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Abstract: Small sample learning ability is one of the most significant characteristics of the human
brain. However, its mechanism is yet to be fully unveiled. In recent years, brain-inspired artificial
intelligence has become a very hot research domain. Researchers explored brain-inspired technologies
or architectures to construct neural networks that could achieve human-alike intelligence. In this
work, we presented our effort at evaluation of the effect of dynamic behavior and topology co-learning
of neurons and synapses on the small sample learning ability of spiking neural network. Results show
that the dynamic behavior and topology co-learning mechanism of neurons and synapses presented in
our work could significantly reduce the number of required samples, while maintaining a reasonable
performance on the MNIST data-set, resulting in a very lightweight neural network structure.

Keywords: small-sample learning; spiking neural network; structural learning; adaptive structure

1. Introduction

One of the most significant disadvantages of Deep-Leaning based Artificial Intelligence
(AI) is the dependence on large amounts of tagged data samples [1–3]. Since small-sample
learning ability or zero-shot learning ability is one of the most significant characteristics of
the human brain, brain-inspired AI research has become very popular in recent years.

Researchers have explored many different brain-inspired technologies or architectures
to construct a neural network that could achieve human-like intelligence. Although the hu-
man brain has not been explored exhaustively, the extraordinary ability of the human brain
may be due to three basic observations: adaptive-and-flexible connectivity, structural-and-
functionalized tissue levels, and spatial-and-timing dependent spiking communication [4].

The study of brain-inspired AI has given birth to the upsurge of research on Spiking
Neural Networks (SNN). As the third generation of ANN [2], SNN is much more similar to
the human brain. It uses spiking neurons as a computing unit, uses synapses to connect
neurons to form a complex neural network, and uses spiking signals to exchange and
transmit information. A neuron unit in the SNN is active only when it receives or fires a
spiking signal, so it is event-driven and adopts an asynchronous working mode, which can
significantly save energy consumption. And the spiking signals used to exchange informa-
tion in the SNN are inherently time-dimensional and can record valuable information more
sparsely [1].

In this work, we present our effort at constructing a brain-inspired SNN. We choose
the LIF (Leaky-Integrate-and-Fire) model [5] to build our SNN, after comparison with other
spiking neuron models [6,7].
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The contributions of our work are:

• Implemented a structural learning process based on Hebbian Rule [8,9] and Use-and-
Disuse theory [10] to achieve adaptive-and-flexible connectivity in our neural network;

• Implemented a reinforcement learning-based supervised synaptic learning process to
achieve spatial-and-timing dependent spiking communication;

• Explored a cluster-grouped structure mode to mimic the structural-and-functionalized
tissue levels of the human brain, which is inspired by the fact that neurons would
usually firstly form into homogeneous clusters as the primary processing unit in
the human brain’s neural network, and the working mechanism of a society where
individual independent behaviour finally converges into group behaviour.

This paper is organized as follows: related works are discussed in Section 2; our
method is introduced in detail in Section 3; results are presented and discussed in Section 4;
and the conclusion is given in Section 5.

2. Related Works

Since SNN is more similar with the human brain in the aspect of biological character-
istics, it has drawn a lot of researchers into this domain [11–19]. Many learning algorithms
for SNN have already been presented.

In 2013, Beyeler et al. presented their hierarchical spiking neural network (SNN) that
integrates a low-level memory encoding mechanism with a higher-level decision process
to perform a visual classification task in real-time [20]. Their SNN consists of Izhikevich
neurons and conductance-based synapses for realistic approximation of neuronal dynamics.
And the learning method for their SNN is a spike-timing-dependent plasticity (STDP)
synaptic learning rule with additional synaptic dynamics for memory encoding, and an
accumulator model for memory retrieval and categorization.

In 2017, Srinivasan et al. [21] presented a neuronal potential and spike-count based
enhanced learning scheme which additionally accounts for the spiking frequency to further
the efficiency of synaptic learning. Also in 2017, Matsubara et al. proposed a SNN learning
model which could adjust synaptic efficacy and axonal conduction delay in both unsuper-
vised and supervised manners [22]. The same year, Iyer et al. [23] and Shrestha et al. [24]
also presented their unsupervised learning algorithms for SNN.

Cho et al. presented their 2048-neuron globally asynchronous locally synchronous
(GALS) spiking neural network (SNN) chip in 2019 [25]. They allow neurons to specialize
to excitatory or inhibitory, and apply distance-based pruning to cut communication and
memory for the sake of scalability. Rathi et al. presented a sparse SNN topology where
noncritical connections are pruned to reduce the network size, and the remaining critical
synapses are weight quantized to accommodate for limited conductance states [26]. In
their work, pruning is based on the power law weight-dependent spike timing dependent
plasticity model; synapses between pre- and post-neuron with high spike correlation
are retained, whereas synapses with low correlation or uncorrelated spiking activity are
pruned. Also in that year, Zhao et al. presented an SNN with an energy-efficient and
low-cost processor that was based on a mechanism with increased biological plausibility,
i.e., a frequency adaptive neural model instead of a Poisson-spiking neural model [27].

In 2020, Qi et al. proposed a hybrid framework combining the convolutional neural
networks (CNNs) and SNNs named deep CovDenseSNN, such that SNNs can make use of
the feature extraction ability of CNNs during the encoding stage, but still process features
with the unsupervised learning rule of spiking neurons [28]. In 2021, Tsur proposed a
method based on the gradient descent method. Their method uses the Neural Engineering
Framework (NEF), which has also been evaluated with CNNs and DNNs [29].

3. Cluster-Grouped Structural-and-Synaptic Co-Learning Method

As discussed before, the extraordinary ability of the human brain may be due to
three basic observations: adaptive-and-flexible connectivity, structural-and-functionalized
tissue levels, and spatial-and-timing dependent spiking communication. We undertake the
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building of our SNN inspired by those three characteristics. In this paper, the MNIST [30]
data-set is chosen as the evaluation data-set.

3.1. Overview of Our SNN Structure

Our SNN could be roughly divided into three modules, as shown in Figure 1.

Figure 1. The overall structure of our SNN.

The Spiking Encoding Module is used to transfer external input into spiking signals,
which are then fed to the Main Processing Module. The Spiking Decoding Module is used
to comprehend and interpret the output of the Main Processing Module.

As discussed before, we explored a cluster-grouped structure mode to mimic the
structural-and-functionalized tissue levels of the human brain. In the human brain, the
neurons would form into many homogeneous clusters. And those clusters would serve as
the basic units for the brain’s neural network. In society, group behaviour is a combination
of individual behaviour. Inspired by those facts, we have grouped the Main Processing
Module and the Spiking Decoding Module of our SNN into many homogeneous clusers,
serving as the basic units for the proper functioning of the whole neural network, as shown
in Figure 2.

Figure 2. Illustration of the cluster-grouped structure mode of our SNN.



Brain Sci. 2022, 12, 139 4 of 16

3.1.1. Spiking Encoding Module

The task of the Spiking Encoding Module is to encode as much useful information
into spatiotemporal spike patterns as possible. Inspired by the biological visual neural
system, we design our Spiking Encoding Module into two parts: feature extraction and
spiking conversion.

According to biological research, the structure of the front-end feature extraction part
of the visual neural network of higher organisms is relatively regular, which is mainly
formed by construction rather than learning. It serves as a preliminary feature extraction
phase before further feature abstraction performed by the neural network. Convolution
and pooling methods are widely used in the Deep-learning Neural Networks (DNNs), and
have achieved significant results.

In previous work, we have already designed a convolution and pooling combined
preprocess method which could serve as a front-end feature extraction phase of our SNN.
The flow of our Spiking Encoding Module is shown in Figure 3. The Spiking Encoding
Module consists of three layers: A convolution layer, a pooling layer, and a conversion
layer. The detail description of this module can be found in [31]. For the completeness of
this work, we will briefly introduce it here.

Figure 3. The flow of the Spiking Encoding Module [31].

Four convolution kernels are used in the convolution layer. Then, the result of the four
convolution kernels would be processed by the pooling layer. Finally, the conversion layer
will be used to encode the output of the pooling layer into spiking sequences [31].

The ROC (Rank Order Coding) coding method [32] is used to help design the encoding
method in this paper. The spiking encoding method used in this paper converts the pixel
value of the image into the delay time of the spiking signal, and the higher the pixel value
is, the shorter the delay time is [31].

3.1.2. Main Processing Module

The Main Processing Module consists of many homogeneous clusters. And each
cluster consists of a layer of neurons. The input to the Main Processing Module is the
spiking sequences generated by the Spiking Encoding Module. The number of neurons
in each cluster is decided according to the number of pixels in the processed image (after
convolution and pooling processing).

3.1.3. Spiking Decoding Module

The task of Spiking Decoding Module is to comprehend and interpret the results
generated by the Main Processing Module. The Spiking Decoding Module consists of
two layers of neurons. The first layer of the Spiking Decoding Module consists of many
clusters as a match to the Main Processing Module. However, the number of neurons in
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each cluster of the first layer of the Spiking Decoding Module is decided by the specific
task requirement. And the number of neurons in the second layer of the Spiking Decoding
Module is the same as the number of neurons in each cluster of the first layer of the Spiking
Decoding Module.

For example, in this work, since we chose the MNIST data-set as the evaluation data-
set, the number of neurons in each cluster of the first layer of Spiking Decoding Module
is 10, as a correspondence to the 10 categories of MNIST data-set. Also, the number of
neurons in the second layer of the Spiking Decoding Module is 10.

A full connection is adopted for the corresponding cluster in the Main Processing
Module and the cluster in the first layer of the Spiking Decoding Module.

3.2. Structural-and-Synaptic Co-Learning Method

The flow of our structural-and-synaptic co-learning method is shown in Algorithm 1.

Algorithm 1 Structural-and-Synaptic Co-Learning Method for Our SNN

Input:
Training Set D, which consists of n labeled samples
Number of clusters in the SNN T

Output:
Trained SNN N

1: Use Spiking Encoding Module to convert D into Input Spiking Sequence Set S;

2: Initialize the SNN N;

3: Set cluster index t = 1;

4: Construct training input spiking sequence sub-sets S1, S2,. . . , ST through bootstrap

sampling;

5: while (t ≤ T) do

6: Perform structural-and-synaptic co-learning on Nt with St;

7: t = t + 1;

8: end while

We will explain the structural and synaptic learning process in detail separately.

3.2.1. Synaptic Learning Process

In this paper, we presented a reinforcement learning based supervised synaptic learn-
ing process to achieve spatial-and-timing dependent spiking communication in our SNN.
We rely on Spike-Timing-Dependent Plasticity (STDP) and reinforcement learning to gener-
ate our supervised learning method.

According to the STDP learning rule, the adjustment of weight of a synapse should
comply with causality presented by the input spiking sequences. The STDP learning rule is
used as a core learning rule in many supervised learning algorithms because of its good
biological interpretability. However, lots of existing supervised learning algorithms based
on the STDP learning rule only depend on the guidance of unipolar supervised signals
(namely excitatory supervised signals).

According to biological researche, there are two kinds of neurons in the human brain:
excitatory neurons and inhibitory neurons. It is the balance between those two kinds of
neurons that supports the proper functioning of the human brain. So, in this paper, we build
a bipolar supervised learning method for SNN based on STDP and reinforcement learning.
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The flow of our bipolar supervised learning algorithm is described in Algorithm 2.

Algorithm 2 Bipolar Supervised Learning Algorithm (BS)

Input:
Input spiking sequence sub-set S
Un-trained cluster N

Output:
Trained cluster N

1: while (S 6= φ) do

2: Pick one input spiking sequence s labelled with L from S;

3: Feed s to N;

4: Record the firing behaviour of neurons in layer 1 of Spiking Decoding Module of

cluster N;

5: Build neuron set M = {x|x f ired};
6: while (M not only contains the neuron corresponding to label L) do

7: for each x ∈ M do

8: if x corresponds to label L then

9: Build encouraging teacher signal for x;

10: else

11: Build punishing teacher signal for x;

12: end if

13: end for

14: Feed s to N;

15: Record the firing behaviour of neurons in layer 1 of Spiking Decoding Module of

cluster N;

16: Build neuron set M = {x|x f ired};
17: end while

18: Delete s from S;

19: end while

Suppose now we are training one of the cluster N shown in Figure 4.

Figure 4. An example to illustrate bipolar supervised learning mechanism.

As we can see, the image now used as the training input is an image labeled as
“1”. That image would be converted into a spiking sequence first, then fed to the Main
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Processing Module of a cluster N. Let us assume during this turn of training that the set M
of neurons fired in layer 1 of the Spiking Decoding Module of cluster N is [0, 1, 7, 8], where
we simply use the corresponding label of that neuron to identify it. So, we can see that the
fired set of neurons not only contains the neuron that corresponds to label “1”. Thus, we
need to build encouraging teacher signal for neuron corresponds to label “1”, to give it a
positive reward. And build punishing teacher signals for neurons correspond to label “0”,
“7”, and “8”, respectively, to give them negative reward.

3.2.2. Structural Learning Process

The most significant characteristis of the biological neural network is that it could
adjust its structure as a reflection to the external environment to build an adaptive neural
network structure. However, lots of current research about SNNs exploit the fixed structure;
the learning process of SNNs isonly focused on optimizing the weight of synapses. So the
benefits of a biological neural network have not been fully explored.

The method based on fixed structure and connection is not conducive to efficient
learning: On one hand, redundant connections will increase training time and lead to
higher training costs; on the other hand, redundant connections will interfere with the
correct results and affect the recognition accuracy. Therefore, to enhance the structural
efficiency of SNN, and further leading to the energy efficiency of the SNN, we have
designed a structural learning process which could dynamically and adaptively adjust the
SNN structure.

There are mechanisms of synapse enhancement, weakening, and even extinction in
the real biological neural network, similar to the principle of “use and disuse theory” [10]
in biological evolution. In this paper, the synaptic learning process could achieve the
enhancement and weakening of synapses, so the structural learning process mainly focuses
on the implementation of the synapse extinction mechanism.

If the weight of some synapses remains unchanged or does not change much during the
learning process, then the synapse is not involved in learning, meaning that it is redundant.
Redundant synapses would be eliminated during the structural learning process in order
to achieve an adaptive neural network structure.

For example, if synapse i has an initial weight Winitial(i). During the structural learning
process, the algorithm would check synapse i’s current weight, say Wcurrent(i). A threshold
is predefined as Wchange. If the following condition is satisfied, then synapse i would
be eliminated.

|Wcurrent(i)−Winitial(i)| < Wchange (1)

4. Experiments and Results
4.1. Experiment Setup

MNIST data-set [30] is chosen to test our proposed SNN. MNIST is a widely used
data-set for optical character recognition with 60,000 handwritten digits in the training
set and 10,000 in the testing set. The size of handwritten digital images in this data-set is
28 × 28, as shown in Figure 5.

Figure 5. Example of MNIST data-set.
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We built our simulation platform based on the NEST (NEural Simulation Tool) [33].
NEST is a simulation platform specially designed for SNN research which promotes the
exchange of computational neuroscience methods and the transfer of computer science
knowledge to neuroscience. NEST follows the logic of laboratory electrophysiological
experiments and provides more than 50 neuronal models and more than 10 synaptic
models according to the neuron models published in related literature. The neural network
in NEST consists of two basic element types: nodes and connections. NEST is suitable for
SNNs of any size. It provides a method to check and modify the state of spiking neurons at
any time during the simulation. NEST only takes up a small amount of memory and has
high efficiency, reliability and scalability.

Biological spiking neural networks are characterized by the parallel operation of thou-
sands of spiking neurons and the exchange of information between them by spiking trains
sent by synapses. This mode of work fits the characteristics of the MPI (Message Passing
Interface) parallel mechanism in particular. NEST supports MPI parallelization. NEST
provides users with a method of asynchronous multi-process concurrent execution, which
makes the program execute asynchronously efficiently and automatically synchronizes the
process in the simulation process without user interaction. Parallel computing reduces
computing time and improves the scale of operations.

4.2. Evaluating Convolution and Pooling Configuration

Inspired by the mechanism of biological visual information processing, we propose
to use convolution and pooling to perform preliminary feature extraction. According to
our study, using more than one layer of convolution or pooling does not bring enough en-
hancement to accuracy to compensate for the increase of network complexity and learning
time, so we only use one convolution layer and one maximum_pooling layer.

At present, the size of the convolution kernel commonly used in DNN is 3× 3, 4× 4,
5 × 5, and the pooling size is 2 × 2, 3 × 3, 4 × 4. So, in this work, we also choose a
convolution kernel of 3× 3, 4× 4, 5× 5, and the pooling size is 2× 2, 3× 3, 4× 4. Our
research shows that when using convolution kernels with transverse, longitudinal and two
cross diagonal weights distributions, the core features of the image can be obtained more
clearly. Figure 6 shows the convolution kernels of different sizes that are used in this paper.

Figure 6. Convolution kernel of different size.
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Figure 7 shows the result of an image from the MNIST data-set which is labeled as a ‘0’
after the process of different configurations of the convolution layer and the pooling layer.
The convolution layer includes four different convolution kernels (transverse, longitudinal
and two cross diagonal weights distribution) of the same size, which is declared under
each sub-figure. The moving step of the convolution kernel is 1. The size of the pooling
layer is also declared under each sub-figure.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Effect of feature extraction after convolution and pooling. (a) 3× 3 convolution kernel
and 2× 2 pooling; (b) 4× 4 convolution kernel and 2× 2 pooling; (c) 4× 4 convolution kernel and
3× 3 pooling; (d) 5× 5 convolution kernel and 2× 2 pooling; (e) 5× 5 convolution kernel and 3× 3
pooling; (f) 5× 5 convolution kernel and 4× 4 pooling.

In order to find out the best configuration of convolution and pooling for our method,
an experiment is conducted. Here we only consider the accuracy of a cluster trained using
the bipolar supervised learning algorithm. The different configurations of the convolution
and the pooling optimization phase are described below:
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• Configuration 1: Convolution and pooling optimization is disabled;
• Configuration 2: Use 3× 3 convolution kernel and 2× 2 pooling;
• Configuration 3: Use 4× 4 convolution kernel and 2× 2 pooling;
• Configuration 4: Use 4× 4 convolution kernel and 3× 3 pooling;
• Configuration 5: Use 5× 5 convolution kernel and 2× 2 pooling;
• Configuration 6: Use 5× 5 convolution kernel and 3× 3 pooling;
• Configuration 7: Use 5× 5 convolution kernel and 4× 4 pooling.

Four different encoding methods have been designed to be used in the conversion
layer of the Spiking Encoding Module of our SNN:

• Linear encoding method: Tspiking = 255− V. Here use 255 to subtract the value of
a pixel V in an image to get the spiking time for that pixel, because the image pixel
values in the MNIST data-set range from (0, 255);

• Exponential encoding method: Tspiking = 255
2V ;

• Inverse encoding method: Tspiking = 255
V ;

• Power encoding method: Tspiking = 255
V2 .

The comparison of accuracy for those seven configurations with different spiking
encoding methods is shown in Figure 8. It can be seen from the results that, except for the
inverse encoding method, if convolution and pool optimization is adopted, the accuracy of
the results is much higher than that of the unadopted ones. Compared with other methods,
the power encoding method has the best overall effect after using convolution and pooling
optimization with different configurations.

Figure 8. Efficiency of convolution and pooling optimization.

Similarly, from the experimental results, we can see that under the configuration of
convolution kernel size 4× 4 and pooling size 2× 2, the overall effect is better and the
accuracy is higher than in other configurations.

According to its nature, the output of the inverse encoding method can easily be
clustered in the first 20 ms. When no convolution or pooling optimization is involved
(Configuration 1), the distribution of the feature information in the image is concentrated.
Thus the inverse encoding method is more suitable and generates the best accuracy result.
However, if convolution and pooling preprocessing is involved, information is more
diversified, and more different image features are obtained, so the spiking time distribution
is wider and not only focused on the first 20 ms, so the effect of the inverse function
is reduced.

We therefore decided that the setting of the Spiking Encoding Module should be used
with the configuration of convolution kernel size 4× 4 and pooling size 2× 2.
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4.3. Evaluating the Timing of Encourage Teacher Signal and Punish Teacher Signal

In this paper, we proposed a reinforcement learning based bipolar supervised learning
method for the synaptic learning of our SNN, where both encouraging teacher signals and
punishing teacher signals would be used.

Thus, the timing of both the encouraging teacher signal and the punishing teacher sig-
nal needs to be carefully arranged. Both the encouraging teacher signal and the punishing
teacher signal need to be added to neurons in layer 1 of the Spiking Decoding Module of
each cluster.

In order to decide the optimal timing of both the encouraging teacher signal and the
punishing teacher signal, an experiment is designed. Here we only consider the accuracy
of a cluster trained using the bipolar supervised learning algorithm. For the setting of the
Spiking Encoding Module, the convolution kernel size is 4× 4, and the pooling size is 2× 2.

Figure 9 shows the influence of the different timing of the encouraging teacher signal
on accuracy. Since our spiking encoding principle is sending important information earlier,
the spiking signals that represent the main features are concentrated in the front part of
the time window. So it can be seen from the result in Figure 9 that, with the exception of
the inverse encoding method, when the timing of encouraging teacher signal is arranged
between (70 ms, 95 ms), the accuracy is not affected very much. Therefore, in this work, we
set the timing of the encouraging teacher signal as 70 ms.

Figure 9. Influence of the timing of encouraging teacher signal.

Figure 10 shows the influence of different timings of the punishing teacher signal on
accuracy. It could be seen that, with the exception of the inverse encoding method, when
the timing of the punishing teacher signal is arranged between (5 ms, 35 ms), the accuracy
is not affected very much. Therefore, we set the timing of the punishing teacher signal at
35 ms in this work.
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Figure 10. Influence of the timing of punishing teacher signal.

4.4. Evaluating the Number of Clusters in the SNN

As we discussed before, we explore the cluster-grouped structure mode to mimic the
structural-and-functionalized tissue level of the human brain. More cluster might mean
more powerful functionality, but this would consume more energy. We want to find a
balance. We have conducted an experiment to decide the proper number of clusters in
our SNN.

Figure 11 shows the comparison for the different number of clusters.

Figure 11. Influence of number of clusters.
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Here the iteration refers to the training iteration for the construction of clusters. It can
be seen that the results of the three iterations are better than the results of the two iterations,
and the accuracy of the three iterations increases more quickly with the increase of the
number of clusters.

Whether it is three iterations or two iterations, the accuracy can reach more than 90%.
Also, when the number of clusters is more than 15, the improvement in accuracy is not
too obvious, and the difficulty and complexity of network learning are increasing, so we
determine that the number of clusters is 15.

4.5. Evaluating Threshold Value for Structural Learning

The biggest advantage of the biological neural network is that it can change its struc-
ture and connection according to the external environment, so it has huge flexibility and
effectiveness. In this paper, we propose a structural learning process to achieve an adaptive
SNN structure.

In order to determine the threshold value for structural learning, we have conducted a
set of experiments. In this experiment, the number of clusters is set as 15. The power en-
coding method is used, and the setting of Spiking Encoding Module is using a convolution
kernel size of 4× 4 and a pooling size of 2× 2.

Figure 12 shows the result. The vertical coordinates show the accuracy, while the
transverse coordinates show different threshold configurations, where N/A represents the
case where only synaptic learning is carried out.

Figure 12. Influence of threshold value for structural learning.

It can be seen from the result that structural learning can not only improve the accuracy,
but it also greatly reduces the complexity of the network in terms of the huge reduction in
the number of synapses, as shown in Table 1. Only when the threshold of weight change
has been set to larger than 10.0 would there be a gradual drop in accuracy. If we set the
threshold of weight change as 9.0, then we could use a network of only 13,161 synapses to
gain an accuracy of 88.80%, which is only slightly less than the accuracy of the network with
100% of the synapses connected, which is 86,400 synapses. Therefore, structural learning
can largely enhance structural efficiency.
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Table 1. Effect of structural learning. N/A represents the case where only synaptic learning is
carried out.

Threshold Value Setting Accuracy Remaining Proportion
of Synapses

No. of Remaining
Synapses

N/A 89.98% 100% 86,400

change(w) < 0.5 89.85% 52.62% 45,466

change(w) < 1.0 90.84% 47.54% 41,078

change(w) < 1.5 91.08% 44.23% 38,217

change(w) < 2.0 91.75% 42.53% 36,745

change(w) < 2.5 91.16% 39.32% 33,947

change(w) < 3.0 92.05% 36.76% 31,764

change(w) < 3.5 91.31% 35.23% 30,441

change(w) < 4.0 91.32% 33.76% 29,171

change(w) < 4.5 91.34% 30.82% 26,631

change(w) < 5.0 90.78% 28.13% 24,306

change(w) < 6.0 90.52% 25.14% 21,724

change(w) < 7.0 89.81% 21.23% 18,345

change(w) < 8.0 89.79% 17.98% 15,538

change(w) < 9.0 88.80% 15.23% 13,161

change(w) < 10.0 85.77% 12.65% 10,933

change(w) < 11.0 86.27% 9.32% 8055

change(w) < 12.0 84.06% 7.77% 6709

change(w) < 13.0 81.25% 5.21% 4504

change(w) < 14.0 78.14% 4.11% 3551

change(w) < 15.0 71.18% 2.98% 2573

change(w) < 16.0 64.85% 2.13% 1842

4.6. Comparison with Other Algorithms

In order to justify the ability of our SNN, several state-of-the-art SNN learning methods
have been chosen for comparative purposes. The comparison with other methods is shown
in Table 2. In order to maintain the consistence of the comparison, the calculation of
neurons/synapses only considers the SNN part in each case.

Table 2. Comparison results.

Algorithm Unsupervised/Supervised Required Sample Size Layers Neurons Synapses Accuracy

Our Method Supervised 1000 × 15 2 586 × 15 31,764 92.05%
[20] (2013) Supervised 60,000 Multiple 71,026 133,000,000 91.6%
[21] (2017) Unsupervised 60,000 3 1584 314,000 84%
[23] (2017) Unsupervised 60,000 3 1956 462,800 80.63%
[24] (2017) Both 60,000 3 2394 1,270,400 89.7%
[25] (2019) Supervised 60,000 2 2048 149,000 91.6%
[26] (2019) Unsupervised 15,000 3 6400 192,000 91.5%
[27] (2019) Unsupervised 270,000 4 1984 474,000 96.33%
[28] (2020) Unsupervised 40,000 Multiple 800 160,000 92.2%
[29] (2021) Supervised 60,000 5 15,238 161,996 98.74%
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According to the comparison, we could see that our method could generate reasonably
high accuracy on the MNIST data-set with a small sample size and a small network scale.
Ref. [26]’s work also involves a pruning process to enhance the learning ability and energy-
efficiency of the SNN; however, our network structure is much smaller than theirs and has
better accuracy. Ref. [27]’s accuracy is much better than ours, but their required training
sample size is much larger than ours. Ref. [28] also used convolution and pooling layers
to improve the feature extraction process, but we only used one layer of convolution and
one layer of pooling; their process is much more complex. Ref. [29]’s work also generates
better accuracy than ours, but they used a five-layer network (including four convolution
layers), which is much more complex than ours. And their required sample size is much
larger than ours as well.

5. Conclusions

In this paper, we have presented our method to build an adaptive SNN structure
with small-sample learning ability. We have implemented a structural-and-synaptic co-
learning method. The results show that we could generate better results when the required
number of samples is only 1/4 of other methods. Furthermore, our SNN structure is more
lightweight and thus more energy efficient.

In our method, since we use homogeneous clusters, it would be convenient to im-
plement our SNN using neuromorphic hardware. The clusters would easily fit into the
neuromorphic hardware array.
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