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Motion capture of unrestrained moving animals is a major analytic tool in neuroethology
and behavioral physiology. At present, several motion capture methodologies have been
developed, all of which have particular limitations regarding experimental application.
Whereas marker-based motion capture systems are very robust and easily adjusted
to suit different setups, tracked species, or body parts, they cannot be applied in
experimental situations where markers obstruct the natural behavior (e.g., when tracking
delicate, elastic, and/or sensitive body structures). On the other hand, marker-less
motion capture systems typically require setup- and animal-specific adjustments, for
example by means of tailored image processing, decision heuristics, and/or machine
learning of specific sample data. Among the latter, deep-learning approaches have
become very popular because of their applicability to virtually any sample of video
data. Nevertheless, concise evaluation of their training requirements has rarely been
done, particularly with regard to the transfer of trained networks from one application to
another. To address this issue, the present study uses insect locomotion as a showcase
example for systematic evaluation of variation and augmentation of the training data.
For that, we use artificially generated video sequences with known combinations of
observed, real animal postures and randomized body position, orientation, and size.
Moreover, we evaluate the generalization ability of networks that have been pre-trained
on synthetic videos to video recordings of real walking insects, and estimate the
benefit in terms of reduced requirement for manual annotation. We show that tracking
performance is affected only little by scaling factors ranging from 0.5 to 1.5. As expected
from convolutional networks, the translation of the animal has no effect. On the other
hand, we show that sufficient variation of rotation in the training data is essential for
performance, and make concise suggestions about how much variation is required.
Our results on transfer from synthetic to real videos show that pre-training reduces the
amount of necessary manual annotation by about 50%.

Keywords: insect locomotion, machine learning, behavioral analysis, marker-less motion capture, deep neural
network, motion tracking
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INTRODUCTION

Several insect species are important study organisms in
neuroscience, perhaps particularly so in neuroethology.
Accordingly, new methodology for the quantitative analysis
of insect behavior through motion capture and pose estimation
has received a lot of attention. Owing to the computational
limitations in image processing, early approaches relied on
marker-based tracking algorithms, using kinematic models to
constrain the process of pose estimation, particularly if sampling
rates were low (Zakotnik et al., 2004) or if multiple body parts
had to be tracked (Petrou and Webb, 2012). Additional offline
optimization algorithms have been proposed to determine
the most likely movement sequence from a series of pose
estimates (e.g., Zakotnik and Dürr, 2005). As video hardware
improved and sampling rates increased, marker tracking became
reliable without an underlying model (Bender et al., 2010).
Similarly, current high-end commercial motion capture systems
are based on reliable, multi-view marker identification at
high frame rates, so as to allow the processing of labeled 3D
marker trajectories. Although these systems were developed
originally to capture human movement, they can be adapted
to track whole-body kinematics of large insects, too, achieving
high accuracy and precision even when tracking unrestrained
climbing behaviors (Theunissen and Dürr, 2013; Theunissen
et al., 2015). Nevertheless, all marker-based approaches are
limited by the necessity to equip the animal with an appropriate
set of reflective markers. This is not always possible (e.g., on
delicate or sensitive structures, for small species, or at locations
where markers restrain movement) and requires additional,
accurate measurement of all marker positions relative to the
body structures that are to be tracked (e.g., particular joints).

With increasing computational power of current image
processing systems and the application of machine learning
approaches, a number of marker-less motion-capture and
pose estimation systems have been developed. They are based
on either advanced machine vision techniques such as 3D
photogrammetry (Mündermann et al., 2006; Sellers andHirasaki,
2014) or artificial intelligence applications of deep neural
networks (for recent reviews, see Abbas and Masip, 2019; Datta
et al., 2019). The latter have been applied very successfully in
neuroethology, including insect species as small as Drosophila
melanogaster. For example, DeepLabCut (Mathis et al., 2018)
applies a deep architecture of stacked convolutional networks
with identity short-cuts, the so-called ResNet architecture (He
et al., 2016). This ResNet part of the system has been trained
on the large image data base ImageNet. For motion capturing
of arbitrary animal movement sequences, DeepLabCut appends
a stack of de-convolutional layers that can be trained in an
end-to-end manner. Other deep neural network applications
for motion analysis have focused on particular aspects of this
approach, such as iterative improvement by manual re-labeling
of pose estimates (Pereira et al., 2019), or exploiting movement
information from subsequent frames (Liu et al., 2020). In all
of these approaches, the output of the system is a 2D map of
probabilities—so-called score maps or confidence maps—that
indicate both the most likely position estimate of a particular

body part and a measure of confidence of that estimate. With one
score map per tracked feature, several features may be tracked in
parallel for pose estimation. In fact, training on multiple features
inDeepLabCut was shown to improve tracking performance over
dedicated single-feature trackers (Mathis et al., 2018).

Essentially, the training procedure of deep neural networks
is thought to form an internal representation of the feature to
be tracked, albeit one of unknown structure and properties.
Provided the training data is appropriate, the representation
helps to localize a particular instance of the feature regardless of
its position, orientation, size, texture or color. However, since the
representation is not an explicit geometric model, it is not clear
how well it transfers to new applications with setup- or species-
specific properties, particularly if these properties have not been
part of the training data.

Of course, it is always possible to re-train neural networks
to new data sets, but this requires time-consuming, manual
annotation. To further improve transfer of neural-network-based
motion capture systems to new experimental paradigms, we
propose pre-training on synthetically generated video sequences.
We argue that this may be particularly suitable for behavioral
experiments on arthropods because their exoskeleton and
segmented body structure experience little deformation (other
than mammals with wobbly masses and relative movement
between skin and skeleton). As a consequence, known animal
postures may be rendered for arbitrary experimental setups,
species-specific body features and animal sizes. Second, manual
annotation can be avoided because labels for joints and segments
can be generated in conjunction with the generation of each
video frame. Third, video frames can be generated in nearly
arbitrary sample sizes, allowing for ample feature variation.

The exploitation of tailored synthetic videos to improve
transfer learning across experimental paradigms and species
appears to be particularly promising in the study of natural
locomotion behavior. This is because natural locomotion
involves a wide range of manoeuvers such as turning and
climbing, the study of which requires the use of very different
experimental setups. Furthermore, the analysis of unrestrained
locomotion requires reliable and accurate tracking of posture
sequences that involve several parts of the body trunk, along
with four, six, or even more limbs, each one comprising multiple
joints and segments. Finally, animals not only come in different
sizes, they also walk or run at variable speed and orientation,
generating a lot more postural variation than may be observed
in constrained experimental setups.

Accordingly, the main goal of our study is to determine how
synthetic video training data may reduce the amount of manual
annotation. To this end, a first objective was to find out what
kind of and how much variation of geometric transformations is
required in the synthetic training data. Aiming at an application
to research on unrestrained insect locomotion, our second
objective was to demonstrate the efficiency of pre-training
on synthetic data in terms of reduced manual annotation of
experimental video data.

Our showcase study uses experimental data of walking and
climbing stick insects. We will be focusing on stick insects and,
in particular, on the Indian stick insect Carausius morosus in
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this study. It is an established organism for studying the neural
mechanisms and neuroethology of locomotion (Bässler, 1983;
Cruse, 1990; Büschges, 2012; Dürr et al., 2018). In drawing from
experimental samples of whole-body postures of C. morosus
(Theunissen et al., 2014a,b), we generate simplified multi-
cylinder models of instant 3D postures, including 22 annotated
3D coordinates of leg, head and thorax joints. Each posture
could be transformed by an arbitrary combination of rotation,
translation, and scaling.With one posture per frame, we rendered
synthetic top-view videos in VGA resolution (640 × 480 pixels)
to train DeepLabCut.

We show that tracking performance is affected only little
by scaling by factors 0.5–1.5. As expected from convolutional
networks, the translation of the animal has no effect. On the other
hand, we show that sufficient variation of rotation in the training
data is essential for performance, and make concise suggestions
about how much variation is required. Finally, we assess the
transfer performance of the synthetically pre-trained networks
on experimental video data from walking stick insects, showing
that pre-training reduces the amount of manual annotation by
some 50%.

MATERIALS AND METHODS

Video Recordings of Walking Animals
We used intact adult female stick insects of the species Carausius
morosus (de Sinéty, 1901) from an insect culture bred at
Bielefeld University. None of the animals had been used in
experiments before. Experimental videos were recorded as top
views of animals walking on a planar surface in a ‘‘gantry
setup.’’ This setup contained a circular arena with a plane,
black surface of 1.2 m diameter. A 200 mm high, dark vertical
bar was projected to a circular arena otherwise white arena
wall allowed for visual landmark orientation and, thus, induce
a directed walking behavior. A digital video camera (Basler
A602fc) equipped with a zoom lens (Pentax H6Z810) was
mounted on a gantry approximately 1.5 m above the arena.
The camera was operated at a resolution of 640 × 480 pixels
and a frame rate of 50 frames per second. The gantry allowed
to track the animal by moving the camera in two directions,
parallel to the walking surface. A total of 13 experimental training
videos were recorded: one video for each combination of the
four cardinal walking directions and three zoom settings (see
Supplmentary Table 1 for estimated intrinsic camera parameters
and the corresponding spatial resolution in mm per pixel)
with the camera held stationary above the center of the arena.
Additionally one extra video was recorded in which the animal
was tracked by moving the camera to keep the whole animal in
view for the entire video. No further digital processing of videos
was done. The intrinsic camera parameters were obtained with
the camera calibration functions of OpenCV1.

After recording, a set of 286 frames was selected at random
and manually annotated using the ImageJ software2. On each
one of the selected frames, we annotated the positions of

1http://opencv.org
2http://imagej.net

FIGURE 1 | Body geometry of the stick insect and tracked body features.
(A) Single rendered posture as used for training, with labels indicating the
body features that were to be tracked. The right front, middle and hind legs
are labeled R1 to R3. The three features per leg to betracked are shown for
the middle leg R2: these are the coxa-trochanter joint (R2 CxTr), the
femur-tibia joint (R2 FeTi), and the tibia-tarsus joint (R2 TiTa). (B) Example
frame of an experimental video with labels at the tracked body features. The +
symbols mark manually annotated positions; circles mark network estimates.
Note that trained networks can deal with motion blur. Despite motion blur of
the right front leg and left middle leg, leg postures may be estimated well.

22 body features: These were the coxa-trochanter, femur-tibia,
and tibia-tarsus-joints of all six legs, along with the anterior
and/or posterior part of the head, prothorax, mesothorax, and
metathorax. Apart from the abdomen, this set of features
corresponded to the segment boundaries used to generate the
synthetic videos (see Figure 1).

Synthetic Videos
Synthetic videos were generated from rendered body postures
acquired in whole-bodymotion capture experiments as described
by Theunissen and Dürr, 2013 and stored in an open-access
database (Theunissen et al., 2014a,b). Animated single walking
trials are available online3 (see samples for the species Carausius
morosus and obstacle height 0). From this data base, we used joint
angle time courses of the first 1,600 frames of the trial named
Animal12_110415_24_33. For each frame, the 3D locations of
22 body features were calculated, using forward kinematics in
Matlab (The MathWorks, Natick, MA, USA). The features of the
abdomen and the six tarsi of the legs were estimated as described

3http://movement.cit-ec.de/stick-insect-locomotion/animations.php
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by Dürr and Schilling (2018). Each posture could be subject to
scaling, translation and/or rotation so as to control the amount
of variation of these parameters in our training data (see below).

Each body segment was visualized as a cylinder with two
spheres at the end (Figures 1A, 2A). Individual video frames
were generated using Python4: individual frames were rendered
using the Vapory library5 and concatenated into video files using
the MoviePy library6. All videos were rendered with an image
size of 640 × 480 pixels, i.e., the same as in our experimental
videos. Rendering transformed the 3D postures of the body into
2D images of a virtual camera with fixed camera projection
matrix. The resulting spatial resolution was 0.28 mm/pixel at
a scaling factor of 1, resulting in 0.55 or 0.18 mm/pixel for
50% and 150% scaling. The virtual camera had a viewing angle
of 69.4◦ and was placed 200 units above the ground plane
with its line of sight pointing downward, i.e., resulting in a
top view video of the walking animal. The surface color as
well as the radii for the spheres and cylinders were chosen to
approximate the appearance of our experimental videos (for
details see Supplementary Material.) As all body features were
labeled prior to forward kinematics and rendering, each rendered
frame came with 22 labeled feature positions that were used as
annotations during training.

The Matlab code for calculating the forward kinematics, as
well as the Python code for rendering images (and videos) and
generating the corresponding training annotations are available
on request from the corresponding author.

Deep Neural Network Models
We used DeepLabCut (Deeplabcut github repository7, 2018)
to train and test all deep neural network models of our
study. All training was carried out at the compute cluster
of center for Cognitive Interaction Technology (CITEC) at
Bielefeld University. It provides several GPU cores of the
NVidia Tesla (Tesla P-100 and Tesla C2075) and GTX
(GTX 1080 Ti) architectures. We used the standard training
schedule of DeepLabCut. This schedule comprises training for
1,030,000 iterations with varying learning rates, depending on
iteration number. For a detailed description of DeepLabCut see
Mathis et al. (2018) and Nath et al. (2019).

The subsequent evaluation was performed on one GTX
1050 graphics card. To illustrate the output of such a trained
deep neural network, Figure 2B shows score-maps for three body
features, where the brightest point on the map indicates the most
likely location estimate.

Experiments
Experiment I: The Relative Effect of Scaling,
Translation and Rotation
The first experiment was designed to assess the degree of
invariance regarding scaling, translation and/or rotation of the
animal posture. To this end, we generated a total of seven
synthetic videos with a length of 1,600 frames each. In each

4http://www.python.org
5http://github.com/Zulko/vapory
6http://github.com/Zulko/moviepy
7http://github.com/alexemg/deeplabcut

video the animal was placed at the origin of the world coordinate
system and aligned along the x-axis. The virtual camera position
was adjusted to the position of the animal such that it appeared
to be held in place at the image center. We then used any
combination of the following three basic transformations to
render seven videos:

1. Random translation (T) of the animal in the image plane by
[−30, 30] px in either direction;

2. Random rotation (R) of the camera around its viewing axis by
[0, 2π] radians;

3. Random scaling (S) of all body segment lengths by a factor
drawn from the set {0.5, 0.7, 1.0, 1.3, 1.5}.

All transformations were drawn at random for each frame.
Apart from the three videos with single types of transformations,
further four videos were generated with combinations of two or
all three basic transformations:

4. Video 4 combined random translation with rotation (TR).
5. Video 5 combined random translation with scaling (TS).
6. Video 6 combined random rotation with scaling (RS).
7. Video 7 combined random translation, rotation and scaling

(TRS).

For each video frame we then calculated the respective
2D-positions of the annotated body features. Of each synthetic
video, we used 200 randomly selected frames (and the
corresponding, annotated 2D-positions) to train the neural
network model, whereas the total 1,600 frames were used to test
the model. The performance of each one of the resulting seven
models was evaluated by the accuracy of its position estimates
of the 22 body features. The benchmark for evaluation was the
TRS Video 7 that contained all possible random combinations
of transformation. For each one of the 1,600 frames and each
body feature, we calculated the Euclidean distance between the
position estimate and the ground truth. The mean of this error
measure will be referred to as the average pixel error. Frames for
which the model provided position estimates with a confidence
rating less than 10% were excluded from the subsequent analysis
of the body feature concerned. The latter occurred for frames
where the respective body feature was occluded or outside the
frame. On average, models which were trained on rotations gave
about 30 low-confidence estimates (for 22 features × 1,600 test
frames), whereas models which were not trained on rotations
gave about 700 low-confidence estimates.

Experiment II: How Much Rotation Is Required?
The second experiment was designed to determine a suitable
range of rotational variation in the training data. To do
so, we rendered eight artificial videos with 800 frames each
(corresponding to the first 800 frames of animal pose data).
Other than in Experiment I, we kept the position of the virtual
camera fixed and only varied its rotation in discrete steps, with
one fixed rotation for each video. Training videos were then
generated with a random selection of 200 frames drawn from
different subsets of these eight videos. Each of these was used
to train a separate neural network model. Training Video 1 had
no transformation applied. For training Videos 2—8, we used
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FIGURE 2 | Rendered frames and score maps of a synthetic video. (A) Top view of a stick insect whose posture was computed from experimental data, using
forward kinematics. The body segments are represented as cylinders and the joints as spheres. As no texture was applied, the animal body has a smooth, gray
surface. The above frames show the same posture modified by a rotation (90◦) and a scaling by 150%. (B) The color labels in the left frame correspond to the score
maps of the deep neural network output on the right. The color code shows the confidence score of the network for a particular body feature to be located at that
position. In the leftmost case the metathorax position was estimated (red dot in left frame). The middle and right images show score maps for the head (green dot in
left frame) and the tibia-tarsus joint of the right front leg (blue dot in left frame), respectively. The axes correspond to the image coordinates in bins of 8 × 8 pixels.
The score-map was log-transformed to improve visualization. Since the model outputs probability values in [0, 1], the log transformed values are negative. Warmer
colors indicate higher confidence.

an increasing number of discrete rotations of the virtual camera
with increments of 45◦. As a result, Video 2 had frames rotated
by 0 or 45◦, Video 3 had frames rotated by 0, 45◦ or 90◦, and
so on. As before, performance was evaluated on the TRS Video
7 of Experiment I, i.e., a video that included rotation angles
drawn from a continuous set rather than from a discrete set as
used for training. The average pixel error was calculated as in
Experiment I.

Experiment III: Transfer From Synthetic to Real
Videos
The third experiment was designed to evaluate the potential
of using synthetically generated video material to reduce the
amount of manual annotation of experimental video material.
For this experiment, we trained two distinct sets of neural
networks: A first set of models used the default networks of
DeepLabCut, i.e., ones that had been pre-trained on ImageNet
only. This set of models will be referred to as Experimental-
only models, and will be used to assess training performance on
regular experimental video material. A second set of models was
pre-trained on 8,000 randomly selected frames from a synthetic
video containing any combination of eight rotations in discrete
increments of 45◦ (0◦–315◦) and five scaling factors (0.5, 0.7,
1.0, 1.3, 1.5). Then, it was trained additionally in exactly the
same way as the Experimental-only models. This set of models
will be referred to as Synthetic+Experimental models, and will
be used to assess the benefit of pre-training with synthetic
video material.

For the training part on experimental data, we used our videos
of real walking animals. The amount of training data was varied
in four training fractions: 10, 20, 50 and 80%. The training
fraction is the fraction of the total 286 experimental video
frames that was used to train the models. The remaining frames
(i.e., 1-training fraction) were used as test frames to evaluate
the performance of the network. Five models were trained for
each training fraction, with each set of training frames drawn at
random. As in Experiments I and II, the average pixel error was
calculated for the position estimates of 22 body features.

RESULTS

With our overall goal being to improve marker-less motion
capture by use of synthetic video material, we expected the
following four aspects of the video generation process to be of
importance: (i) the availability of a suitable sample of natural
animal postures; (ii) the quality of the rendered image; (iii) the
correct choice of image view and scaling; and (iv) sufficient
combination and variation of geometric transformations of the
rendered animal. Owing to the availability of a database on
whole-body kinematics of walking and climbing stick insects
(Theunissen and Dürr, 2013; Theunissen et al., 2014a,b, 2015)
and the relevance of stick insects as a study organism in
locomotion research (e.g., Bidaye et al., 2018; Dürr et al., 2018)
we decided to use stick insect data to generate synthetic data.
Among the three stick insect species modeled by Theunissen
et al. (2014b), the Indian stick insect Carausius morosus
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(de Sinéty, 1901) has the most plain body geometry, allowing
us to render postures with a fair degree of realism despite
the simplicity of a multi-cylinder-model (see Figures 1A, 2A).
Finally, given the availability of high-quality and easy-to-use
camera calibration toolkits (e.g., the Matlab camera calibration
toolkit) it is reasonably simple to measure distance, orientation
and optical projection properties of arbitrary digital camera
setups. Accordingly, we decided to base all of our experimental
analyses of this study on top views of the Indian stick insect
C. morosus, assuming that most if not all results should easily
transfer to: (i) other data sets; and (ii) any other single-
camera setup. Instead of addressing (iii) the impact of rendering
procedures with different degree of realism of the entire video
frame, we decided to focus on the body geometry of the animal
model. Thus, the original problem was narrowed down to aspect
(iv), i.e., the question of which kind of combinations and how
much variation of geometric transformations were needed to
be contained in a synthetic training video in order to achieve
optimal motion capture performance.

Random Transformations
In order to judge the relative significance of geometric
transformations for motion capture performance, we tested
different combinations of linear translation, rotation of the
camera and scaling of the body. To do so, a total of seven
training videos were generated, using random transformations
with parameters drawn from the ranges given in ‘‘Experiments’’
section. The corresponding seven DeepLabCut models were
evaluated against a test video that comprised all three
transformations, again with parameters drawn from the same
ranges as the training videos. Figure 3 shows the mean Euclidean
distances between the position estimates of the network and
the ground truth. Each box plot comprises the errors from all
1,600 frames of the test video and all 22 tracked body features.
Clearly, models that were trained on data with variable rotation
outperformed the ones without rotation, with the median error
dropping from approximately 40 pixels to 3. The highest median
error of the models including rotations was 2 pixels and was
found for the ‘‘R’’ model, which was trained on rotations only. In
metric units, an error of 2 pixels corresponded to 0.36–1.1 mm,
depending on the scaling factor of the random transformations.
The lowest median error of the models which were trained
without variation of rotation was 40 pixels and was found for
the ‘‘TS’’ model which was trained on a video with variation of
translation only. Furthermore, the small differences among the
four models that were trained with variable rotation indicated
that models trained with variable scaling performed better than
those that were trained without. Translation appeared to have no
impact on the performance.

To test for statistical significance of these observations, we
reduced the distributions of error-per frame shown in Figure 3
(n = 35,200) to distributions of median errors per body feature
(N = 22). Since we had corresponding error measures for each
one of the seven models, we used a Friedman test to confirm
that at least one median value significantly differed from the
others (statistic: 119.3; p < 0.001). To reveal further performance
differences amongmodels we ran post hoc pair-wise comparisons

FIGURE 3 | Rotation matters. Average pixel error of seven models that were
trained with different combinations of scaling (S), rotation (R), and translation
(T). Models that were trained with variable rotation of the posture (left: R,
rotation with scaling (RS), translation, rotation and scaling (TRS), TR)
outperform models that were trained with one posture orientation only (right:
S, T, TS). Note that, for the sake of clarity, outliers beyond 1.5 times the
interquartile range are not shown. As yet, all data points were included in any
and all statistical computations. The scale factor converting pixels to mm was
in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of the
random transformation.

using Wilcoxon’s test for matched pairs. The results are shown
in Table 1. Performance differences among models proved to
be statistically significant for all but four model pairs: These
include all comparisons among models trained without variation
in rotation (S, T, and TS) and the comparison of the models
R and TR. We conclude that models which were trained on
different animal sizes in addition to variable rotation showed
significantly better performance than models which were only
trained with variable rotation and/or translation. Translation,
on the other hand, had hardly any impact on performance as
variable translation resulted in a slight improvement only if
added to variation of rotation and scaling (TRS vs. RS). When
comparing the error distributions for different body features,
points which are close to the main body axis (e.g., segment
borders of the thorax, leg coxae) clearly had smaller errors than
those located further away (e.g., femur-tibia joints and tarsi).
The example shown in Figure 4 is the result of the RS model,
i.e., the network trained with variable rotation and scaling. The
color code emphasizes this apparent improvement of tracking
performance from distal tarsi (blue), to intermediate femur-
tibia joints (green), to proximal groups (red and yellow). The
latter were tracked very consistently and with high accuracy
and precision. To illustrate the striking improvement whenever
the training data varied in rotation, Supplmentary Figure 1
shows the same kind of graph as Figure 4 but for the TS
model, i.e., the model trained with variable translation and
scaling. Note how the error variance is about one order of

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 637806

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Arent et al. Synthetic Videos for Markerless Motion-Capture

TABLE 1 | p-values of pairwise Wilcoxon tests for the seven models of experiment I.

R RS S T TR TRS TS

R – ∗∗∗ ∗∗∗ ∗∗∗ 0.390 ∗∗∗ ∗∗∗

RS – ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

S – 0.189 ∗∗∗ ∗∗∗ 0.783
T – ∗∗∗ ∗∗∗ 0.095
TR – ∗∗∗ ∗∗∗

TRS – ∗∗∗

p-values below 0.001 are indicated by ∗∗∗. Column and row labels refer to the kind of randomized transformation applied to the training data. R, Rotation only; S, Scaling only; T,
Translation only; RS, Rotation and scaling; RT, Rotation and translation; TS, Translation and scaling; TRS, Translation, rotation and scaling.

magnitude larger than that of the RS model shown in Figure 4,
irrespective of body feature. Moreover, the clear proximal-to-
distal ordering of error magnitude found for the RS model
is lost for the TS model. We conclude that optimal motion
capture performance requires sufficient variation of rotation in
the training data.

To illustrate the consistency of tracking across an entire
synthetic video, Figure 5 shows the error for each frame. The
tracking is not uniformly good as there appear to be more
‘‘difficult’’ episodes around frames 850 and 1,500. The top
inserts to Figure 5 show some selected frames from these
regions. For example, frames 861 and 862 show large tracking
errors of the right middle leg tarsus (blue circles). Typically
this seems to happen when the tarsus is occluded by the
tibia or when the right middle leg crosses the right hind leg.

FIGURE 4 | Proximal body parts have lower errors than distal ones.
Distributions show the pixel errors for 22 individual body features
(n = 1,600 per distribution). The error is the Euclidean distance between the
ground truth and the network prediction. This particular model has been
trained on a video which included random rotations and scaling (RS).
Distributions were sorted from top to bottom by increasing standard
deviation. The color code groups body parts according to a proximal-to-distal
gradient (red: thorax and head; orange: coxae; green: tibiae; blue: tarsi). The
scale factor converting pixels to mm was in the range of 0.18–0.55 mm/pixel,
depending on the scaling factor of the random transformation.

In this case the occlusion also has a detrimental effect on
the tracking.

Significance of Rotation by 180◦

Given the conclusion of the previous section, we wanted to
find out how much variation of rotation is sufficient. To this
end, we ran a second experiment in which eight models were
trained on videos that differed in the amount of variation in

FIGURE 5 | Test error is equally low for most frames. Median pixel errors of
all body features were included. The model was trained on video comprising
frames with five scaling factors and eight rotations (RS, as in Figure 4). The
pixel error varies around a common mean for most video–episodes with three
peak regions beyond 3.0 at frames 670, 800–900 and 1,500. These peaks
correspond to “difficult postures.” The dashed red line represents the median
and the two yellow lines are the first and third quartiles. The black line
represents the 1.5 times the interquartile range. The top row shows selected
frames from difficult regions. Colored points label the features tracked.
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FIGURE 6 | Rotation by at least 180◦ greatly improves performance.
Average pixel error for eight models with varying degree of rotation. Rotations
were applied in steps of 45◦, with model number indicating the cumulative
number of rotation steps. Model 5 is the first model that was trained on
postures with a rotation range larger than 180◦. Models that were trained on
videos with six or more rotation steps have the least error. Note that, for the
sake of clarity, outliers are not shown. As yet, all data points were included in
any and all statistical computations. The scale factor converting pixels to mm
was in the range of 0.18–0.55 mm/pixel, depending on the scaling factor of
the random transformation.

rotation angles. Instead of random variations, we added one
further rotation angle step by step, with increments of 45◦. As
a result, we obtained eight models, where the first had been
trained on animal postures with a single body orientation, the
second had been trained on postures with two orientations (0◦

or 45◦ rotation), the third had been trained on postures with
three orientations (0◦, 45◦, 90◦) and so on. Figure 6 shows
that the median error decreased with increasing number of
rotation angles added. The error dropped most strongly across
the first four models (0◦–135◦ rotation). Furthermore, we found
that a major drop in the error range occurs across the first
six models (0◦–225◦ rotation) with the addition of the fifth
rotation angle, i.e., including 180◦ rotation (opposite walking
directions), marking the steepest decrease in error range. Here
the median error dropped from 42 pixels (no rotation) to 3 pixels
(corresponding to 0.54–1.65mm, depending on the scaling factor
of the random transformations), and the inter-quartile range
of the error dropped from 69 (no rotation) to 37. Given the
bilateral symmetry of the animal, the significance of having at
least 180◦ of rotation range suggests that beyond this point
it may be easier to tell the front end from the rear end of
the animal.

Transfer to Experimental Data
Next, we tested how well training on synthetic video data
transferred to normal laboratory video material. Real animal

video material differs in many ways from our synthetically
created videos, for example with regard to noise, motion blur,
lens distortion and overall appearance of the animal. Our
experimental video comprised 286 manually labeled frames
taken from digital videos of a stick insect walking on a
horizontal surface in one of eight directions (∼45◦ rotation
steps). The image size of the animal was varied by zooming
in or out. In this third experiment, a first set of Experimental-
only models was trained from scratch. For comparison, a set
of Synthetic+Experimental models was trained using the most
advanced model from Experiment I (Figure 3) to start with,
i.e., a model trained on postures with variable rotation and
scaling. Further, to assess the amount of additional training with
manually annotated video material, the fraction of frames used
for training was varied in four steps. For example, a training
fraction of 20% means that 20% of the 286 annotated video
frames were used for training, while the remaining 80% were
used for testing. Finally, as the training fraction was drawn at
random, a total of 40 models was trained, with five instances
per combination of ‘‘model type’’ × ‘‘training fraction’’. Figure 7
shows representative output examples from four models,
two Experimental-only models and two Synthetic+Experimental
models, where each of these pairs (columns in Figure 7) shows
one example for a model trained with a training fraction
of 80% (top row in Figure 7) and another trained with a
training fraction of 10% (bottom row in Figure 7). The results
indicate that the performance of both the Experimental-only and
Synthetic+Experimental models are equally good when trained
with a training fraction of 80%. The smaller the training fraction,
the more frequent become the low-confidence position estimates
and mis-location errors.

We assessed whether we could achieve an error margin
of ≤4 px and determine how much training data variation
was needed to reach this error margin. The 4 px margin was
established because on the lower zoom settings this corresponds
to about 2.8 mm. As the adult females typically measure about
80 mm (Theunissen et al., 2015), this seemed reasonable. The
lower zoom setting was selected as benchmark because here
deviations and tracking inaccuracies were larger compared to the
size of the insect than on higher zoom settings.

Figure 8 summarizes the performance for all 40 models
(five per model type and training fraction). Both the
Experimental-only and the Synthetic+Experimental models
improved with increasing training fraction. Both kinds of model
performed similarly well when using a training fraction of 80%,
while the Experimental-only models performed considerably
worse than the Synthetic+Experimental models when trained
with a training fraction of only 10%. For both model types,
training errors were very similar, and generally very low,
irrespective of training fraction. Nevertheless median test errors
were always significantly lower for Synthetic+Experimental
models (e.g., Training fraction 10%; Wilcoxon’s U-test on
rank sums: U = 2.0, n1 = 5, n2 = 5, p = 0.0184), except for the
training fraction of 80%. At this training fraction median errors
of both the Experimental-only and Synthetic+Experimental
models converged to a similar level of performance and median
pixel errors are the same for both Experimental-only and
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FIGURE 7 | Synthetic training data can lead to good model performance. Selected frames illustrate performance of model variants that do (Synthetic +
Experimental, right panels) or do not (Experimental-only, left panels) include artificially generated frames, and differ in the fraction of training data (top panel: 80% of
frames were annotated for training; bottom panel: Only 10% of frames were annotated). Circles mark the position of high-confidence estimates of the network,
crosses mark low confidence estimates; + symbols mark manually annotated positions. (A) The Experimental-only model with a training fraction of 80% achieved
good performance (no mis-locations). (B) The Synthetic + Experimental model with 80% training fraction achieved similarly good performance as (A). (C) The
Experimental-only model with 10% training fraction showed some errors and low-confidence estimates. (D) The Synthetic + Experimental model with 10% training
fraction shows several errors.

Synthetic+Experimental models (three pixels, corresponding to
0.6–2.3 mm, depending on the zoom settings of the camera).
Only for this highest training fraction did the median error
of the Experimental-only models fall into the 95% confidence
bands of the Synthetic+Experimental model errors. Moreover,
the confidence cut-off appeared to improve the performance of
all models slightly. However, this difference tuned out to be not
significant, irrespective of model type (U = 169, n1 = 20, n2 = 20,
p = 0.205 for pooled Experimental-only models; U = 178.5,
n1 = 20, n2 = 20, p = 0.285 for pooled Synthetic+Experimental
models). Finally, the median error of the Synthetic+Experimental
models was <3 pixels with a training fraction as small as 50%.
We conclude that the use of synthetic videos for pre-training
of deep neural networks can reduce the amount of manual
annotation by at least 37.5% (3/8) without a decrement
in performance.

DISCUSSION

Requirements on Feature Variation
While deep neural networks have been repeatedly shown to
achieve very good performance in marker-less motion capture
(Datta et al., 2019), the choice of appropriate training data
remains crucial for their performance. Mathis et al. (2018)
showed that accuracy of DeepLabCut mainly depends on two
factors: the number of frames used for training and the number
of body parts to be tracked. They reported that 200 frames are
sufficient to reach a good performance level. Figures 3, 6 confirm
this. As yet, both of these figures also prove that the amount
of parameter variation has a profound impact on performance,
particularly the variation of rotation. As expected for a fully
convolutional neural network, translation has no impact on the
performance of DeepLabCut. In contrast, scaling has a small
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FIGURE 8 | Comparative evaluation of Experimental-only and
Synthetic + Experimental models. Individual points represent different
networks. Average pixel errors are plotted against the fraction of training
frames in the video. Training errors (lower lines) are nearly equal for all
networks. Performance of the Synthetic + Experimental models (red and
yellow lines with confidence bands) was better than that of models that were
trained on experimental data only (blue lines with error bars). Estimates with
and without a cut-off threshold of 10 reveal a small improvement if the cut-off
is applied, though this difference is not statistically significant. Each dot
represents one data point. The scale factor converting pixels to mm was in
the range of 0.202–0.771 mm/pixel, depending on the zoom setting of the
camera (see Supplementary Table 1).

but statistically significant effect (Figure 3 and Table 1), at least
within the tested range of 0.5× to 1.5×. It is possible that
larger deviations in size will affect the performance more. In
experiments on insects, the tested scaling range should cover
samples from three to five successive developmental stages. For
example, in stick insects of the species Carausius morosus, a
threefold increase in size would cover the size difference between
larval Stages 1 and 3 or between Stages 3 and 7 (assuming size
data of Ling Roth, 1916). The scale variation in the experimental
data set should exceed this range, synthetic generation of training
data would allow for arbitrary size variation during training.

Clearly the main problem of DeepLabCut concerns image
rotations, which have to be learnt entirely from rotational
variation in the training data. Although rotation equivariance has
been implemented in neural network applications (e.g., Cohen
and Welling, 2016; Chidester et al., 2018), it is not a property
of ResNet (He et al., 2016) nor of systems that are based on
it, including DeepLabCut. As a result, if rotational variation in
the training data was insufficient, the net will perform poorly
during the tracking task if it encounters small deviations in
body orientation.

Figure 6 shows that five rotations (0–180◦) are sufficient
for good generalization in our motion tracking showcase. This
makes sense because including the +180◦ rotation allows the
network to tell the rear from the front end of a bilaterally

FIGURE 9 | Occlusion of body parts. Here the tarsus of the left hind leg
(dark green cross) is occluded by the hind leg femur. The network mistakes
the tarsus of the middle leg (light green cross) as the tarsus of the hind leg
(dark green circle). The ground truth is marked by crosses, whereas circles
mark network estimates.

symmetric animal. Together with only three intermediate
rotational steps, the system can successfully track animals which
are oriented along angles that the network never experienced
during training. Data variation beyond 180◦ rotation further
reduced the tracking error, but to a much smaller degree.
Although our results suggest that five rotations in steps of 45◦

are enough to generalise across all rotations, the actual number
of rotational steps in the training data may not be crucial. Since
the average error dropped markedly only after the network had
been trained on the frameset including the 180◦ rotation, it may
be the range that is important, rather than the number of steps
comprised in it. At present, we cannot distinguish between these
two possibilities.

Benefits and Limits of Pre-training With
Synthetic Data
As shown by Figure 5, tracking accuracy is persistently accurate
for long test sequences. The inserts to Figure 5 also show that if
performance falls short of the average accuracy, the underlying
causes may not be clear. This may be because at least two
important properties of the deep neural network approach have
both advantages and disadvantages. For example, the ability
to learn features of 2D projections of 3D postures is a major
strength of deep convolutional networks. As yet this may cause
problems if 2D projections involve occlusions (e.g., see Figure 9)
because the learnt feature may be masked by a feature of the
occluding body part. Thus, if occlusions are frequent, they may
either have to be learnt as a separate feature as such, or else be
disambiguated by additional camera views. Combining multiple
views has been proposed in tracking systems such as DeepFly3D
(Günel et al., 2019) or Anipose (Karashchuk et al., 2020). With
multiple camera views, the utility of synthetic video data should
be potentiated by the number of cameras, n, as each posture of
the database is rendered (and automatically annotated) n times,
thus reducing the amount of manual labeling by (n − 1)×F for F
training frames.

Another property that comes with benefits and problems alike
is the use of score maps with probability estimates. Whereas
this has obvious advantages in case of motion blurring (e.g., see
right front leg R1 in Figure 1B), peak confidence values may
not always indicate the correct location of a feature. In case of
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motion blur, a feature may almost vanish but still be identified
by means of its most likely position estimate. Occasionally,
however, juxtaposed features may lead to score maps with
multiple local maxima of the confidence rating. In such cases,
the global maximum need not yield the most accurate estimate.
We argue that in both of these cases the use of synthetic
training data may improve performance on experimental data,
for example if motion blur reduces manual annotation accuracy,
or if rare ‘‘difficult postures’’ require particularly large training
data sets that are easy to synthesise but difficult to obtain through
manual annotation.

We had expected the Synthetic+Experimental models to
transfer features learned from synthetic data to real video frames,
such that experimental analysis could be run after additional
training with very small sets, e.g., 20–30 video frames. This was
not quite the case, despite the fact that Synthetic+Experimental
models performed significantly better than Experimental-only
models when trained with low frame numbers (see Figure 8;
training fractions of 10–50%). As shown in Figure 7D, a
Synthetic+Experimental model that was trained with additional
28 experimental video frames shows considerable errors. For
the corresponding Experimental-only model in Figure 7C this
was expected because 28 training frames were far less than the
minimal requirement on training data as determined by Mathis
et al. (2018).

Nevertheless, Figure 8 clearly shows that pre-training on
synthetic data reduces the amount of manually annotated
experimental training data by some 50%, thus effectively halving
human effort. Despite training errors were equally low for
all models, Synthetic+Experimental models outperformed all
Experimental-only models that were trained with <150 frames
(e.g., training fraction 50%). Since generating and annotating
synthetic frames is done automatically and considerably faster
than manual labeling, the reduction of human effort and work
time is considerable.

It should be noted that our synthetic data used a rather
simplistic multi-cylinder model, suggesting that increased
realism of the synthetic data may lead to further improvement.
In applications for automated human pose estimation, more
complex synthetic data sets have been used (e.g., Varol et al.,
2017). Our results show that pose estimation applications on
single insect species can achieve good performance with much
simpler body shape models. We attribute this to much smaller
inter-individual variation of body shape in insects than in
humans. Future work will need to test whether and how body
shape models have to becomemore sophisticated if single trained
networks were to be applied to multiple species and both
sexes. In classification problems involving composite images of
multiple, geometrically simple objects, synthetic training images
may not need to be rendered at all, but rather be generated by

image processing. For example, Toda et al. (2020) successfully
applied a technique called domain randomization to create
synthetic images of grains with a high degree of variation.
While such approaches nicely illustrate the power of modern
image processing techniques, it is unlikely that deep learning
applications tomotion capture and/or pose estimation of animals
could be trained successfully on synthetic images generated
without an underlying body model.

In summary, we have presented a show-case example of
unrestrained walking stick insects, showing that training with
synthetic data can effectively reduce the amount of manual data
labeling for DeepLabCut, a deep convolutional neural network
for motion tracking and pose estimation. Provided that the
synthetic training data includes sufficient variation of rotation,
even a simple multi-cylinder representation of the model animal
can reduce the amount of manual annotation by some 50%.
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