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Abstract

A major challenge in the cognitive training field is inducing broad, far-transfer training

effects. Thus far, little is known about the neural mechanisms underlying broad training

effects. Here, we tested a set of competitive hypotheses regarding the role of brain

integration versus segregation underlying the broad training effect. We retrospectively

analyzed data from a randomized controlled trial comparing neurocognitive effects of

vision-based speed of processing training (VSOP) and an active control consisting of

mental leisure activities (MLA) in older adults with MCI. We classified a subset of par-

ticipants in the VSOP as learners, who showed improvement in executive function and

episodic memory. The other participants in the VSOP (i.e., VSOP non-learners) and a

subset of participants in theMLA (i.e., MLA non-learners) served as controls. Structural

brain networks were constructed from diffusion tensor imaging. Clustering coeffi-

cients (CCs) and characteristic path lengths were computed as measures of segregation

and integration, respectively. Learners showed significantly greater global CCs after

intervention than controls. Nodal CCs were selectively enhanced in cingulate cortex,

parietal regions, striatum, and thalamus. Among VSOP learners, those with more

severe baseline neurodegeneration had greater improvement in segregation after

training. Our findings suggest broad training effects are related to enhanced segrega-

tion in selective brain networks, providing insight into cognitive training related

neuroplasticity.
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1 | INTRODUCTION

Induction of broad, far-transfer training effects is a major challenge in

the field of cognitive training. This challenge is of particular impor-

tance: training games are most effective when they can be simply and

repetitively administered, however, for them to have real-world

impact they need to induce broad improvements in the multiple cog-

nitive domains that underlie daily life challenges as a result of brain

aging. Broad cognitive decline in executive function and episodic

memory are particularly responsible for daily life difficulties in individ-

uals with atypical brain aging, such as that arising due to Alzheimer's

pathology. It is known that brain changes, especially structural

changes, underpin cognitive changes from cognitive training (Lövdén,

Backman, Lindenberger, Schaefer, & Schmiedek, 2010; Takeuchi

et al., 2010). Thus far, studies related to brain structure have been

focused on regional changes in grey matter. However, recent

advances in cognitive neuroscience point to coherent systems of

regions, or “networks”, being the crucial units of complex brain func-

tion. Thus, studying the white matter connectome provides an oppor-

tunity to characterize neural circuits that potentially underpin multiple

cognitive domains (Dai & He, 2014; Kraus et al., 2007). These circuits

may represent the concerted engagement of latent components

across multiple domains, and may provide information regarding the

tasks that best engage these components. For example, targeting

component processes that are fundamental in cognition, for example,

process efficiency, may be particularly beneficial due to changes in

neural circuitry that is flexibly engaged in a range of task, and there-

fore real-world, contexts (Lövdén et al., 2010).

For these changes to occur, individuals need to have the intrinsic

or physiological capacity to adapt in response to training (Thayer,

Hansen, Saus-Rose, & Johnsen, 2009). In dementia or the oldest old,

when neurodegeneration exceeds the brain's capacity for plasticity

(Park et al., 2004), such physiological adaptation can be minimal. Older

adults at risk for dementia are among the most difficult group to

induce broad training effects, accompanied with reduced white matter

integrity (Fissler et al., 2017) and disrupted functional integrity (Liang,

Wang, Yang, Jia, & Li, 2011). However, this group also represents a

critical juncture for broad training effects to slow further cognitive

deterioration. Therefore, understanding the mechanisms underlying

broad training effects among older adults at risk for dementia, such as

those with amnestic mild cognitive impairment (MCI), is a clinically

and scientifically important research question. It is unclear if any brain

regions are particularly relevant to broad, far-transfer training effects

in MCI. Based on the literature on younger adults, the striatum is criti-

cal for transferring the effects of cognitive training across tasks shar-

ing overlapping component processes (Dahlin, Neely, Larsson,

Backman, & Nyberg, 2008). Alternatively, based on the cognitive

aging literature, dorsolateral prefrontal cortex (DLPFC) is critical for

providing compensatory support for different cognitive functions in

aging: this mechanism may represent a natural capacity of the aging

brain that improves functioning across multiple domains in response

to neurodegeneration that could be enhanced by cognitive training

(Park & Reuter-Lorenz, 2009). Regions involved in supporting specific

cognitive functions may also play a role (e.g., hippocampus is involved

in regulating long-term memory retrieval; frontal–parietal network is

involved in regulating attention; Corbetta, 1998; Dudai, 2004;

Goldman-Rakic, 1988). These systems are known to interact during

complex tasks, and understanding whole-brain network-level changes

is likely to be crucial for understanding broad training effects in both

healthy and atypical aging populations.

Multiple studies have shown that the brain contains a number of

functionally specialized networks, organized in a small-world topology

to optimize efficiency of processing information (Bassett &

Bullmore, 2009; Bullmore & Bassett, 2011; Bullmore & Sporns, 2009;

Meunier, Lambiotte, Fornito, Ersche, & Bullmore, 2009). The nature of

the small-worldness of a network is determined by two metrics

derived from graph topology: a high clustering coefficient and short

characteristic path length (Watts & Strogatz, 1998). The clustering

coefficient quantifies the degree to which a cluster of nodes are fully

connected to one another, while the characteristic path length

describes the minimum distance between nodes. A high clustering

coefficient reflects a high level of segregation between local clusters,

indicating that information is being processed efficiently within local-

ized brain networks. On the other hand, a short characteristic path

length demonstrates integration between local clusters, indicating

flexible communication of information across multiple local clusters

(Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006; Rubinov &

Sporns, 2010). Both of these factors are essential in effective network

functioning, and small-worldness relies on a balance between the two.

Brain aging is known to cause changes in these metrics: it is often

accompanied by reduced brain segregation due to neural dedifferenti-

ation, and increased brain integration due to compensation via net-

works centered on DLPFC (Betzel et al., 2014; Chan, Park, Savalia,

Petersen, & Wig, 2014; Geerligs, Renken, Saliasi, Maurits, &

Lorist, 2015; Koen & Rugg, 2019; Onoda & Yamaguchi, 2013; Song

et al., 2014). Reversing reduced segregation or enhancing

compensation-integration are potential neural mechanisms underlying

cognitive changes induced by interventions, particularly those that are

likely to generalize across multiple domains and lead to real-world

improvements (Bamidis et al., 2014; Cao et al., 2016; Langer, von Bas-

tian, Wirz, Oberauer, & Jancke, 2013; Taya, Sun, Babiloni, Thakor, &

Bezerianos, 2015). In line with this, increased segregation of brain

functional networks was revealed in young adults after working mem-

ory training (Langer et al., 2013) and motor learning (Miraglia,

Vecchio, & Rossini, 2018). Thus far, no study has examined the neural

mechanisms underlying broad training effects following cognitive

training in groups at risk of dementia by comparing segregation versus

integration of brain networks. We suspect that strengthening of the

brain's segregation, particularly in those local clusters regulating

important fundamental cognitive components, would improve the

broad training effect. Alternatively, brain integration may be

enhanced, especially centered in the DLPFC that is known to play a

role in compensation.

We recently completed a phase II double-blinded randomized

controlled trial comparing the neurocognitive effects of vision-based

speed of processing training (VSOP) and an active control consisting
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of mental leisure activities (MLA) in older adults with MCI (Lin

et al., 2020). VSOP trains processing speed and attention (PS/A), a

cognitive domain essential to all cognitive operations (Salthouse,

1996; Woutersen et al., 2017). When comparing VSOP to MLA from

baseline to immediately after intervention, there was a significant

training effect on a PS/A measure that was not practiced in the VSOP

training, as well as a selective transfer effect to working memory but

no effect on episodic memory (Figure S1). In the present study, we

retrospectively analyzed the intervention findings to identify a sub-

set of participants with a broad far-transfer training effect

(i.e., learner)—across executive function (EF, that is, working memory

and cognitive control) and episodic memory (EM). Unfortunately,

due to the small percentage of individuals showing broad learning

following the active control (n = 5, see Figure 1a), the inclusion of a

group consisting of MLA learners is impossible. For the purposes of

this study, we therefore selected learners from the VSOP group only,

with others in VSOP (i.e., VSOP non-learner) and non-learners in

MLA as comparisons. In ideal circumstances, this study would be

performed using four groups in a 2 (VSOP vs. MLA) by 2 (learners

vs. non-learners) design. The lack of an actual comparison between

two trainings (VSOP and MLA) in four groups (learners and non-

learners for both VSOP and MLA) is therefore a major limitation of

the study. Future work will be needed to test whether the broad

training effect is specific to VSOP or can be generalized to other

cognitive or lifestyle interventions.

We compared diffusion imaging based small-worldness indices

between the VSOP learner and VSOP non-learner or MLA non-learner

group; relevantly, a set of competitive hypotheses were tested sur-

rounding integration versus segregation in relation to the broad

training effect. Cumulative literature suggests the capacity to learn

endures despite old age or neurodegeneration (Lampit, Hallock, &

Valenzuela, 2014; Lövdén et al., 2010; Shao et al., 2015). Here, we

investigated whether neurodegeneration at baseline affected the

broad training effect. We computed neurodegeneration with

Alzheimer's disease signature cortical thickness (ADSCT), with higher

score indicating greater cortical thickness and lower severity in neu-

rodegeneration. We tested whether the relationship between neu-

rodegeneration at baseline and the neural enhancement differed in

VSOP learner compared to non-learner.

2 | METHODS

2.1 | Overview of design

The protocol for the parent double-blinded randomized controlled

trial is reported in NCT02559063, and the study CONSORT form is

provided as Figure S2. Specific to the current study, we identified a

subset of participants in the VSOP group who showed broad, clinically

meaningful training effects across EF and EM (i.e., learner). The rest of

the participants in the VSOP group (i.e., VSOP non-learner) served as

the main group for comparison, with a subset of participants in the

MLA group (i.e., MLA non-learner) acting as controls. Diffusion tensor

imaging (DTI) was assessed at baseline and immediately after inter-

vention to determine the brain structural networks associated with

VSOP training's broad training effect. Furthermore, to test whether

learners with altered networks were affected by neurodegeneration,

we compared the relationship between baseline neurodegeneration
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F IGURE 1 (a) Participant categorization. Participants were first randomized to VSOP versus MLA groups at 2:1 ratio. Participants were
further assigned to either the learner or the non-learner group based on their performance on executive function and episodic memory at
baseline and postintervention. Participants who achieved clinically important differences, that is, whose performance at postintervention
assessment was higher than the baseline by at least one standard error of measurement, in both the executive function and episodic memory
were classified as “learner”, and the rest in VSOP and MLA groups were classified as “non-learner.” The x-axis is the change of executive function
from baseline to posttest. The y-axis is the change of episodic memory from baseline to posttest. The dotted line represents one standard error of
the mean. (b) Baseline and postintervention performance in UFOV are plotted separately for VSOP learners (pink), VSOP non-learners (orange),
and MLA non-learners (blue) groups. Error bars denote standard error of the mean. The asterisk represents significant within-group change from
baseline. *p < .05; **p < .01; ***p < .001. UFOV, Useful Field of View (lower value indicates better performance)
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and change of reveal networks after intervention between VSOP

learners and non-learners. Of note, sustainability of the training effect

is another topic not directly relevant to the current study; therefore,

the 3- or 6-month follow-up data were not included in the paper.

2.2 | Participants

Eighty-four older adults with amnestic MCI (single- or multiple-

domain) aged 60–90 years were recruited from University-affiliated

memory, internal, and geriatric clinics. All clinics used 2011 diagnostic

criteria for aMCI (Albert et al., 2011): (a) memory deficit (1–1.5 SD

below age- and education-corrected population norms); (b) may have

deficits in other cognitive domains (e.g., executive function);

(c) preserved Basic Activities of Daily Life, defined as requiring occa-

sional assistance on less than two items on the Minimum Data

Set-Home Care interview; and (d) absence of dementia using

NINCDS-ADRDA criteria. Other inclusion criteria included (a) if appli-

cable, no change in dose of Alzheimer's medication (i.e., memantine or

cholinesterase inhibitors) in the 3 months prior to recruitment;

(b) capacity to give consent based on clinician assessment; and

(c) other: age ≥60 years, English-speaking, adequate visual acuity for

testing, and community-dwelling. Exclusion criteria included

(a) current enrollment in another cognitive improvement study;

(b) uncontrollable major depression, or change of antipsychotic, anti-

seizure med, antidepressants or anxiolytics in the past 3 months;

(c) MRI contraindications (e.g., pacemaker); (d) major vascular disease:

stroke, myocardial infarction, or congestive heart failure. The study

was approved by the University of Rochester Research Subject

Review Board. Written consent was obtained from each participant.

Since cognitive assessments vary across clinics, we reassessed mem-

ory (Brief Visuospatial Memory Test (Benedict, 1997), executive func-

tion (EXAMINER, Kramer et al., 2014), and global cognition (Montreal

Cognitive Assessment, [Rossetti, Lacritz, Cullum, & Weiner, 2011]) at

baseline. Subject characteristics are summarized in Table 1. We tested

whether there were significant group differences in demographic

characteristics or cognitive assessment tests at baseline.

2.3 | Intervention and group assignment

Participants were randomized to VSOP versus MLA groups at a 2:1

ratio. VSOP intervention was administered using a commercial pack-

age from Brain HQ, Posit Science, which included five computer

games that target PS/A. All tasks share visual components, and the

tasks become increasingly more difficult and require faster reaction

TABLE 1 Baseline characteristics

VSOP learner
(n = 12)

VSOP non-learner
(n = 31)

MLA non-learner
(n = 19)

T, F or χ2 test, df1,
df2, (P)

Age, mean (SD) 73.42 (7.93) 74.65 (7.37) 73.74 (6.10) 0.171, 2, 59 (.84)

Years of education, mean (SD) 16.54 (1.92) 15.85 (2.40) 16.84 (2.93) 1.00, 2, 59 (.38)

Male, n (%) 6 (50.0) 20 (64.5) 9 (47.4) 1.66, 2 (.43)

Non-hispanic White, n (%) 12 (100.0)a 28 (90.3)a 13 (68.4)b 7.08, 2 (.03)

Married, n (%) 9 (75.0) 25 (80.6) 14 (73.7) 0.38, 2 (.83)

GDS, mean (SD) 2.42 (1.93) 2.45 (2.42) 1.37 (1.61) 1.70, 2, 59 (.19)

Single-domain aMCI, n (%) 7 (58.3) 10 (32.3) 12 (63.2) 5.31, 2 (.07)

First-degree family history of AD, n (%) 7 (58.3) 15 (48.4) 9 (47.4) 0.42, 2 (.81)

Actively taking AD medication, n (%) 3 (25.0) 4 (12.9) 2(10.5) 1.37, 2 (.50)

BMI, mean (SD) 27.08 (4.24) 25.76 (4.37) 27.18 (5.00) 0.72, 2, 59 (.49)

Chronic condition index, mean (SD) 5.00 (2.73) 4.23 (2.01) 4.21 (2.49) 0.55, 2, 59 (.58)

• Hypertension, n (%) 6 (50.0) 14 (45.2) 13 (68.4) 2.62, 1 (.27)

• Diabetes, n (%) 2 (16.7) 4 (12.9) 0 (0.0) 3.08, 1 (.22)

Total minutes of training time, mean (SD) 1192.41 (325.82)a 1012.27 (467.99)a 1656.74 (408.34)b 13.55, 2, 59 (<.001)

MOCA, mean (SD) 24.25 (3.19) 23.94 (2.74) 24.89 (2.35) 0.07, 2, 59 (.93)

UFOV, mean (SD) 5.83 (0.52) 5.86 (0.54) 5.83 (0.46) 0.02, 2, 59 (.98)

EF, mean (SD) −0.14 (0.45) −0.11 (0.58) 0.07(0.47) 0.89, 2, 59 (.41)

EM, mean (SD) 38.50 (10.35) 38.71 (15.24) 39.26 (11.79) 0.67, 2, 59 (.51)

Neurodegeneration indexed by ADSCT, mean (SD) 2.82 (0.18)a 2.71 (0.15)b 2.76 (0.15)a 3.90, 2, 59 (.026)

Note: a,b,c represents the post-hoc comparison difference from the F-test. Bold values indicate p < .05.

Abbreviations: AD, Alzheimer's disease; ADSCT, Alzheimer's disease signature cortical thickness (for neurodegeneration); aMCI, amnestic mild cognitive

impairment; BMI, body mass index; EF, executive function; EM, episodic memory; GDS, geriatric depression scale—15 items; MOCA, montreal cognitive

assessment (for global cognition); UFOV, useful field of view.
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times as training progresses (detailed description of the five PS/A

tasks is provided in the VSOP training tasks section). Participants

respond by identifying either the type or location of an object dis-

played on the screen. The training dynamically adjusts the difficulty of

each task in real time based on the participant's performance, ensuring

that the participant always operate near his/her optimal capacity.

MLA intervention included online crossword, Sudoku, and solitaire

games. Participants can choose to practice any combination of these

games. The purpose is to control for computer and online experience

and the amount of training time, and simulate everyday mental activi-

ties. For both groups, we provided identical online platforms, as well

as orientation and two check-in sessions in-person. Participants com-

pleted all other training sessions at home. During the self-

administration period, technical support was available by phone and

email. The training period across both groups lasted 6 weeks, with

participants instructed to complete four 1-hr sessions per week.

2.4 | VSOP training tasks

Briefly, a suite of five BrainHQ (Posit Science, CA) exercises that

targeted PS/A was used for VSOP training. In Eye for Detail, a series

of 3–5 images (e.g., butterflies) were briefly presented one at a time in

different locations on the screen. Participants were required to iden-

tify the locations of the stimuli identical in appearance. Difficulty level

changed as a function of the number of stimuli, as well as the contrast

and distance between the stimuli. In Hawk Eye, a cluster of birds

flashed briefly on the screen in peripheral vision. Participants were

required to identify the location of the target bird that differed from

the other distractor birds. Difficulty level varied in contrast between

the birds and the background, stimulus duration, and diameter of the

bird clusters. In Visual Sweeps, two sweep patterns (movement of

bars) were presented simultaneously. Participants were required to

determine whether each pattern moved inward or outward. Difficulty

level changed as a function of color and luminance, orientation, and

spatial frequency. In Double Decision, participants were required to

identify which of two vehicle stimuli appeared in the center of the

screen, as well as the location of a peripheral road sign. Difficulty level

changed as a function of contrast between the center stimuli, number

of peripheral stimuli, diameter of the field of view, and complexity of

the background. In Target Tracker, a few target objects (e.g., bubbles)

are displayed on the screen, followed by additional “distractors” iden-
tical in appearance. Participants were required to track the target

objects as all of the objects moved in Brownian motion, then select

the targets after the stimuli stopped moving. Difficulty level varied in

number of target objects, speed and duration of object motion, and

contrast between the objects and the background. All tasks shared

visual components, and the tasks became increasingly more difficult

as subjects' training progressed, thus requiring faster reaction times.

Responses were based on object type or location and orientation on

the screen. The training automatically adjusted the difficulty of each

task based on each participant's performance, ensuring that partici-

pants always trained near their maximum capacity on each task.

2.5 | Outcome assessments and definition of
clinically important improvement

To evaluate the intervention trained effect, we measured PS/A using

Useful Field of View (UFOV), a three-task computer test that assesses

processing speed, sustained attention, and divided attention based on

reaction time. A composite score was created by averaging the reac-

tion times of the three tasks, with higher scores indicating slower

reaction time and poorer performance. Then the composite score was

log transformed to account for a heavily right-skewed distribution.

The tasks in UFOV were conceptually identical to VSOP training but

in different formats.

For the VSOP group, participants were further assigned to either

the learner or the non-learner group based on their change of perfor-

mance on EF and EM from baseline to postintervention. EF was mea-

sured using EXAMINER (Kramer et al., 2014), a computerized test

designed for clinical trials that measures executive function. A com-

posite score was generated by averaging the composite scores from

two executive function domains: cognitive control (set shifting and

flanker tasks) and working memory (dot counting and 1-back). EM

was measured using the Brief Visuospatial Memory Test (BVMT-R);

Benedict, 1997). A composite score was developed by averaging the T

scores from learning and delayed recall. It is worth noting that we pur-

posely used visual stimuli for the cognitive tests, since previous litera-

ture indicated that transfer effects may be restricted to domains

sharing a latent structure (in this case, visual attention; Lövdén

et al., 2010). Participants who achieved clinically important improve-

ment—the composite score for performance at postintervention was

higher than the baseline by at least one standard error of measure-

ment (Copay, Subach, Glassman, Polly Jr., & Schuler, 2007)—in both

EF and EM were classified as “learner,” and the rest in VSOP group

were classified as “non-learner.” We excluded seven participants who

dropped out of the study during the intervention period (refer to

CONSORT form, Figure S2). In addition, non-learners in MLA group

served as a control. The categorization is displayed in Figure 1a. Of

note, we did not use the Montreal Cognitive Assessment (MOCA) to

reflect a broad training effect since it is considered a screening tool

(Rossetti et al., 2011).

We also tested group differences in postintervention perfor-

mance of UFOV using ANCOVA with group (VSOP learner vs. VSOP

non-learner vs. MLA non-learner) as a fixed factor and baseline per-

formance, neurodegeneration, and total amount of training time as

covariates. The change from baseline to postintervention within each

group was tested with paired t-tests.

2.6 | Brain structural network data collection,
preprocessing, and analysis

2.6.1 | Imaging data acquisition and preprocessing

Imaging data were collected at University of Rochester Center for

Advanced Brain Imaging and Neurophysiology (UR CABIN), using a
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3 T Siemens TrioTim scanner (Erlangen, Germany) equipped with a

32-channel head coil. Structural MRI: high-resolution T1-weighted

anatomical images were collected with TR/TE = 2,530 ms/3.44 ms,

TI = 1,100 ms, flip angle = 7�, 256 × 256 matrix, 1 mm3 isotropic reso-

lution, 1 mm slice thickness, and 192 slices. Diffusion MRI: DTI was

performed using a 2D axial single-short dual-echo SE-EPI sequence

with TE/TR = 86 ms/8900 ms, 128 × 128 matrix, 2 mm slice thick-

ness with no gap (60 slices for whole brain coverage), iPAT (GRAPPA)

acceleration factor = 2, 60 diffusion-weighted directions with

b = 1,000 sec/mm2 and 1 average, and b = 0 images with 10 averages.

Each raw diffusion weighted imaging (DWI) image was aligned to the

average b0 image using the FSL eddy correct tool (www.fmrib.ox.ac.

uk/fsl) to correct for head motion and eddy current distortions. Non-

brain tissue was removed using FSL's Brain Extraction Tool

(Smith, 2002). We then registered DWI images with the T1 anatomical

images using Advanced Normalization Tools (ANTS; http://www.picsl.

upenn.edu/ANTS/).

2.6.2 | Network construction

To extract brain connectome, we employed an established structural

connectome processing pipeline (for details see Zhang et al., 2018).

First, we applied a reproducible probabilistic tractography algorithm

(Girard, Whittingstall, Deriche, & Descoteaux, 2014) to diffusion MRI

data to generate streamlines across the whole brain. Next, we defined

the cortical, subcortical and brainstem regions on T1 anatomical

images for each participant using FreeSurfer (http://surfer.nmr.mgh.

harvard.edu/). From the FreeSurfer segmentation, 17 subcortical, and

brainstem structures were identified: the brain stem, and bilateral seg-

mentations of thalamus, caudate, putamen, pallidum, hippocampus,

amygdala, accumbens, and cerebellum. Automated cortical

parcellation was identified using the Desikan–Killiany Atlas including

34 regions per hemisphere (Desikan et al., 2006). Together, we

obtained 85 nodes per participant. For each pair of nodes, we

extracted the streamlines connecting them. Next, we calculated the

mean fractional anisotropy (FA), an indicator of myelination and axo-

nal thickness, from the streamlines to describe the connectivity (edge)

between the connected nodes. Of note, we focused on FA since it

produces reliable graph measures with high precision (Yuan

et al., 2019). This whole procedure generated an 85-by-85 symmetric

FA-based weighted structural connectivity matrix per participant at

baseline and postintervention, respectively.

2.6.3 | Graph theoretical analysis

We investigated the topologic properties of brain networks at both

the global and nodal level with the GRETNA toolbox (Wang

et al., 2015). Two metrics for quantifying the small-worldness were

used, clustering coefficient and characteristic path length.

The clustering coefficient, a measure of the degree to which

nodes in a graph tend to cluster together, reflects the network

segregation in the brain. A larger clustering coefficient represents

greater segregation. For each node, this can be calculated as the pro-

portion of connections between the nodes within its neighborhood

divided by the number of all possible connections between them. The

neighborhood for a node is defined as its immediately connected

nodes:

Ci =
ti

kgi kgi −1
� �

=2

where gi is the subgraph that contains the direct neighbors of node i,

ti is the total number of connections in gi, kgi is the number of nodes

in gi, and kgi kgi −1
� �

=2 is the total number of all possible connections

in gi.

At the global level, the nodal clustering coefficients of all nodes

can be averaged into the mean clustering coefficient:

Cglobal =

PN
i=1Ci

N

where N is the total number of nodes in the brain.

The characteristic path length, which is the average shortest dis-

tance between two nodes, indicates the network integration in the

brain. A smaller characteristic length represents greater integration. At

the nodal level, this can be calculated as the average shortest path

length between a node and all other nodes:

Li =

PN
j=1,j≠iLi,j
N−1

where the minimum path length Li,j between a node i and node j is the

minimum number of connections that needs to be traveled to go from

a node i to node j.

At the global level, the characteristic path length the average of

shortest path length over all nodes:

Lglobal =

PN
i=1Li
N

These two metrics, clustering coefficient and characteristic path

length, form the basis of many graph theoretical investigations

(Bullmore & Sporns, 2009). Small-worldness is calculated as the ratio

of clustering coefficient to characteristic path length by comparing to

random graphs. A network can be said “smallworld” if its small-

worldness is greater than one (Humphries & Gurney, 2008).

The resulting symmetric FA-based matrices were converted to

graphs by applying a threshold. Because there is no definitive way to

select a single threshold, we applied a fixed density threshold (defined

as the total number of edges in a network divided by the maximum

possible number of edges) in a range between 35 and 50% at intervals

of 1% for each connectivity matrix. This range was chosen to ensure

that 90% of the nodes were connected and small-worldness was <1

(Achard & Bullmore, 2007; He, Chen, & Evans, 2008). We calculated
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both the global and nodal network topology metrics at each density.

We further obtained a summarized score by computing the area under

the curve (AUC) over the density threshold range for each network

metric. The integrated AUC has been applied in previous studies of

graph theoretical analysis of brain networks (Cao et al., 2013; Gong

et al., 2009). The obtained integrated AUC values were used for fur-

ther statistical analysis. To test the reliability of graph theory mea-

sures, we calculated the correlation between the baseline and

postintervention global metrics for the MLA group. Graph theory met-

rics showed very good reliability (Pearson r = .646, p < .001 for global

clustering coefficient; Pearson r = .935, p < .001 for characteristic

path length).

2.6.4 | Statistical analyses

All statistical analyses were performed using SPSS version 24.0 (IBM).

The normality of graph theory indices was assessed using the

Kolmogorov–Smirnov test and parametric tests were performed when

the data satisfied normal distribution. We tested between-group dif-

ferences in postintervention outcomes with ANCOVA and compared

baseline and postintervention results within each group using paired

t-tests. The Levene-test was performed to assess the equality of vari-

ances for ANCOVA. The effect size with 95% confidence intervals

(CI) was calculated for main effect of group with ANCOVA using

partial-η2 (ηp2), with ηp2 ≥ .01 indicating a small, ≥.06 a medium, and

≥.14 a large effect. For paired comparisons (baseline

vs. postinterventions), the effect size with 95% CI was calculated

using Hedges'g index (similar to the Cohen's d statistic, with values

≤0.20 considered small, values around 0.50 considered medium, and

values about 0.80 considered large.

Global level network analysis

We examined the group difference in global level network topology

metrics. Postintervention network metric was entered as the depen-

dent variable in an ANCOVA with group (VSOP learner vs. VSOP non-

learner vs. MLA non-learner) as a fixed factor and baseline network

metric, neurodegeneration, and total amount of training time as

covariates. Planned contrasts were conducted to compare the VSOP

learner group with the other two groups. Within each group we com-

pared baseline with postintervention with paired t tests.

Nodal level network analysis

We further investigated at the nodal level to localize specific brain

regions for which the network metric was altered differently across

groups. For each node, the postintervention network metric was

entered as the dependent variable in an ANCOVA with group (VSOP

learner vs. VSOP non-learner vs. MLA non-learner) as a fixed factor

and baseline network metric, neurodegeneration, and total amount of

training time as covariates. A false discovery rate (FDR) procedure

was performed at a p value of 0.01 to correct for multiple compari-

sons across 85 regions. Planned contrasts were conducted to compare

the VSOP learner group with the other two groups. For significant

brain regions, we examined within-group differences between base-

line and postintervention with paired t tests.

Neurodegeneration analysis

Neurodegeneration was quantified using structural MRI data by calcu-

lation of Alzheimer's disease signature cortical thickness (ADSCT),

consisting of posterior brain regions, including bilateral inferior and

middle temporal lobes, entorhinal cortex, and fusiform gyrus, based

on automated cortical parcellation using the Desikan–Killiany Atlas

with Freesurfer (Jack Jr. et al., 2015; Lin et al., 2017). Higher values in

Alzheimer's disease signature cortical thickness indicate greater corti-

cal thickness and lower severity in neurodegeneration.

We averaged the nodal network metric across the brain regions

found to be significant (as described above), and tested whether the

association between baseline ADSCT and post intervention averaged

nodal network metric differed between VSOP learners versus non-

learners using a generalized linear model, while controlling for the

main effects of baseline ADSCT, Group (taking VSOP non-learner as

the reference) and baseline averaged nodal network metric (y Post-

intervention averaged nodal network metric = β0 + β1 Baseline averaged

nodal network metric + β2 Group + β3Baseline ADSCT + β4 Baseline

ADSCT × Group + ε). We also included neurodegeneration as a covari-

ate when comparing the between-group network topological

properties.

3 | RESULTS

Seven subjects dropped out during the intervention period and ten

were excluded due to inadequate tractography quality in either base-

line or postintervention. In summary, there were 12 VSOP learners,

31 VSOP non-learners, and 19 MLA non-learners.

3.1 | Baseline difference in sample characteristics

Group comparison of baseline characteristics is presented in Table 1.

The three groups did not differ significantly in demographic character-

istics or cognitive assessment tests at baseline except for the race

(p = .03). Significant group differences in total amount of training time

were found (p < .001); the MLA non-learner group showed longer

training time than the VSOP groups (p < .05), but no difference

between VSOP learner versus VSOP non-learner. VSOP learner and

MLA non-learner group showed less severe aging-associated neu-

rodegeneration (indexed by higher ADSCT values) than VSOP non-

learner at baseline (p < .05).

3.2 | Cognitive outcomes

We tested group differences in postintervention performance of UFOV

with group (VSOP learner vs. VSOP non-learner vs. MLA non-learner)

as a fixed factor and baseline performance, neurodegeneration, and
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total amount of training time as covariates. There was a significant

group effect in UFOV (F[2,55] = 3.59, p = .034). Post-hoc analyses rev-

ealed that compared to VSOP non-learners, VSOP learners had similar

postintervention performance in UFOV (p = .614), and MLA non-

learners showed worse postintervention performance in UFOV

(p = .026). For within-group change, there was significant improvement

in UFOV in VSOP learners (t[11] = −2.85, p = .016) and VSOP non-

learners (t[29] = −6.09, p < .001), but not in MLA non-learner (t

[18] =−1.86, p = .079; Figure 1b).

3.3 | Network analysis results

Both the global clustering coefficients and characteristic path length

followed the normal distribution with Kolmogorov–Smirnov test

p values >.05. Figure 2a shows histograms of global metrics at base-

line, with normal distribution overlaid. All the ANCOVA tests across

global and nodal level analysis meet the assumption of homogeneity

of variance (p > .05).

For between-group comparisons in postintervention global clus-

tering coefficient, controlling for baseline global clustering coefficient,

neurodegeneration and total amount of training time, there was a sig-

nificant group effect after intervention (F(2,56) = 7.58, p = .001,

ηp2 = .213, 95% CI [.040, .364]). Planned contrasts showed VSOP

learners had greater global clustering coefficient after intervention,

compared with VSOP non-learners (p = .025) and MLA non-learners

(p < .001). For within-group change of the global clustering coeffi-

cient, VSOP learners had a significant increase from baseline to post-

intervention (t(11) = 3.46, p = .005, Hedges' g = .591, 95% CI [.181,

1.073], see Figure 2b, left). No significant change was found for the

other groups. This result suggests that individuals that showed a

broad training effect following training showed a significant increase

in whole-brain segregation that was not present in individuals not

showing this effect.

To identify whether these changes were predominantly driven by

any specific brain regions within the whole-brain network, we con-

ducted a nodal-level analysis. Controlling for baseline nodal clustering

coefficient, neurodegeneration and total amount of training time,

there was a significant group effect for postintervention nodal cluster-

ing coefficient in the right caudal ACC (anterior cingulate cortex), right

supramarginal gyrus, left postcentral gyrus, left putamen, and left thal-

amus (all p's < .01 with FDR correction and with large effect sizes of

ηp2 = .179–.283, see Table 2). Planned contrasts showed that VSOP

learners had greater postintervention nodal clustering coefficients,

compared with VSOP non-learners and MLA non-learners in all five

regions (all p's < .01). Paired t tests showed that VSOP learners had

significant increased nodal clustering coefficient from baseline to

postintervention in all five regions with medium-to-large effect sizes

**
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(t(11) = 2.95, p = .013, Hedges' g = .807, 95% CI [.175, 1.531] for right

ACC; t(11) = 4.12, p = .002, Hedges' g = .859, 95% CI [.306, 1.530] for

right supramarginal gyrus; t(11) = 2.68, p = .022, Hedges' g = .616,

95% CI [.069, 1.241] for left postcentral gyrus; t(11) = 2.66, p = .022,

Hedges' g = .631, 95% CI [.067, 1.275] for left putamen; t(11) = 3.68,

p = .004, Hedges' g = .607, 95% CI [.185, 1.111] for left thalamus).

These findings suggest that, in addition to whole-brain increase in seg-

regation, broad training corresponds with increased segregation of

both cortical and subcortical nodes. MLA non-learners had significant

decreased nodal clustering coefficient from baseline to post-

intervention in the right supramarginal gyrus (t(18) = −2.80, p = .012,

Hedges' g = −.635, 95% CI [−1.182, −.012]), left putamen (t

(18) = −2.39, p = .028, Hedges' g = −.383, 95% CI [−.747, −.043]) and

left thalamus (t(18) = −2.52, p = .021, Hedges' g = −.479, 95% CI

[−.912, −.076]). The results are presented in Figure 3.

For characteristic path length, there were no significant between-

or within-group differences at global level (see Figure 2b, right). No

significant group differences were found at nodal level after FDR cor-

rection. This suggests that, in contrast to differences identified in net-

work segregation, integration did not change significantly in

individuals characterized by broad training improvements.

3.4 | Relationship between revealed networks and
neurodegeneration

We averaged the nodal clustering coefficient across the five regions

and tested whether the relationship between neurodegeneration at

baseline and the neural enhancement differed between VSOP learner

versus VSOP non-learner. There was a significantly stronger associa-

tion between lower ADSCT and greater increase in postintervention

averaged nodal clustering coefficient in learners than non-learners

(B = −0.011, SE = 0.006, Wald's χ2 = 4.39, p = .036), controlling for

the main effect of ADSCT, group and baseline averaged nodal cluster-

ing coefficient. Post-hoc analysis revealed a significant negative rela-

tionship between ADSCT and postintervention averaged nodal

clustering coefficient in learners (Pearson r = −.62, p = .042, 95% CI

[−0.880, −0.072]), but no relationship in VSOP non-learners (Pearson

r = −.03, p = .860, 95% CI [−0.380, 0.328]), controlling for baseline

averaged nodal clustering coefficient (see Figure 4). This suggests that

within individuals who demonstrate a broad learning effect, partici-

pants with greater neurodegeneration show the greatest increase in

segregation within these brain regions.

4 | DISCUSSION

The results of this study reveal that enhanced segregation in DTI-

based brain topology may be associated with broad training effects

following cognitive training using PS/A in older adults with MCI. Par-

ticularly, right caudal ACC, right supramarginal gyrus, left postcentral

gyrus, left putamen, and left thalamus were critical nodes whose

enhanced network segregation was related to VSOP training inducedT
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broad training effects. Also, among participants who demonstrated a

broad learning effect, those with more severe baseline neu-

rodegeneration had greater improvement in segregation after training.

These findings highlight the importance of considering whole-

brain networks when attempting to understand the neural changes

underlying domain general effects following training, which are essen-

tial if cognitive interventions are to improve outcomes in individuals

with dementia. Changes in global network-level properties were sig-

nificantly different in participants that showed this type of broad

transfer, suggesting that approaches targeting these properties may

be of particular benefit in future. Additionally, several specific nodes

were identified as particularly important in terms of their role in the

global network, potentially pointing to locations at which the network

can be influenced to induce the most cognitively generalizable bene-

fits. The fact that these changes were possible in participants with

MCI is also of note: for cognitive training to be a feasible as an inter-

vention, participants in these at-risk groups need to demonstrate the

capacity to adapt following training. These results suggest that at least

a subset of these individuals demonstrate sufficient network plasticity

to benefit from training. Identifying what separates these participants

from others at baseline may be a useful future goal for personalizing

training to those that can benefit from it most.
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F IGURE 3 Baseline and postintervention nodal clustering coefficient for VSOP learners (pink), VSOP non-learners (orange), and MLA non-
learners (blue) groups. Controlling for baseline respective nodal clustering coefficient, five regions showed significant group effect for
postintervention nodal clustering coefficient after FDR correction: right caudal ACC (anterior cingulate cortex), right supramarginal gyrus, left
postcentral gyrus, left putamen, and left thalamus. The five regions were visualized with the BrainNet Viewer (Xia, Wang, & He, 2013; http://
www. nitrc.org/projects/bnv/). Star represents significant within-group change from baseline to postintervention. *p < .05; **p < .01;
***p < .001. L, left hemisphere; R, right hemisphere

F IGURE 4 Scatterplots of baseline neurodegeneration versus
neural enhancement for VSOP learner (pink) and non-learner (orange)
groups. The x-axis is the baseline neurodegeneration measured by
ADSCT (Alzheimer's disease signature cortical thickness). The y-axis is

the postintervention averaged nodal clustering coefficient adjusted
for baseline averaged nodal clustering coefficient

CHEN ET AL. 3211

http://www
http://www
http://nitrc.org/projects/bnv


More specifically, our results support one of two competitive

hypotheses: brain segregation, rather than integration, is related to

explaining the broad training effect of VSOP training. This result is in

line with those in younger adults showing that segregation plays a role

in learning following cognitive training. Importantly, reduced segrega-

tion is characteristic of increasing age, and is associated with deficits

in long-term episodic memory (Chan et al., 2014). Slowing or reversing

this age-related decrease in segregation may therefore provide a

means of attenuating memory decline as a result of brain aging. Mech-

anistically, this may be explained by “mismatch theory” (Lövdén

et al., 2010), which emphasizes that enhancing plasticity related to

practicing and modifying the efficiency of local brain clusters may be

more important to inducing broad learning effects than enhancing

flexibility related to coordination across multiple brain clusters. While

we did not find changes in integration to play a role in broad learning,

it is necessary to perform future studies using larger sample sizes that

are specifically designed to identify these changes before fully exclud-

ing compensation as a potential pathway supporting the broad train-

ing effect following cognitive training (Stern et al., 2019).

While these results show that examining the whole brain as a net-

work is essential to understanding domain general changes that may

underlie broad transfer effects, several nodes in the network seem

particularly important in this process. Specific local clusters included

the cingulate cortex (right caudal ACC), selective parietal regions (right

supramarginal gyrus and left postcentral gyrus), the striatum (puta-

men), and other subcortical regions (thalamus). Several studies have

emphasized the critical role of the striatum in mediating transfer

effects to untrained tasks after cognitive training (Dahlin et al., 2008;

Dahlin, Bäckman, Neely, & Nyberg, 2009), and the thalamus is critical

for regulating adaptation to environmental demands, such as those

from the cognitive training, as part of the neurovisceral integration

process (Mulcahy, Larsson, Garfinkel, & Critchley, 2019). Additionally,

the thalamus has been shown to be integral to determining the modu-

lar organization of the brain and regulating whole-brain organization

in way that allows for effective task performance (Hwang, Bertolero,

Liu, & D'Esposito, 2017; Shine et al., 2019). The ability of the thalamus

to modulate the overall organization of the cortex via a range of pro-

jections makes it well placed to influence cognitive function in a

broad, domain general way (Behrens et al., 2003). In the cortex, the

caudal ACC is a key node of the default mode network (DMN; Raichle

et al., 2001), while the two parietal regions are part of the attention

network (Fan, McCandliss, Fossella, Flombaum, & Posner, 2005;

Vossel, Geng, & Fink, 2014). Both networks support a wide range of

perceptual and cognitive abilities (Buckner, Andrews-Hanna, &

Schacter, 2008; Raichle et al., 2001), with weakened connectivity

underpinning a wide range of age-related cognitive decline (Andrews-

Hanna et al., 2007; Geerligs et al., 2015). Additionally, the DMN has

been shown to play a role in the performance of a range of tasks

through flexibly coupling to other task-specific systems (Elton &

Gao, 2015). Overall, these regions are well-placed to play a role in

broad transfer due to their domain general role in cognitive function.

Understanding exactly how the structural segregation of these nodes

within the broader whole-brain network relates to their functional

engagement during complex task performance is an important ques-

tion going forward.

Finally, our paper showed that there was a relationship between

more severe baseline brain atrophy and greater enhancement in brain

segregation after training in VSOP learners but not non-learners. This

observation may be particularly important when seeking for effective

interventions among those with very high risk for dementia (e.g., late

MCI relatively to early MCI; Aisen et al., 2010). It suggests that inter-

ventions that can enhance brain segregation may be useful in those

with severe brain atrophy, who represent a particularly difficult-to-

treat population at present. It will be important to test whether these

effects replicate with more specific measures of Alzheimer's pathol-

ogy (e.g., amyloid or tau deposition). Additionally, it will be important

to understand why this relationship was only identified in learners,

and what may be unique about these individuals, before global and

nodal segregation can serve as biomarkers guiding the development

of effective cognitive training. While developing training with these

mechanisms in mind may improve outcomes for some, cognitive train-

ing alone, at least in the form of VSOP training, may not be sufficient

to ensure a broad training effect for all older adults, especially those

without the capacity for broad learning, whether due to more

advanced neurodegeneration or yet unknown factors that determine

this capacity. In participants without this natural capacity, it may be

possible to facilitate brain segregation using stimulation. Transcranial

direct current stimulation (tDCS) has been shown induce the enhance-

ment of local connectivity within sensorimotor areas of the stimulated

hemisphere (Polanía, Nitsche, & Paulus, 2011; Polania, Paulus, Antal, &

Nitsche, 2011). Identifying regions, such as those in this study, that

are particularly important to broad transfer via segregation and are

amenable to surface stimulation (such as the postcentral gyrus) may

enable these techniques to be combined wwith training to improve

learning, particularly in hard-to-treat groups.

5 | LIMITATIONS

The major limitations of this study are its small sample size and retro-

spective design; thus, the findings are preliminary, providing a basis

for future studies. Adequately powered randomized, controlled trials

will be required to draw any firm conclusions on the neuroplasticity

underlying broad training effects and their relationship to network

segregation and integration. Furthermore, it is unclear whether the

identified brain characteristics are specific for VSOP training or gener-

alize to other types of cognitive training. Future studies using a

greater range of training techniques will be needed to understand the

specificity of these findings.

Additionally, in older adults, it is important to control for the

amount of computer use, as it is possible that the novel experience of

learning to use electronic devices could also lead to improvements in

EM and EF. In this experiment, we included a control group in which

participants completed everyday tasks such as crosswords and sudoku

on the computer. The comparison between VSOP versus MLA should

therefore act to exclude confounding factors including novel
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computer experience (as well as training hours and practice effects

more generally). However, it is possible that participants overall are

more accustomed to the types of computer games in the MLA control

(sudoku, crosswords, etc.) than the faster paced training game used in

the VSOP group. Therefore, it is possible that some benefits seen in

EM and EF could be due to the novel experience of learning to per-

form this type of task on the computer more generally, rather than to

VSOP training specifically. It will be important in future to compare

learning effects across more similar brain training tasks to understand

exactly what aspect of the task might lead to these effects.

In summary, we showed that participants with MCI who showed

broad transfer effects showed changes in whole-brain network prop-

erties following cognitive VSOP training, suggesting that some aging

individuals at risk for dementia have the neural plasticity to show

domain general improvements following targeted cognitive training.

Specifically, learners showed enhanced whole-brain segregation, as

well as segregation in several cortical and subcortical regions, and

benefits from these changes were particularly pronounced in learners

with more neurodegeneration. These regions included those in the

DMN and thalamus that are known to play domain general roles in

cognitive function, and this may determine their importance for broad

learning. Targeting training at increasing or slowing the decline of neu-

ral segregation, particularly in these regions, may improve real-world

outcomes via demonstrating domain general cognitive benefits.

Understanding which people have the capacity for these changes, and

whether non-learner segregation can be facilitated via neural stimula-

tion, will be essential for further personalizing training to individuals.
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