-making on where to allocate resources [1,2].

In sub-Saharan Africa, many disease mapping analyses that use data from complex
health surveys fail to account for the survey designs such as disproportionate sampling [2].
In standard survey analyses, disproportionate sampling is corrected in the analysis by
using the survey sampling weights that adjust for the disproportionate contribution of each
ultimate sampling unit to the whole sample data. Ignoring the sampling weight in disease
mapping analyses could lead to biased estimates of the spatial distributions of the disease
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risk, which could adversely affect policy decisions based on them. Thus, appropriate
statistical analysis methods that incorporate sampling weights in the estimation of spatial
patterns of diseases are critical [3–7].

In this paper, rather than detailing the epidemiology of child diseases in sub-Saharan
Africa, a research topic that has extensively been analysed in several disease-mapping
analyses in Africa, we present recent statistical analysis methods for incorporating sampling
weights in the estimation of the geographical distributions of disease risk using complex
health survey data. The two datasets: 2015-16 Malawi Demographic and Health Survey
(2015-16 MDHS) [8], and the 2015 Mozambique Immunization Malaria and HIV/AIDS Key
Indicator Survey (IMASIDA 2015) [9], are used for illustrative purposes using the mapping
of child malnutrition, fever, and diarrhoea.

2. Methods
2.1. General Notation

Suppose that a finite population U = {1, 2, . . . , N} is distributed into i = 1, 2, . . . , I
areas, and a random probability sample survey s with size n is taken according to a given
design. Let Ni and ni be the population and sample of sizes for area i, respectively, such that
U = ∪ I

i=1Ui, N = ∑I
i=1 Ni, s = ∪ I

i=1si and n = ∑I
i=1 ni. Let Yij be the binary indicator for

the presence of the disease, taking a value of 1 or 0 on whether or not the jth individual has
the disease in area i (j = 1, . . . , Ni; i = 1, . . . , I). It is assumed that Ni is known for each
area i. Further, we assume that individual ij has a known probability πij of being included
in the sample.

Our interest is to estimate the true area-specific population prevalence Pi, which is
defined as:

Pi =
1
Ni

Ni

∑
j=1

Yij, (1)

using the accrued sample from area i. The area-specific unweighted estimator of the true
area prevalence Pi is given by P̂UW

i which is calculated as:

P̂UW
i =

1
ni

ni

∑
j=1

yij, (2)

and its variance is obtained as:

v̂ar
(

P̂UW
i

)
=

P̂UW
i
(
1− P̂UW

i
)

ni
. (3)

In the case of a simple random sampling design without replacement, the estimator (2)
is unbiased. However, in complex sampling, it would be inadequate as it does not account
for the sample survey design, for example, sampling weights [10].

2.2. The Horvitz–Thompson Estimator

The well-known sample-design based unbiased estimator of the population prevalence
Pi is the Horvitz–Thompson (HT) estimator [11], which is given by:

P̂HT
i =

∑j∈si
wd

ijyij

∑j∈si
wd

ij
=

1
ni

∑
j∈si

w̃d
ijyij, (4)

where si is the set of individuals who are sampled from area i, with yij being the observed
value for j ∈ si with |si| = ni, wd

ij =
1

πij
the design weight (i.e., the sampling weights are

the inverse probability of inclusion in the sample adjusted for non-response [12]), and w̃d
ij

given by:

w̃d
ij = ni

wd
ij

∑j∈si
wd

ij
, (5)
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is the normalized sampling weight. According to study [4], an estimator of the variance of
P̂HT

i can be expressed as follows:

v̂ar
(

P̂HT
i

)
=

1
ni

(
1− ni

Ni

)
1

ni − 1 ∑
j∈si

w̃d2

ij

(
yij − P̂HT

i

)2
. (6)

This HT estimator falls into the group of considered direct estimators, as they are
based only on the area sample data [13,14].

2.3. Bayesian Hierarchical Spatial Smoothing Models

Bayesian hierarchical spatial smoothing models have recently gained attention regard-
ing their use in small area estimation instead of direct estimators [4,5]. These methods
rely on the assumption that area-specific estimates borrow information from other areas,
which makes it possible to find more accurate estimates. Furthermore, this creates the
advantage that estimates can be obtained in areas with no samples. The models involve
three stages: (i) the likelihood of the response, which is defined conditionally on latent
variables (random effects); (ii) the latent variables themselves are given a distribution, and
(iii) the specification of prior distributions of all unknown parameters.

A three-stage Bayesian hierarchical spatial rmoothing model for the total number of
individuals with the disease in area i given by yi = ∑j∈si

yij uses a binomial distribution
for stage one as:

yi|Pi ∼ Binomial(ni, Pi), (7)

In the second stage, we model the between-area variation in Pi using the area random-
effects model. In recent times, this has involved incorporating both non-spatial and spatial
random effects using the convolution model of Besag–York–Mollié (BYM) [15]. Besides,
the standard binomial spatial model, we will describe a series of models based on the
BYM model that have been used to perform spatial analyses on the prevalence data from
health surveys.

Using the Binomial distribution in (7), our first model is a standard spatial modelling
approach for count data using health survey data to estimate the spatial distribution of
disease risk. It simply links the estimated prevalence of the disease with the two types of
area random terms via a logit function as:

logit(Pi) = β0 + ui + vi, (8)

ui|ui′ ,i 6=i′ ∼ N

 1
ai

∑
i′∈ne(i)

ui′ ,
σ2

u
ai

,

vi|σ2
i ∼iid N

(
0, σ2

v

)
, i = 1, . . . , I,

where β0 is the intercept; vi is the unstructured random component; ui is the structured
spatial random component; ne(i) indicates the set of neighbours, and ai is the number of
neighbours for a given area i. Here, we adopt the common convention of neighbouring,
which considers two areas as neighbours if they share a common boundary. The specifica-
tion of the structured random effects is based on an intrinsic conditional autoregressive
(ICAR) prior [15,16]. We call this, the Binomial Spatial Model, as Model 1.

In the third stage, we require priors for β0 and the variances of the random effects.
The model in Equation (8) results in the smoothing of extreme area estimates in areas with
small sample sizes. However, without the incorporation of sampling weights, the estimated
of the spatial patterns of disease risk could be biased.

2.4. Incorprating Survey Sampling Weights in Hierarchical Spatial Model Analysis

Following studies [4,5], various approaches have been proposed to account for the
survey sampling weight. Let us consider now Models 2 and 3 which are based on the HT
estimator. As the HT estimator could be skewed, the estimates are often transformed to
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approximately conform to normality, Some of the most common transformations are bases
the logit and arcsine functions. We first consider the logit transformation. Thus, Model 2 is
given by:

logit(P̂HT
i )|Pi ∼ N(logit(Pi), σ2

i )

logit(Pi) = β0 + ui + vi, (9)

where logit
(

P̂HT
i
)

has variance σ2
i = v̂ar

(
P̂HT

i
)
/
(

P̂HT
i
(
1− P̂HT

i
))2. We will call Model 2,

the Logit Normal (LN) spatial model. For the arcsine square-root transformation, given as

arcsin
(√

P̂HT
i

)
[5,17], the Arcsine (AS) spatial model leads to the following model specification:

arcsin
(√

P̂HT
i

)
|Pi ∼ N

(
arcsin

(√
Pi

)
, σ2

i

)
arcsin

(√
Pi

)
= β0 + ui + vi, (10)

and the variance of the arcsine transformation is σ2
i = 1

4nE
i

, where nE
i = P̂HT

i
(
1− P̂HT

i
)
/

v̂ar
(

P̂HT
i
)

is the effective sample size in area i. Thus, our Model 3 is the Arcsine square root
(AS) spatial model.

For Model 4, we consider pseudo-likelihood (PL), which uses a weighted likeli-
hood [5], where the response values

(
yij
)

are weighted using the normalised design
weights. Thus, rather than using the binomial outcomes used in (7) (Model 1), here,
we use yPL

i = ∑j∈si
w̃d

ijyij as:
yPL

i |Pi ∼ Binomial(ni, Pi)

logit(Pi) = β0 + ui + vi. (11)

A drawback of the general approach is that the appropriate standard error is not recov-
ered in the case of clustering. Rabe-Hesketh and Skrondal [18] used a pseudo-likelihood
method with scaled weights and used sandwich estimation to provide valid standard
error estimates within a multilevel framework but did not consider spatial smoothing. We
denoted the pseudo-likelihood (PL) spatial model as Model 4. Our Models 5 and 6 are also
variations of Model 1, but they now depend on effective sample size and the number of
cases. For Model 5, the effective sample size nE

i is computed as previously shown and de-
pends on the weighted estimator of prevalence [4]. The effective sample size is the sample
size that is required to make the variance under the complex survey design equivalent to
that of a simple random sample [4]. Then, the effective number of cases is easily found
as yE

i = nE
i P̂HT

i . As for Model 6, the effective sample size is obtained by using the design
effect in area i and is estimated as:

nE
i =

ni
de f fi

, (12)

where:
de f fi =

s2
i

s2
ri

f or i = 1, . . . , I, (13)

where s2
i is the unbiased direct estimate of the variance of the sample proportion based on

the complex sampling design and s2
ri is the unbiased direct estimate of the variance of the

proportion based on the simple random sampling design [19]. As before, this resulted in
the effective number of cases in area i as yE

i = nE
i P̂HT

i .

2.5. Bayesian Inference, Computation, and Model Evaluation

For the Bayesian estimation of the model parameters, we assumed an improper
uniform prior for β0 and Gamma(0.5, 0.008) priors for both the spatial and non-spatial
precision parameters σ−2

u and σ−2
v as in [5]. The estimations were done using Integrated

Nested Laplace Approximation (INLA), which is implemented in the INLA package within
the statistical computer software R [20–22]. Detailed description of INLA are provided
in Appendix A.
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Model comparison and selection were carried out using the deviance information
criterion (DIC) [23]. DIC value is computed as

DIC = D + pD,

where D is the posterior mean of the deviance which measures the goodness of fit and
pD is the effective number of parameters which penalises for the complexity of the model.
Models with the smallest DIC indicated a better model fit.

3. Application

Although Malawi and Mozambique have experienced substantial improvements
in child health, preventable child deaths continue to be unacceptably high to achieve
the Sustainable Development Goals [24–29]. Understanding the local epidemiology of
diseases in these two countries is critical for defining and prioritising interventions that
can contribute to accelerating the reduction of morbidity and mortality in children under
5 years old in these countries.

We used Models 1–6, presented above, to estimate the geographical distribution of
stunting, wasting, and underweight among children under 5 years old at the district level
in Malawi, and childhood fever and diarrhoea at the province level in Mozambique.

3.1. Data Sources: Malawi and Mozambique

The 2015-16 MDHS was a national, population-based, cross-sectional survey that
was conducted between December 2015 and February 2016. Briefly, the 2015-16 MDHS
employed a two-stage sampling designed to produce a nationally representative sample at
the national level, residence level (urban and rural), and district level. Stratification was
made at two levels: the district level (32 districts), and the urban and rural areas. In the
first stage, based on the Malawi Population and Housing Census conducted in Malawi
in 2008, and updated based on the General Agriculture Census 2009, 850 primary sample
units (PSUs) were selected, which were the enumeration areas (EAs), with a probability
proportional to their size (size given by the number of households in each enumeration
area). Of these PSUs, 173 were in urban areas and 677 were in rural areas. The second stage
of sampling involved a systematic selection of 30 households from each urban cluster and
33 households from each rural cluster, yielding a sample size of 27,516 households from
the clusters. The response rate was 99%. The methodology used in the 2015-16 MDHS has
been reported in detail in [8]. Figure 1a depicts the geospatial arrangement of the districts
of Malawi.

The second dataset used was the IMASIDA 2015, which includes information from
7169 households, interviewing 7749 women aged 15 to 59 years and 5283 men aged 15 to
59 years, over 307 EAs, with data collected between June and September 2015 through a
two-stage sampling process designed to produce representative estimates at the national,
provincial (11 geographic areas: Maputo Province, Maputo City, Inhambane, Gaza, Sofala,
Manica, Zambezia, Nampula, Tete, Niassa, and Cabo Delgado), regional (north, centre
and south), and the residence of areas (urban and rural), and for women and men aged
15–59 years. The methodology used has been reported in detail elsewhere [9]. Figure 1b
depicts the geospatial arrangement of the provinces of Mozambique.

All of these datasets are publicly available and can be downloaded at https://dhsprogram.
com/ (accessed on 21 July 2021).

https://dhsprogram.com/
https://dhsprogram.com/
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3.2. Outcomes

The outcomes considered in this study for childhood in Malawi are three nutritional
statuses of children, namely stunting, wasting, and underweight. Anthropometric mea-
surements were used to define the nutritional status of children. Children with a z-score of
two standard deviations (−2 SD) below the median of the WHO reference population on
height-for-age are categorised as stunted; on weight-for-height as wasted, and on weight-
for-age as underweight [24]. Thus, all outcome variables were binary, taking a value of
“1” if a child is malnourished (i.e., stunted, wasted, or underweight), and a value of “0”
otherwise. Due to missing data on these measurements, only 5149 children were considered
for stunting analyses, 5178 for wasting, and 5223 for underweight, respectively.

For the Mozambique data, the outcomes considered were the fever and diarrhoea
statuses. Children under 5 years old who had their mother answer whether they had
diarrhoea or fever within the past 2 weeks were included in the analysis. The remaining
children with missing values for the outcomes were excluded from our research. Thus, our
analyses included a total of 4972 children under 5 years old for fever and 4980 children
for diarrhoea.

3.3. Malawi: District Variation in the Prevalence of Child Malnutrition

The observed prevalence (weighted) of stunting, wasting, and underweight in Malawi
among children under 5 years old was 36.82% (95% CI 35.18–38.46), 2.79% (95% CI 2.24–3.33),
and 11.58% (95% CI 10.49–12.67), respectively, with the variation across districts that ranged
from 15.44% in Mzuzu City to 45.88% in Mchinji for stunting; 1% in Balaka to 9.92%
in Nsanje for wasting, and 1.93% in Zomba City to 18.85% in Nsanje for underweight
(Table A1 in Appendix B).

We applied Models 1–6 to estimate the district-level pattern of child growth measures
in Malawi. The fit and parameter estimates are presented in Tables 1–3. For each child’s
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growth measurement, the results showed similar estimates for the intercept parameters,
except for Model 3 (AS), which was on a different scale. The credible intervals for the
intercept parameters were generally narrower when the sampling weights were accounted
for. The spatial Model 3 (AS) performed better (DIC =−86.69 for stunting; DIC =−94.76 for
wasting; DIC = −89.7 for underweight).

Table 1. A comparison of spatial models for mapping child stunting in Malawi using 2015-16 MDHS.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

β0 (CI) −0.605 −0.585 0.634 −0.607 −0.594 −0.609
(−0.706; −0.547) (−0.67; −0.505) (0.608; 0.659) (−0.691; −0.526) (−0.68; −0.512) (−0.694; −0.528)

Sd 0.04 0.042 0.013 0.042 0.043 0.042
σu 0.210 0.170 0.069 0.219 0.188 0.218
σv 0.114 0.115 0.053 0.125 0.125 0.126
−2LL −135.88 −24.45 12.88 −137.78 −133.44 −137.21
p(D) 18.54 16.47 23.56 19.55 17.64 19.32
DIC 226.85 6.24 −86.69 229.23 222.80 228.22

Table 2. A comparison of spatial models for mapping child wasting in Malawi using 2015-16 MDHS.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

β0 (CI) −3.514 −3.458 0.166 −3.577 −3.658 −3.609
(−3.715; −3.325) (−3.661; −3.257) (0.143; 0.19) (−3.78; −3.386) (−3.87; −3.457) (−3.814; −3.416)

Sd 0.099 0.103 0.012 0.1 0.105 0.101
σ2

u 0.493 0.353 0.061 0.486 0.519 0.467
σ2

v 0.148 0.121 0.0481 0.144 0.152 0.143
−2LL −95.22 −48.39 18.11 −94.04 −93.43 −92.31
p(D) 13.94 9.68 22.59 13.13 13.22 12.44
DIC 150.84 60.80 −94.76 148.73 147.06 145.98

Table 3. A comparison of spatial models for mapping child underweight in Malawi using 2015-16 MDHS.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

β0 (CI) −2 −1.981 0.344 −2.003 −2.022 −2.008
(−2.109; –1.897) (−2.09; −1.877) (0.32; 0.368) (−2.112; −1.901) (−2.133;−1.916) (−2.116; −1.905)

Sd 0.054 0.054 0.012 0.053 0.055
σu 0.1390 0.1197 0.0634 0.1523 0.1400 0.1420
σv 0.1371 0.1139 0.0495 0.1286 0.1261 0.1321
−2LL −117.62 −29.98 15.99 −117.38 −113.23 −115.35
p(D) 13.38 10.42 22.91 13.41 12.23 12.91
DIC 197.75 24.96 −89.77 197.28 190.55 193.68

Figure 2 presents maps of the district-level observed and spatially estimated prevalence
of stunting. The spatial pattern in the stunting prevalence was smoother compared to the
spatial pattern based on the observed prevalence. Generally higher stunting rates were
found in the main central districts of the country. For wasting (Figure 3), districts in the
southern part of the country bore the most burden. The spatial trend for wasting was
similar to that of underweight prevalence (Figure 4).
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3.4. Mozambique: Pronvicial Variations in the Prevalence Child Fver and Diarrhoea

A summary of the province’s prevalence of fever and diarrhoea is provided in Table A2
in Appendix B. Overall, about 29.37% (95% CI 26.99–31.87) of children under 5 years old
had a fever and 11.11% (95% CI 9.93–12.41) had diarrhoea, with variation across provinces
in Mozambique, ranging from 14.37% in Tete to 51.67% in Zambezia for fever, and 6.8%
in Tete to 17.19% in Niassa. The model-fit criteria values and parameter estimates are
presented in Tables 4 and 5. The estimates of the intercepts from the models for each
condition were similar, except for Model 3 (AS) which was an indifferent scale. Moreover,
the estimates of the intercepts were slightly more precise by having narrower credible
intervals when sampling weights were accounted for. Furthermore, the spatial Model 3
(AS) was the best fitting model.

Figures 5 and 6 present prevalence maps of fever and diarrhoea, respectively, under dif-
ferent spatial model specifications. Child fever was more concentrated in provinces around
the northeastern parts of Mozambique and less in the southern provinces (e.g., Maputo
Cidade and Maputo Province). On the other hand, child diarrhoea was higher in most north-
ern provinces, Zambezia, and Niassa provinces, and much lower in the southern parts.

Table 4. A comparison of spatial models for mapping child fever in Mozambique using IMASIDA 2015.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

β0 (CI) −1.137 −1.123 0.523 −1.129 −1.13 −1.13
(−1.433; −0.844) (−1.453; −1.123) (−0.45; 0.597) (−1.496; −0.767) (−1.458; −0.805) (−1.458; −0.805)

Sd 0.146 0.162 0.036 0.183 0.161
σu 0.1734 0.1863 0.1046 0.1854 0.1848 0.1848
σv 0.4660 0.5123 0.1094 0.5241 0.5172 0.5172
−2LL −62.86 −16.20 −0.834 −63.98 −61.28 −61.28
p(D) 10.52 10.28 10.66 10.60 10.50 10.50
DIC 89.60 0.135 −37.64 89.54 86.86 86.86
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Table 5. A comparison of spatial models for mapping child diarrhoea in Mozambique using
IMASIDA 2015.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5

β0 (CI) −2.145 −2.14 0.329 −1.945 −2.152
(−2.319;−1.979) (−2.335; −1.956) (0.283; 0.374) (−2.189; −1.708) (−2.34; −1.975)

Sd 0.085 0.095 0.023 0.118 0.091
σ2

u 0.1651 0.1799 0.0748 0.2303 0.1724
σ2

v 0.2257 0.2231 0.0640 0.3438 0.2442
−2LL −50.27 −10.40 4.37 −53.70 −48.96
p(D) 8.75 7.90 10.15 9.83 8.64
DIC 81.04 4.30 −39.23 81.71 78.83
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4. Discussion and Conclusions

In this paper, we compared several statistical methods and their resulting estimates of
spatial distributions of child malnutrition, fever and diarrhoea in Malawi and Mozambique
using health survey data, accounting for health survey sampling weights. The results of the
study showed that the sampling weight-adjusted methods were the best fitting, a finding
similar to previous studies [4–7]. Even though the estimated spatial pattern was similar, the
models that adjusted for the sampling weight produced estimates that had lower variability
(narrowed confidence intervals). Thus, using accounting for sampling weights produced
estimates of disease risk that had an increased level of confidence.

There are some concerning issues arising from our study. Firstly, although the arcsine
transformation of the weighted prevalence was preferred for our application, it does
not have an intuitive interpretation of the association between the binary outcomes and
predictors. Secondly, for the Mozambique case, the study used a province which has a
much coarser level of geographical aggregation. This may have concealed variations at
some higher spatial resolution needed for local policy decisions. We suggest, for future
studies, performing spatial analyses at higher spatial resolutions, for example, at the district
level. Thirdly, our analyses used univariate spatial methods for the conditions that could
be correlated at ecological levels [30,31]. We are now extending these statistical methods
to the estimation of joint spatial patterns of diseases. Finally, we did not perform any
simulation study to compare the performance of the studied statistical methods for the
estimation of spatial disease patterns using complex health survey data. However, we
thought that this was not necessary for this study as we aimed to describe the sampling
weights adjusting methods and illustrate their use on typical examples. Other previous
research work considered their performances using simulations [4–7].

In conclusion, we recommend spatial epidemiology researchers consider incorporating
survey sampling weights in disease-mapping analyses for estimating the spatial distribu-
tion of disease risks based on complex health survey data. The estimates are more precise,
thus providing reliable supporting evidence to drive public health policy on targeting
resources in areas of most need.
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Appendix A. The Integrated Nested Laplace Approximation

The basic idea behind INLA involves using a deterministic approach to approximating
posteriors for GMRF models, which, in most cases, makes INLA faster and more accurate
than MCMC alternatives to GMRF.

The posterior distribution for the latent Gaussian model is:

π(x, θ|y) ∝ π(θ)π(x|θ)π(y|x, θ)

∝ π(θ)π(x|θ)
n

∏
i=1

π(yi|xi, θ) (A1)

∝ π(θ)|Q(θ)|
1
2 exp

(
−1

2
xTQ(θ)x

) n

∏
i=1

exp (log (π(yi|xi, θ))) (A2)

∝ π(θ)|Q(θ)|
1
2 exp

(
−1

2
xTQ(θ)x +

n

∑
i=1

log (π(yi|xi, θ))

)
(A3)

where x is the class of latent fields; θ is the set of hyperparameters and y is the data.
The INLA approach does not estimate the posterior marginals of interest, π(xi|y) , and
hyperparameters π(θj

∣∣y) , but rather, the whole posterior distribution:

π(xi|y) =
∫

π(xi|θ, y)π(θ|y)dθ and π(θj|y) =
∫

π(θ|y)dθ−j. (A4)

by constructing the nested approximations:

π̃(xi|y) =
∫

π̃(xi|θ, y)π̃(θ|y)dθ and π̃(θj|y) =
∫

π̃(θ|y)dθ−j. (A5)
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where θ−j is all θ′s, except θj. Here, π̃(.|.) is an approximated density (conditional) of
its arguments. Approximations to π(xi|y) are calculated by approximation π(θ|y) and
π(xi|θ, y) , and using numerical integration to integrate out θ, based on the Laplace ap-
proximation method. Integration is possible when the dimension of θ is small. The
nested approach makes Laplace approximations very slow when applied to the latent
Gaussian models.

The proposed Laplace approximation for π(θ|y) is given by:

π̃(θ|y) ∝
π(y|x, θ)π(x|θ)π(θ)

π̃G(x|θ, y)
|x=x∗(θ), (A6)

where π̃G(x, θ, y) is a Gaussian approximation for the full conditional of x obtained by
computing Laplace approximation, and x∗(θ) is the mode of the full conditional of x, for
a given θ. For the posterior marginals of the latent field, the density of xi|θ, y can be
approximated with the Gaussian marginal derived from π̃G(x|θ, y) . For more details on
this method, see [16,22].

Appendix B.

Appendix B.1. Malawi Results

Table A1. Summary of the observed (weighted) prevalence rates of stunting, wasting, and under-
weight per district in Malawi.

Stunting Wasting Underweight
District N. Respondents (Stunted, %) N. Respondents (Wasted, %) N. Respondents (Underweighted,%)

Chitipa 139 43 (33.08) 144 2 (1.39) 141 18 (13.89)
Karonga 142 38 (28.00) 143 2 (1.56) 144 14 (9.18)

Nkhata Bay 149 47 (31.33) 150 1 (0.17) 152 10 (5.89)
Rumphi 147 44 (31.87) 147 3 (1.74) 147 20 (13.75)
Mzimba 158 70 (44.79) 159 5 (3.19) 158 22 (13.45)
Likoma 128 33 (26.99) 128 5 (4.26) 129 11 (9.13)

Mzuzu City 39 7 (15.44) 39 1 (2.72) 39 1 (2.72)
Kasungu 211 73 (35.90) 215 5 (2.73) 216 14 (6.56)

Nkhotakota 202 69 (32.58) 204 7 (1.82) 202 32 (13.05)
Ntchisi 181 68 (40.55) 182 4 (1.80) 186 20 (11.53)
Dowa 199 74 (39.42) 199 2 (1.05) 200 17 (9.31)
Salima 212 78 (36.75) 214 4 (1.60) 213 28 (13.81)

Lilongwe Rural 147 63 (43.28) 149 1 (0.64) 150 14 (9.42)
Mchinji 210 95 (45.88) 214 8 (3.35) 213 26 (12.20)
Dedza 177 72 (41.18) 177 5 (2.85) 179 28 (15.41)
Ntcheu 200 78 (40.77) 199 8 (3.74) 201 26 (12.99)

Lilongwe City 74 15 (19.55) 74 3 (4.14) 74 6 (8.07)
Mangochi 244 107 (44.33) 246 2 (0.90) 255 32 (12.08)
Machinga 247 95 (38.50) 247 9 (3.71) 253 40 (15.58)

Zomba Rural 182 67 (36.90) 179 8 (4.50) 183 22 (11.93)
Chiradzulu 140 48 (33.62) 144 9 (6.53) 145 19 (12.81)

Blantyre Rural 86 28 (32.84) 87 5 (5.53) 86 7 (8.00)
Mwanza 143 46 (31.24) 143 12 (7.03) 150 23 (14.55)
Thyolo 151 54 (34.43) 149 6 (3.78) 150 22 (13.29)

Mulanje 172 66 (36.91) 172 6 (3.58) 174 29 (16.30)
Phalombe 211 68 (33.09) 216 4 (2.03) 212 21 (10.31)
Chikwawa 180 55 (30.18) 181 8 (4.80) 184 21 (11.27)

Nsanje 159 48 (31.70) 161 17 (9.92) 162 27 (18.85)
Balaka 213 69 (32.73) 212 0 (0.00) 214 26 (13.19)
Neno 165 72 (45.28) 164 7 (4.70) 168 30 (18.44)

Zomba City 49 8 (17.75) 48 3 (5.56) 50 1 (1.93)
Blantyre City 92 28 (30.47) 92 2 (2.10) 93 7 (7.57)

Total 5149 1826 (36.82) 5178 164 (2.79) 5223 634 (11.58)
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Appendix B.2. Mozambique Results

Table A2. Summary of the observed (weighted) prevalence rates of fever and diarrhoea per province
in Mozambique.

Fever Diarrhea
District N. Respondents (N, %) N. Respondents (N, %)

Niassa 546 146 (30.16) 546 94 (17.19)
Cabo Delgado 380 86 (21.94) 383 37 (9.90)

Nampula 595 228 (39.49) 597 64 (11.28)
Zambezia 555 264 (51.67) 556 90 (16.95)

Tete 448 65 (14.37) 449 39 (6.80)
Manica 479 81 (16.59) 479 43 (8.90)
Sofala 505 109 (21.58) 506 46 (8.43)

Inhambane 323 68 (18.23) 323 27 (7.24)
Gaza 530 141 (27.00) 530 61 (11.79)

Maputo Provincia 340 53 (15.86) 340 23 (8.25)
Maputo Cidade 271 70 (24.99) 271 28 (9.99)

Total 4972 1311 (29.37) 4980 549 (11.11)
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