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Profiles of histidine-rich glycoprotein associate with age
and risk of all-cause mortality
Mun-Gwan Hong1,* , Tea Dodig-Crnković1,* , Xu Chen2, Kimi Drobin1, Woojoo Lee2,3, Yunzhang Wang2, Fredrik Edfors1,
David Kotol1 , Cecilia Engel Thomas1 , Ronald Sjöberg1, Jacob Odeberg1,4 , Anders Hamsten5, Angela Silveira5 ,
Per Hall2,6 , Peter Nilsson1 , Yudi Pawitan2, Mathias Uhlén1 , Nancy L Pedersen2, Sara Hägg2, Patrik KE Magnusson2,
Jochen M Schwenk1

Despite recognizing aging as a common risk factor ofmany human
diseases, little is known about its molecular traits. To identify
age-associated proteins circulating in human blood, we screened
156 individuals aged 50–92 using exploratory and multiplexed
affinity proteomics assays. Profiling eight additional study sets
(N = 3,987), performing antibody validation, and conducting a meta-
analysis revealed a consistent age association (P = 6.61 × 1026)
for circulating histidine-rich glycoprotein (HRG). Sequence variants
of HRG influenced how the protein was recognized in the immu-
noassays. Indeed, only the HRG profiles affected by rs9898 were
associated with age and predicted the risk of mortality (HR = 1.25
per SD; 95% CI = 1.12–1.39; P = 6.45 × 1025) during a follow-up period
of 8.5 yr after blood sampling (IQR = 7.7–9.3 yr). Our affinity pro-
teomics analysis found associations between the particular mo-
lecular traits of circulating HRG with age and all-cause mortality.
The distinct profiles of this multipurpose protein could serve as an
accessible and informative indicator of the physiological processes
related to biological aging.
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Introduction

Aging is the singlemost dominant risk factor of common diseases in
the elderly and of death in the human population (López-Otı́n et al,
2013). Molecular insights into aging could enable direct identifi-
cation of future treatments for various diseases and would increase
our understanding of longevity and related mechanisms. However,
many of the underlying molecular processes and changes in
humans remain poorly understood (López-Otı́n et al, 2013). Bio-
logical age or mortality risk have previously been investigated via

DNA methylation, telomere length, proteomic studies, mining of
clinical records (Ganna & Ingelsson, 2015; Jylhävä et al, 2017), and
showed several candidates for these traits (Wiklund et al, 2010;
Barron et al, 2015; Ganna & Ingelsson, 2015; Marioni et al, 2015).

There are currently two major technological concepts available
for measuring the proteins circulating in blood-derived samples:
affinity-based proteomics and mass spectrometry. Both ap-
proaches offer a unique window into human health and diseases
and have been used to study subsets of nearly 5,000 proteins
known to be circulating in blood (Schwenk et al, 2017). Affinity
proteomics has initially suffered from a lack of binding reagents to
the wider proteome, but antibody resources such as the Human
Protein Atlas (HPA) (Uhlén et al, 2015) or aptamer-based platforms
have enabled affinity proteomics for larger discovery projects, such
as recently demonstrated in the context of aging (Lehallier et al,
2019). An important aspect for affinity proteomics is to validate the
antibodies in a context-dependent manner (Uhlen et al, 2016) and
using the power of population-based genome-wide association
studies (GWAS) with circulating proteins (Suhre et al, 2017) can
mitigate some of the uncertainty concerning target binding.

Using antibody assays based on suspension bead arrays
(Byström et al, 2014), we profiled serum and plasma from a large
number of individuals from different study sets. Studying the
changes in plasma protein levels with age, we explored, filtered,
and ranked plasma profiles associated with age across these sets of
samples and confirmed antibody selectivity by genetic association
tests and by applying different immunoassays (Fig S1).

Results

We profiled the serum proteomes of 156 humans to screen for age-
associated proteins that could serve as indicators of biological age.
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The most significant finding was further investigated in 3,987 ad-
ditional samples from eight different study sets (Table 1). An ap-
proach using different experimental methods and genomic data
was used to validate antibody binding. The protein profiles were
examined in relation to several clinical traits and tested as pre-
dictors of mortality risk, possibly reflecting biological aging.

Screening for age-associated profiles

Age-associated protein profiles were first investigated in a set of 156
human subjects selected in age intervals of 5 yr from a Swedish twin
cohort (denoted set 1, summarized in Table 1). The gender-matched
samples included 30 monozygotic (MZ) twin pairs, who were 50–70 yr
old. Assays using a total of 7,258 HPA antibodies were applied to
profile age-associated proteins in serum. The average intraclass
correlation (ICC) within twin pairs of antibody profiles was weak (ICC =
0.26). Minimal remaining effects of the twin relationship were cor-
roborated by a linear mixed model that considered the dependency.

For this screening, the targets were purely determined by the
availability of antibodies. The set of antibodies comprised targets from
6,370 protein-encoding genes (about 32% of the non-redundant hu-
man proteome) and profiles were obtained using antibody suspension
bead array assays. The acquired data were preprocessed and quality
controlled, which included outlier removal and normalization to ac-
count for experimental variation across assay plates and data batches
(details in the Materials and Methods section). Linear regression
models (LM) then determined the protein profiles that changed
monotonically with increasing age. The models revealed only one of
7,258 protein profiles as significantly age-associated (at α 0.01, Table
S1), when screening the sera of individuals in set one (adjusted P = 4.69
× 10−5). The association was also significant in the model considering
twin-pair dependency (adj. P = 8.62 × 10−5).

Replication of the discovered age associations

Next, we continued to study the top finding in eight additional
sample sets (set 2–9, Table 1). Details about the additional cohorts

and sample selection are provided in the Supplemental Data 1 (see
Samples and selections). We found consistent age-associated
trends with the antibody HPA045005 across all eight replication
sets (Fig S2). The combined effect of age on HPA045005 in all 9 sets
excluding 45 overlapping samples (details in Supplemental Data 1)
was estimated using a random effects model accounting for dif-
ferences in age ranges and distribution, showing a significant
association between HPA045005 profile and age (meta-analysis, P =
6.61 × 10−6, Fig 1).

We then investigated the connection between genetic data and
protein profiles obtained by HPA045005. A possible association in
cis could give information about the circulating proteins captured
by the antibody in our assays. Using GWAS to ~8.8M genetic variants
imputed from >700K single nucleotide variants genotyped by
Illumina BeadChip in sample set 3 (N = 2,308), we identified a single
locus in chromosome 3q27.3 to be associated with the antibody
profile (adj. P < 0.01, Fig 2A). The locus spans two genes, FETUB and
HRG (Fig 2B). Themost significantly associated genetic variant in the
locus was the single nucleotide polymorphism (SNP) rs9898 (P =
2.35 × 10−97, minor allele frequency [MAF] = 0.32). This SNP leads to an
amino acid change in the sequence of histidine-rich glycoprotein
(HRG) from Pro204 to Ser204 (pro-form). Three additional markers
in the peak (rs1042464, rs2228243, and rs10770) are non-synonymous
and two SNPs (rs3890864 and rs56376528) are located near (<2 kbp) to
the transcription start site (Table S2). All are located in exons or
upstream of HRG. This GWAS result indicates that the antibody
detected HRG, which is an abundant blood protein secreted by the
liver (Uhlén et al, 2019). Associations of plasma HRG levels to SNPs,
including rs2228243, have been found in previous plasma profiling
studies (Suhre et al, 2017).

Validation and annotation of HRG profiles

Next, we confirmed the binding selectivity of HPA045005 to HRG by
first using a bead-based sandwich immunoassay. Beads carrying
HPA045005, another anti-HRG antibody (HPA054598), as well as
negative controls were combined to detect full-length recombinant

Table 1. Description of sample sets.

Study
set

Age
(yr)

Gender
(F:M) Indicationa Cohort

name
Sample
Type References

Set 1 50–92 78:78 Population TwinGene Serum Lichtenstein et al (2002) and
Magnusson et al (2013)

Set 2 9–63 102:102 Population LifeGene Plasma Almqvist et al (2011)

Set 3 48–93 1,613:1,386 Population

TwinGene Serum Lichtenstein et al (2002) and
Magnusson et al (2013)Set 4 51–86 50:0 Breast cancer

Set 5 56–75 0:50 Prostate cancer

Set 6 55–78 16:27 Cardiovascular disease IMPROVE Plasma Baldassarre et al (2010)

Set 7 41–60 12:31 Myocardial infarction SCARF Plasma Samnegård et al (2005)

Set 8 48–73 20:23 Acute coronary heart
syndrome CHAPS Plasma Odeberg et al (2014)

Set 9 40–73 600:0 Mammography KARMA Plasma Gabrielson et al (2017)
aSubjects included in the presented study did not include individuals diagnosed with the disease of the indication area, but the subjects assigned as controls
for the different disease cohorts.

Profiles of HRG associate with aging Hong et al. https://doi.org/10.26508/lsa.202000817 vol 3 | no 10 | e202000817 2 of 11

https://doi.org/10.26508/lsa.202000817


HRG in serial dilution. We found that pairing both HPA045005 and
HPA054598 with a biotinylated version of HPA054598 allowed us to
detect HRG in a concentration-dependent manner (Fig S3). Here,
the curves obtained from both antibody pairs were substantially
different and higher than the internal negative controls.

To elucidate the binding selectivity of HPA045005 against other
antigens, we applied the antibody to a large protein microarray.
Among >10,000 antigens, the antibody exclusively bound to its
corresponding antigen (Fig S3), which indicated that the antibody
does not generally cross-react with other human antigens in an
unspecific manner. We also aimed at determining the binding of
HPA045005 to peptides representing its antigen using high-density
peptide arrays. The antigen did not show a significant recognition of
these peptides above background (data not shown). Hence, binding
analysis supports the findings from GWAS that HPA045005 captures
HRG from serum and plasma in the single binder assay.

In addition to HPA045005, GWASwas performed for amonoclonal
binder targeted the HRG protein (BSI0137) with sample set 3. For
BSI0137, there was one locus in the gene HRG which was strongly
associated with the antibody’s profile (top pQTL was associated
with P < 1 × 10−300, Fig S4). Interestingly, the identified locus included
all the four non-synonymous SNPs previously observed to asso-
ciate with HPA045005. However, the most significant SNP was not
rs9898 but rs1042464, and the slopes of correlating BSI0137 with
these SNPs were opposed to those for HPA045005 (Fig 2C). Applying
Probabilistic Identification of Causal SNPs (PICS) (Farh et al, 2015),
we confirmed that it was highly unlikely to observe rs9898 as the
most significantly associated SNP with HPA045005 when rs1042464
was the causal SNP (none in 100,000 permutations), whereas the
significance of rs1042464 was within possible range assuming
rs9898 was causal (Fig S5). The distance from the mean of the
permuted P-values after log-transformation was about 1.22 SD of
the values. Likewise, the PICS applied for BSI0137 demonstrated that
rs1042464 was much more likely to be causal than rs9898 for this

antibody profile (Fig S5). The rs9898 causes HRG to contain either
Pro204 or Ser204. Profiles of circulating HRG obtained from
HPA045005 increased with the number of major allele C, which can
produce only Pro204 form, in a dosage-dependent manner. Profiles
of HRG reported by BSI0137 increased with the number of T-alleles
of rs1042464 for Ile493. Hence, the PICS analysis revealed a selective
binding affinity of HPA045005 toward another site of HRG than
BSI0137. For these two binders, this points at differential selective
affinities toward HRG variants: HPA045005 has a preference for HRG
with Pro204 over Ser204 compared with BSI0137, which prefers HRG
with Ile493 over Asn493 (Table 2). The variants are Pro204Ser and
Ile493Asn and located in two separate domains of HRG, as illus-
trated in Fig 2D, and each variant influenced one of the two distinct
protein profiles.

Next, we investigated the associations of the HRG profiles ob-
tained by the two distinct binders, to 10 clinical traits available in
sample set 3. We applied a linear model that included the top SNP
of each binder to account for the differences between the geno-
types. For HPA045005-derived HRG profiles, we observed negative
associations to blood levels of hemoglobin (Hb), apolipoprotein A1
(APOA1), triglycerides (TG), and total cholesterol (TC), as well as a
positive association to C-reactive protein (CRP). For BSI0137-derived
profiles, there were significant associations to traits reflecting lipid
metabolism such as levels of apolipoprotein B (APOB), low-density
lipoprotein, TC, TG, and expected negative associations to high-
density lipoprotein. The results summarized in Table 2 show that
different molecular traits may be associated to HRG depending on
which binder and epitope was used. In addition, we checked the
association between the HRG profiles from HPA045005 and acti-
vated partial thromboplastin time (aPTT) in set 8. It was found
negatively correlated with statistical significance (R = −0.55, P =
0.05).

Last, mass spectrometry analysis of serum was carried out
by LC–MS/MS to report peptides related to the HRG and to search
for those representing variants rs9898, rs10770, rs2228243, and
rs1042464. HRG peptides representing 96.5% of the sequence have
been reported on PeptideAtlas (Desiere et al, 2006). HRG protein is
an abundant blood protein of 30–100 μg/ml (Schwenk et al, 2017), so
no pre-fractionation or depletion of abundant proteins was per-
formed prior analysis. One pool of serum was digested using five
different proteases (Table S3) to increase the possibility that variant
related peptides could be identified. As shown in Fig S6, the de-
tected peptides represented the region of rs1042464 (Asn493 and
Ile493). In addition, data from the PeptideAtlas was used to search
for evidence of the SNPs, and peptide representing rs9898 were
only found once as compared with >2,800 times for rs1042464.
Peptides referring to rs10770 and rs2228243 were, however, not
detected and peptides related to rs9898 were very unlikely to be
observed because of the altered amino acid composition around
the cleavage site, resulting in peptides of unsuitable peptide
lengths. In our study, we could not obtain MS data to support the
observed differential protein profiles.

Mortality association and prediction

Finding the association of HRG and age led us to further study
biological age in relation to mortality. We accessed the Swedish

Figure 1. Meta-analysis from nine different sample sets.
In the forest plot, the numbers in parenthesis indicate the age range of the
included subjects. For each sample set, the estimated effect of age on
HPA045005-derived profiles from the linear regression model, 95% confidence
interval of it, and study weight in the meta-analysis are shown in the middle as
a tick, a line, and a gray box, respectively. The numeric value of the effect is
clarified at the right side.
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death registry for information on whether the subjects were still
alive or not within the follow-up time of ~8.5 yr (IQR = 7.7–9.3). We
chose the largest sample set of the subjects at mid to old ages that
spanned the average life expectancy in Sweden, which was sample
set 3 (N = 2,973, 48–93 yr old). This was to gain statistical power
needed for the analysis of all-cause mortality, which was otherwise
a relatively rare event. A Cox proportional hazards model with age
as the time scale was used with the adjustment for the effects of
gender. This revealed that the profiles from HRG obtained by
HPA045005 were significantly associated with the mortality risk
during follow-up (P = 1.13 × 10−4). In contrast, the HRG profiles
determined by BSI0137, which were not correlated with those of the
HPA045005 (R2 = 0.006), were not associated to mortality (P = 0.57).

To adjust for the effect of chronological age at sampling on the
mortality association of the HPA045005-derived HRG profiles, the
data were standardized using a linear model for age and age

squared for each gender separately. The hazards model using the
standardized HPA045005-HRG value affirmed the association with
mortality (P = 6.45 × 10−5). The risk of all-cause mortality was es-
timated to increase 1.25 times per SD of the age- and gender-
adjusted HRG values (95% confidence interval = 1.12–1.39). In the
model accounting for potential genetic effect of the most signifi-
cantly associated SNP rs9898, the estimated hazard ratio (HR) of
HRG became even higher with similar significance (HR = 1.31 per SD,
P = 7.75 × 10−5, N = 2,307). No evident difference of HR and average
age was observed when stratifying by the genotype of the SNP on
HR of HRG (Table S4). By examining the cause of death data, higher
HPA045005-HRG profiles were found to elevate mortality risk by
diseases of the circulatory system (HR = 1.46 per SD, P = 2.80 × 10−4,
ICD-10 code I00-I99) to a larger extent than bymalignant neoplasms
(HR = 1.28 per SD, P = 1.73 × 10−2, ICD-10 code C00-C97) or other causes
(HR = 1.20 per SD, P = 0.25, Table S6).

Figure 2. Genome-wide association study results and histidine-rich glycoprotein (HRG) domains.
(A) Manhattan plot. The significance of association between genotypes and HPA045005 profiles is presented vertically. The dashed guide line marks the stringent
threshold of P-value for genome-wide association study, which is P = 0.01 after Bonferroni correction. One peak in chromosome 3 indicates strong association of a locus
with the molecular phenotype. (B) LocusZoom (Pruim et al, 2010) on associated locus. The illustration shows the elements of chromosome 3 associated with HPA045005
profiles. (A) Zooming in on the peak of the Manhattan plot in (A), the genes around the locus are presented together with the associated single-nucleotide
polymorphisms. (C) Box plots to show the association between genotypes of rs9898 and two antibody profiles, HPA045005 and BSI0137. The trends were opposite.
(D) Representation of HRG to illustrate how two separate domains of the HRG protein affected the profiles of the antibodies. Protein domains, glycosylation sites and
disulfide bonds of HRG were schematically illustrated using black round, purple dots and yellow lines, respectively. The figure was prepared based on the schematic
representation of Poon et al (2011).
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A Cox model stratified by gender suggested somewhat stronger
mortality association in women (HR = 1.35 per SD, P = 2.13 × 10−4) than
in men (HR = 1.15 per SD, P = 0.059). Comparing extreme subsets with
standardized HPA045005-HRG in the upper and lower quartiles
demonstrated that the difference of median age at death was 1.8 yr
in favor of the bottom quartile (P = 3.87 × 10−3, HR = 1.54, Fig 3). The
difference was 1.9 yr inmen (86.9 yr versus 85.0) and 0.6 yr in women
(89.6 versus 89.0; Fig S7). The difference in life expectancy between
the two extreme quartiles at the age of 45 was 3.7 yr in women (87.3
versus 91.0) and 2.8 yr in men (83.9 versus 86.7), assuming age-at-
death follows a Weibull distribution (Table S5).

A comparison with the potential influence of inflammation on
survival was done by using clinically measured CRP. As for
HPA045005-HRG, two Cox models were fitted using 1) CRP and 2)
age-adjusted CRP levels. The latter was obtained using the same
linear model as HPA045005-HRG and adjusting for the same co-
variate. Associations of CRP model 1 (HR = 1.07 per SD, P = 0.023) and
model 2 (HR = 1.01, P = 0.023) were less pronounced than for
HPA045005-HRG. Next, we included CRP as a covariate in the Cox
model for HPA045005-HRG to determine if inflammation in general
would have an influence of HPA045005-HRG-related mortality.
Negligible attenuation of the HPA045005-HRG association was
observed after additional adjustment for CRP (HR = 1.25–1.24 per SD,
P = 6.45 × 10−5 to P = 1.05 × 10−4). We also assessed the relation of
HPA045005-HRG profiles to age andmortality considering diabetes-

related traits to account for any short-term effects of glucose. The
results of the Cox models individually adjusted for nine additional
clinical variables listed in Table 2 were barely changed for all
models (Table S6). For each of the survival analyses, we confirmed
that none of the hazard models violated the proportionality as-
sumption of the Cox model using Schoenfeld residuals (Grambsch
& Therneau, 1994). A summary of the survival analyses with 95%
confidence interval is presented in Table S6.

Discussion

HRG is a multifunctional protein circulating in blood

We analyzed the relation between age and protein profiles in blood
by multiplexed antibody-based assays and found a consistent,
positive association with the antibody HPA045005. Validating the
binding of the antibody using GWAS, protein microarrays and
sandwich assays revealed that HRG was captured from serum and
plasma. We further demonstrated that a selective binding affinity
toward a domain of HRG revealed associations with mortality risk,
unlike another anti-HRG antibody affected by a different HRG domain.

HRG has been described as an abundant protein in human blood
plasma, and according to mRNA sequencing data of human tissues,

Table 2. Associations of histidine-rich glycoprotein profiles to various traits in set 3.

Trait
HPA045005 Bsi0137

Estimatea P-value Estimatea P-value

Aging

Age 0.010 1.53 × 10−6 0.0017 0.44

Mortality risk 1.25 6.45 × 10−5 1.03 0.59

Genetic/protein variants

rs9898 (Pro204Ser) 0.15 2.35 × 10−97 −0.23 1.85 × 10−177

rs1042464 (Asn493Ile) 0.10 1.9 × 10−44 −0.33 <1 × 10−300

Clinical trait

APOA1 −0.26 9.47 × 10−6 −0.01 0.76

APOB −0.23 8.46 × 10−4 0.30 6.81 × 10−10

C-reactive protein 0.012 7.33 × 10−5 0.0003 0.88

Glucose −0.028 0.061 0.013 0.21

Hb −0.008 6.45 × 10−9 0.0004 0.68

HbA1C −0.047 0.070 0.030 0.092

High density lipoprotein −0.035 0.41 −0.120 5.65 × 10−5

Low density lipoprotein −0.044 1.53 × 10−2 0.071 1.90 × 10−8

TC −0.060 1.37 × 10−4 0.060 4.92 × 10−8

TG −0.086 2.73 × 10−5 0.074 2.36 × 10−7

aThe estimates from selected models for individual associations. For clinical traits, the values are the estimated slope from linear regression models with
adjustment for age and the top single-nucleotide polymorphism (rs9898 for HPA045005 and rs1042464 for BSI0137). Linear models were also used for age and
genetic/protein variants, whereas Coxmodels formortality risk (more details in the Materials andMethods section). For the trait, hazard ratios are presented in
the column.
The two distinct histidin-rich glycoprotein profiles were compared with respect to the association with various traits in set 3, which are 2,999 samples from the
TwinGene cohort (Lichtenstein et al, 2002; Magnusson et al, 2013).

Profiles of HRG associate with aging Hong et al. https://doi.org/10.26508/lsa.202000817 vol 3 | no 10 | e202000817 5 of 11

https://doi.org/10.26508/lsa.202000817


HRG is exclusively expressed in the liver (Uhlén et al, 2015, 2019). The
protein has been characterized to interact with diverse molecules,
including heparin, heme, immunoglobulin G, Zn2+, and complement
components (Poon et al, 2011; Priebatsch et al, 2017), and particular
functions have been assigned to each of its six domains (Martin
et al, 2018). HRG is involved not only in immune response toward
foreign substances and clearance of dead cells but also in vascular
biology including anti-coagulation (Poon et al, 2011). HRG levels
have previously been correlated and linked to blood ABO type and
age (Drasin & Sahud, 1996). The protein has been named a bio-
marker of preeclampsia, which entails angiogenic imbalance and
defective coagulation control (Bolin et al, 2011), and found as a
marker for sepsis prediction among systemic inflammatory re-
sponse syndrome patients (Kuroda et al, 2018). Partly because of its
molecular composition and abundance, HRG has been assigned to
many other biological processes. When searching for possible
protein–protein interactions of HRG using the STRING database
(Szklarczyk et al, 2019), we observed that the number of listed in-
teractions were enriched for platelet degranulation (Gene Ontology:
0002576). Many of the proteins in the HRG-interactome were also
expressed by the liver and secreted into blood (Uhlén et al, 2019).

With the current data, it remains difficult to determine the most
plausible mechanism by which HRG profiles are increased in the

process of aging and why this observation was only seen for one of
the anti-HRG antibodies but not for the other. However, HRG has
functional similarities with CRP, which is another indicator of aging
and mortality (Barron et al, 2015). Their related functions in the
context of coagulation and inflammation (Poon et al, 2011) may
increase the likelihood that both change with age because of
similar reasons. Interestingly, we found a negative association of
the HRG profiles of HPA045005 to levels of blood hemoglobin, which
could otherwise point at the involvement of this HRG in binding free
heme from erythrocytes. Observing a negative correlation between
the HPA045005-HRG profiles and aPTT, for which a prolonged time
indicates lower thrombosis risk, supports a hematological hy-
pothesis. Lower HPA045005-HRG profile might indicate lower risk of
thrombosis, and thereby also mortality. In contrast, the BSI0137
profiles of HRG affected by variants on residue 493 did reveal links
to lipid metabolism but no significant association to Hb levels. This
supports the hypothesis that a site- and variant-specific binding of
the two antibodies (via distinct epitopes) reveal different per-
spectives about the traits of HRG.

In the HRG gene, there are four relatively common genetic
variants (MAF > 10%) that lead to amino acid polymorphisms. In a
genetic study investigating the aPTT, Houlihan et al (2010) observed
that the minor T allele of rs9898 was associated with shorter aPTT,
suggesting an elevated risk of thrombosis in these individuals
(Houlihan et al, 2010). Houlihan et al (2010) proposed a potential
interaction between HRG and thrombosis; hence, thrombosis could
be a possible mediator between elevated HRG and risk of mortality.
The genetic association seems opposite to the two correlations we
observed here, 1) more T allele and lower HRG profiles of
HPA045005 and 2) lower HPA045005-HRG profiles and longer aPTT.
However, considering that the correlation of the HPA045005-HRG
profiles with rs9898 was mainly driven by molecular characteristic
of our immunoassay, the opposite trend strengthened our hy-
pothesis. The HPA045005-HRG profiles were possibly associated
with mortality not through rs9898 but thrombosis. Tang et al (2012)
confirmed the observations of Houlihan et al (2010) and pointed out
that possible interactions between causal variants of HRG, KNG1,
and F12 may further influence coagulation and aPTT (Tang et al,
2012).

We also performed a look-up on the variants using the data
hosted by the Genotype-Tissue Expression (GTEx) Project portal
(version 8, accessed 2019-11-19). We searched for any significant
expression QTL or splice QTL that could provide further insights into
circulating levels of the secreted HRG. For the rs9898 (as well as
rs2228243 and rs10770), there were, however, neither any expression
QTLs nor splice QTLs reported in GTEx. The rs9898 does not alter the
mRNA expression or is associated with the formation of splice
variants of HRG.

GWAS analysis revealed the associations of both antibodies’
profiles with non-synonymous SNPs. The PICS analysis indicated
which amino acid residue of the HRG may affect the antibody
recognition. Using this novel approach for identifying recognition
sites, we found that HRG profiles from HPA045005 differentiated
between HRG variants with Pro204 over Ser204. This might imply
that the antibody had its HRG-binding epitope in proximity to
residue 204, as it was predicted to be exposed (Fig S8). This position
is located in HRG’s cysteine protease inhibitor domain for which a

Figure 3. Survival analysis comparing upper and lower quarters of histidine-
rich glycoprotein levels.
The individuals of sample set 3 were divided into four subsets by the quartiles of
histidine-rich glycoprotein levels. Differential mortality across follow-up time is
illustrated by the survival curves, where age was used as the time scale
(Thiébaut & Bénichou, 2004). The number at risk at 10 yr intervals were displayed
below the survival curve. Some detailed statistics related to this survival analysis
are presented in Table S4.
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lacking inhibitory activity was previously described (Ochieng &
Chaudhuri, 2010). Interestingly, two of the neighboring residues
to Ser204 or Pro204 are amino acids with functional groups (Fig 2D):
Asn202 is an N-glycosylation site found for Ser204 variants (Hennis
et al, 1995) and Cys203 has been identified as a site for glutathione
modification (Kassaar et al, 2014). This may imply that any changes
around residue 204 can affect molecular functions of the protein. It
is noteworthy that no single genetic variant around HRG reached
genome-wide significance for mortality risk in a study including the
TwinGene cohort (Ganna et al, 2013). Together with the contrasting
difference we observed of the HRG profiles obtained by the other
antibody, we postulate that molecular alteration around the 204th

residue was associated with age and mortality risk. Investigating
changes at the spot may assist in further categorizing HRG’s in-
volvement in a diverse set of physiological processes.

Limitation and variation

Circulating HRG was profiled across ages and samples from dif-
ferent donors to cover a broad range of lifespans. Even though
finding consistent trends of HRG in serum and plasma of the cross-
sectional study, the performance of the HRG assays can be influ-
enced by the type of blood preparation. This could influence the
degree to which HRG associated with age. On the other hand,
gradual associations were repeatedly observed in multiple inde-
pendent study sets derived from different Swedish cohorts, which
provided supportive evidence about the association of the
HPA045005-HRG with age. As HPA045005 profiles of circulating HRG
increased as age advances, an analysis of longitudinal samples
collected from representative subjects could be a viable strategy.
As we also found that the elevated HPA04500-HRG was correlated
with higher risk of mortality even after adjusting for genetic effects
of the strongly associated SNP, the age-dependent profile may
imply a time-wise transition along individual ages, possibly bio-
logical ages. Last, molecular investigations on the residues, in-
cluding the 204th amino acid, are needed to further interpret the
increasing trends of the HPA045005-HRG profiles, and as suggested
by the differential associations to the clinical traits.

With increasing knowledge about genetic effects on the circu-
lating proteome comes the challenge to validate these observa-
tions. As we have seen, genetic variation can cause two antibodies
to reveal discordant protein proteins even though they bind the
same protein. We acknowledge the limitation in our results to
further study the effects on the epitopes of HRG such as by applying
additional antibodies and establishing appropriate methods. Such
tools would further strengthen the validity and better enable others
to reproduce the made observations.

We observed variation in the degree to which HRG associated
with age, which is visible in Fig 1. To some extent, the variation can
be explained by technical limitations resulting in different signal
intensity ranges determined in each study set. The method was
primarily developed to screen larger numbers of protein profiles for
possible associations to different traits, hence it is tailored toward
shortlisting of candidates rather than standardized to determine
absolute abundance levels. Seeing that the estimated slopes from
sample sets 2, 3, and 9 were relatively lower than the values from
the other sets, some parts of the variation might originate from the

difference in age range and sample source, sample collection and
preparation, or selection of participants. For example, the indi-
viduals in the sample sets 2, 7, and 9 were substantially younger
(median age 40, 52, and 54 yr, respectively) compared with all others
(~65 yr old). The sample sets 2, 3, and 9 were near population-based,
whereas the others were healthy individuals except those in
sample set 1, in which older women andmen were overrepresented
because of same number of individuals selected per age-group.

HRG as a potential predictor of mortality

Several other molecular indicators have been previously reported
to predict mortality risk. Barron et al (2015) showed that CRP (HR =
1.42), N-terminal pro brain natriuretic peptide (NT-proBNP, HR =
1.43), and white blood cell count (HR = 1.36) were statistically sig-
nificant in meta-analyses (Barron et al, 2015). The HR estimate of
HRG in our study (1.53 between top and bottom quarters) was
comparable. Schnabel et al (2013) linked CRP to mortality risk in a
follow-up period of median 8.9 yr (Schnabel et al, 2013). Using HR
per SD, their estimate for CRP was 1.18, which was similar to our
estimate of 1.25 from HRG. HR per SD of DNA methylation (1.09–1.21)
in the study by Marioni et al (2015) was also comparable to our HRG
estimate (Marioni et al, 2015). Ganna and Ingelsson (2015) used
questionnaire-derived measures for an extensive population-
based mortality study (Ganna & Ingelsson, 2015). Their top pre-
dictors resulted in Harrell’s C-index = 0.74 when including age, and
using the samemodel, HRG performed in the same range (C-index =
0.77).

Indeed, other proteins such as growth differentiation factor 15
(GDF15), IL-6, and CRP have previously been described in aging and
all-cause mortality independent of telomere length (Wiklund et al,
2010). Other recent large-scale affinity proteomics approaches have
reported age associations of circulating proteins, for example,
GDF15 but also other proteins of the coagulation system (Tanaka
et al, 2018) and heparin binding function (Lehallier et al, 2019).
Although HRG is abundant in blood (Poon et al, 2011), those studies
did not measure the protein, reflecting challenges in assay de-
velopment. It is noteworthy that circulating GDF15 can also be highly
influenced by medications such as metformin (Gerstein et al, 2017)
and the expression of the GDF15 gene, also known as nonsteroidal
anti-inflammatory drugs-activated gene (NAG-1), can be induced by
other common drugs (Wang et al, 2011). We acknowledge that a
better understanding of HRG in the context of aging and mortality
will require more lifestyle data from the donors. Last, our presented
strategy was of an exploratory nature and we did not actively in-
clude antibodies toward previously known age-related proteins,
such as GDF15. The shortlisted targets represented those for which
the antibodies performed in the antibody bead array method when
screening serum and plasma for indicators of aging.

In conclusion, we have described distinct profiles of circulating
HRG as indicator of aging and mortality. Extensive efforts were put
into confirming our observation across independent cohorts and
applying molecular approaches to characterize the differential
recognition of HRG. As a known multipurpose adapter protein, HRG
plays a role in hemostasis, and the profiles of the protein can serve
as a predictive indicator for all-cause mortality within 8.5 yr after
blood draw; hence, the particular profiles of circulating HRG could
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be helpful as an accessible indicator of processes linked to bio-
logical aging.

Materials and Methods

Cohort design and sample selection

Sample set 1 from TwinGene cohort
A population-wide collection of blood from 12,614 twins born be-
tween 1911 and 1958 has been undertaken in a project named
TwinGene. The primary aim of the TwinGene project has been to
systematically transform the oldest cohorts of the Swedish Twin
Registry (STR) into a molecular-genetic resource (Magnusson et al,
2013). From 2004 to 2008, a total of 21,500 twins (~200 twin pairs per
month) were contacted by invitation to the study and were pro-
vided information of the study and its purpose, consent forms, and
health questionnaire. The study population was limited to those
participating in the Screening Across the Lifespan Twin Study (SALT)
which was a telephone interview study conducted in 1998–2002
(Lichtenstein et al, 2002). Other inclusion criteria were that both
twins in the pair had to be alive and living in Sweden. Subjects were
excluded from the study who had declined to participate in future
studies or had been enrolled in other STR DNA sampling projects.
When the signed consent forms returned, blood-sampling equipment
was sent to the subjects, who were asked to visit local healthcare
facilities in the morning, after fasting from 20:00 the previous night,
from Monday to Thursday and not the day before a national holiday.
This was to ensure that the sample tube would be delivered to the
Karolinska Institutet Biobank by the following morning by overnight
mail. After arrival, the serum was stored in liquid nitrogen.

The contribution for sample set 1 of serum samples from the
TwinGene study consisted of: (i) samples from 96 unrelated twins
distributed in groups of 12 subjects (6 males and 6 females) in each
age strata 50, 55, 60, 65, 70, 75, 80, and 85 yr of age, and (ii) samples
from 60 MZ twins (30 complete pairs) distributed in groups of 12 (3
male pairs and 3 female pairs) in each age strata of 50, 55, 60, 65, and
70 yr of age. The width of the age intervals was approximately ±3 mo.

Sample set 2 from LifeGene cohort
LifeGene is a prospective cohort study that includes collection of
plasma and serum, tests of physical performance, as well as
questionnaire responses regarding a wide range of lifestyle factors,
health behaviors, and symptoms (Almqvist et al, 2011). Participants
responded to a web-based questionnaire and book time for a visit
to a LifeGene test center, at which blood samples are taken. EDTA
plasma was processed at the test center as follows: the EDTA tube
with a gel plug was centrifuged, put into −20°C before shipment in a
cold chain. All samples were sent to Karolinska Institutet Biobank
for further separation into aliquots in REMP plates and frozen at
−70°C. All participants or, in the case of children under the age of 11,
their guardians, provided signed consent.

The sample set 2 cohort consisted of five male and five female
samples randomly chosen from each of the ages <5, 10, 15, 20, 25, 30,
35, 40, 45, 50, and 55 (±3 mo). For 12 participants, serum was also
available.

Sample sets 3–5 from TwinGene cohort
Sample sets 3, 4, and 5 were selected from the same cohort,
TwinGene (Magnusson et al, 2013), as sample set 1 (described
above). Of 132 microtiter 96-well microtiter plates for storage of
TwinGene samples, the 12 plates having the largest age span (>20 yr)
among samples in a plate and another randomly chosen 20 plates
comprising a sufficient number of samples (>91) were selected.
Sample set 3 consisted of the 3,000 samples in the selected 32
storage places. The data of one individual were removed in the
analyses because age of the subject was missing. Independently
from the sample selection, sample sets 4 and 5 were age- and
gender-matched controls for breast and prostate cancer studies,
respectively. The mortality data were obtained by linkage of indi-
viduals in TwinGene to the data in the Swedish tax authorities by
personal identification number. The data were updated on 10
January, 2015. Likewise, the ICD-10 data from the Swedish cause of
death register were obtained, which was updated on 31 December,
2012. Clinical blood chemistry assessments were performed by the
Karolinska University Laboratory for the following biomarkers: total
cholesterol, triglycerides, high-density lipoprotein, low-density li-
poprotein (by Friedewald formula), CRP, glucose, APOA1, APOB, Hb,
and HbA1c (Magnusson et al, 2013). Clinical blood chemistry as-
sessments were performed by the Karolinska University Hospital
Laboratory. Levels of HbA1c were measured by a high-liquid per-
formance chromatography separation technique. Levels of the
other biomarkers were determined by Synchron LX systems
(Beckman Coulter) (Rahman et al, 2009).

Sample sets 6–9
The sample sets 6–9 are described in Supplemental Data 1.

Ethics
All the studies were approved by the Ethics Board of the corre-
sponding hospital or institution and conducted in agreement with
the Declaration of Helsinki. The ethical approval document num-
bers are 2007/644-31/2 for TwinGene, 2009/615-31/1 for LifeGene,
03-115 and 2017/404-32 for IMPROVE, 95-397 and 02-091 for SCARF,
EPN 2009/762 and LU 298-91 for CHAPS, and 2010/958-31/1 for
Karma. All subjects, or their guardians, provided their informed
consent to participation in the individual studies.

Plasma proteomics analysis methods

Experimental details on the molecular methods and data pro-
cessing are available as Supplemental Data 1. This includes de-
scriptions for the antibody selection, bead array assay, sandwich
immunoassays, mass spectrometry, and protein microarray anal-
ysis. Because of substantial difference between the composition of
the two sample types (Fig S9), the data of plasma and serum were
processed separately.

GWAS

Genomic DNA from all available dizygotic twins and one member of
each monozygotic twin pair were genotyped by using Illumina
OmniExpress BeadChip (700K). Genotyping QC exclusion criteria:
genotypic or individual missingness > 0.03, MAF < 0.01, Hardy-
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Weinberg equilibrium P < 10−7, gender mismatch, heterozygosity
(individuals with an F-statistic beyond ±5 SD from the sample
mean), or cryptic relatedness. The 1000 Genome reference panel
(GRCh37/hg19, Phase 1, version 3) was used for imputation, by using
Mach 1.0 and Minimac. After genotype antibody-profile match,
GWAS was performed among 2,308 twins by using PLINK 1.90 beta.
Analyses were restricted to autosomal SNPs with imputation quality
(info or r2) >0.4. The first four principal components were included
to control population stratification. The “within” option in PLINK
was used to statistically adjust for relatedness (complete dizygotic
twin pairs). Manhattan plots were drawn using qqman package in R
3.4.1. Themutation types of the associated SNPs were obtained from
UCSC Genome Browser (https://genome.ucsc.edu) using human
“GRCh38/hg38” assembly and “snp150Common” (dbSNP build 150,
≥1% MAF) table, which was accessed on 20 September, 2018.

Statistical analysis

The preprocessed intensity data were log-transformed ahead of
downstream analyses. To control family-wise error rate, the Bon-
ferroni method was used for adjusting P-values and the α level was
0.01, unless otherwise specified. The ICC was computed using the
method of Shrout and Fleiss (1979) for a set of randomly chosen two
raters (Shrout & Fleiss, 1979). The linear association of an antibody
signal level with age was tested with ordinary LM using R 3.6.0. The
meta-analysis was conducted using the inverse variance method
with between-study variance estimated by DerSimonian-Laird
model (DerSimonian & Laird, 1986) with “meta 4.9.9” R-package.
We used a linear mixed model to address the correlation between
twins where the response variable was the normalized antibody
measurement and age was a fixed covariate. This model was
performed using the R-package “lme4 1.1.21.” For the association
test for mortality, Cox proportional hazards models were fitted to
the survival data with age as the time-scale and right censoring of
the age on the updated date of death information (Thiébaut &
Bénichou, 2004). In the survival analysis for two group comparison,
the subjects in sample set 3 were divided into two groups, top and
bottom quarters by the standardized HRG values, which were the
scaled residuals of LM where the normalized HRG measurement
values were regressed on age and age squared for women and for
men separately. The hazard models were adjusted for gender if
applicable and for CRP, glucose, or HbA1c as described above. The
proportionality assumption of the models was tested using
Schoenfeld residuals (Grambsch & Therneau, 1994). Survival ana-
lyses, including computation of Harrell’s C-index (Harrell et al,
1982), were conducted using the R packages “survival 3.1.8,” “eha
2.8.0,” and “survminer 0.4.6.”

Data Availability

Researchers interested in using STR data must obtain approval
from a Swedish Ethical Review Board and from the Steering
Committee of the STR. Researchers using the data are required to
follow the terms of an agreement containing a number of clauses
designed to ensure protection of privacy and compliance with

relevant laws. For further information, contact Patrik Magnusson
(Patrik.Magnusson@ki.se).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000817.
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