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INTRODUCTION

Neuroblastoma (NB) is the most common extracranial solid 
tumor in the pediatric population. NB accounts for 7-10% of all 
childhood cancers and 15% of all cancer-related mortalities 
in children. It is the most common cancer diagnosed during 
infancy (Gurney et al., 1997; Mueller and Matthay, 2009). The 
prevalence is about 1 case per 7,000 live births, and there are 
700 new cases in the United States annually (Brodeur, 2002). 
NB is a malignant tumor composed of neural-crest-derived un-
differentiated neuro-ectodermal cells of the adrenal medulla or 
sympathetic neurons (Cianfarani and Rossi, 1997). Typically, 
NB tumors occur in the adrenal medulla or paraspinal sym-
pathetic ganglia of the abdomen, chest, or neck. The causes 
of NB and the factors implicating the anabasis of the disease 
have yet to be fully elucidated. NB is metastatic in 70% of 
patients at the time of diagnosis (Ara and DeClerck, 2006). 
Metastasis in NB occurs in 70% of the cases in the bone mar-
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Abstract

row and 56% of the cases in the bone (DuBois et al., 1999). 
The mechanisms by which NB cells invade the bone marrow 
and bone have only begun to be elucidated recently. Despite 
current therapeutic advances, ongoing clinical trials and ba-
sic science investigations, neuroblastoma remains a complex 
medical challenge with an unpredictable clinical course and 
dismal overall outcome for advanced-stage disease (Modak 
and Cheung, 2010; Lee, 2012). Therefore, many approaches 
are still undergoing (Roy Choudhury et al., 2012).

Although the proper care for NB is not established, there 
are alternative therapeutic approaches. All-trans retinoic acid 
(ATRA), a vitamin A derivative, is a potent agent of cellular 
differentiation and growth inhibition in normal and cancer-cell 
types (Freemantle et al., 2003; Garattini et al., 2007). In vitro 
studies with ATRA in solid tumor cell lines, including NB, have 
shown great potential for ATRA as a new adjuvant therapeutic 
agent (Redfern et al., 1995; Freemantle et al., 2003). How-
ever, despite encouraging laboratory findings, retinoids have 

Original Article
Biomol  Ther 20(3), 286-292 (2012)

www.biomolther.org  



287

Lee et al.   Role of Tgase-2 in ATRA-Induced Invasion 

www.biomolther.org

tem (Fisher Scientific, Houston, TX, USA), photographed (40× 
magnification) and counted from 10 randomly selected fields. 
All of the experiments were repeated at least three times with 
two replicates each.

Zymography
Samples were subjected to regular non-reducing SDS-

PAGE in gel copolymerized with 1 mg/ml gelatin. After elec-
trophoresis, gels were washed in 2.5% Triton X-100, rinsed 
in water, and incubated in a buffer containing 50 mM Tris, 0.2 
M NaCl, and 5 mM CaCl2 overnight at 37oC. Enzyme/inhibitor 
activity was visualized by staining with Coomassie Blue.

Cell culture and gene silencing of tgase-2
Human neuroblastoma SH-SY5Y cells were obtained from 

the American Type Culture Collection. SH-SY5Y cells were 
maintained in MEM media supplemented with 10% fetal bo-
vine serum (FBS) (Welgene, Korea). All cells were grown at 
37oC in a humidified 5% CO2 atmosphere. 

A small interfering RNA (siRNA) duplex targeting human 
Tgase-2, 5'-AAG AGC GAG AUG AUC UGG AAC-3' (Invitro-
gen) was introduced into the cells using Lipofectamine 2000 
Reagent (Invitrogen, Carlsbad, CA), according to the manu-
facturer's instruction. Universal negative siRNA (Invitrogen, 
Carlsbad, CA) was employed as the negative controls.

For stable expression of shRNA against Tgase-2 through 
lentiviral infection, SH-SY5Y cells were grown in MEM con-
taining 10% FBS for 24 h and incubated with polybrene (5 mg/
ml) for 1 h before the addition of the lentiviral vector (approxi-
mately 1 molar ratio of infection). After 24 h, the medium was 
replaced and cells were grown for 1 day. SH-SY5Y sh control 
(SH5YShCon) and SH-SY5Y sh Tgase-2 (SH5YShTG2) stable cell 
lines were selected in 5 mg/ml puromycin dihydrochloride and 
maintained in growth medium containing 2 mg/ml puromycin 
dihydrochloride. To avoid clonal variations, we pooled individ-
ual infectants for each stable cell line produced by infection.

Western blot
After incubation, the cells were collected and washed 

twice with cold PBS. The cells were lysed in a lysis buffer 
[50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% triton X-100, 2 
mM EDTA, 1% DOC (Deoxycholic acid), 0.1% SDS, 1 mM 
NaVO3, 10 mM NaF, 1 mM DTT] and centrifuged to yield 
whole-cell lysates. Protein concentration was measured us-
ing the Bradford method. Aliquots of the lysates (10-20 mg of 
protein) were separated on a 4-12% SDS-polyacrylamide gel 
and transferred onto a polyvinylidene fluoride (PVDF) mem-
brane (Invitrogen, Carlsbad, CA, USA) with a glycine transfer 
buffer [192 mM glycine, 25 mM Tris-HCl (pH 8.8), 10% MeOH 
(v/v)]. After blocking the nonspecific site with 3% non-fat dry 
milk, the membrane was then incubated with specific primary 
antibody in 3% BSA at 4oC for overnight. The membrane was 
further incubated for 60 min with a peroxidase-conjugated 
secondary antibody (1:5,000, Santa Cruz, CA, USA) at room 
temperature. Immunoactive proteins were detected using the 
PowerOpti-ECL western blotting detection reagent (Animal 
Genetics Inc., Gyeonggi, Korea).

Preparation of nuclear and cytosolic fractions
Nuclear extract was prepared using CelLytic Nuclear Ex-

traction Kit (Sigma, USA) following the manufacturer's instruc-

had disappointing results in patients with solid tumors due to 
acquired resistance mechanisms (Freemantle et al., 2003).

The relationships of retinoid-resistance with invasion and 
metastasis of neuroblastomas have not been fully investigat-
ed. It has been reported that ATRA induces NF-kB activation 
and matrix metalloproteinases-9 expression and enhances the 
basement membrane invasiveness of all-trans retinoic acid-
resistant human SK-N-BE 9N neuroblastoma cells (Farina et 
al., 2002). However, it is not known how all-trans-retinoic acid 
induces NF-kB activation and matrix metalloproteinases-9 ex-
pression. Also a recent report showed that short term ATRA 
treatment promotes the migration and invasion of neuroblas-
toma SH-SY5Y cells via retinoic acid receptors and Tgase-2 
(Joshi et al., 2006). Tgase-2 is one of the most ATRA-induced 
proteins in NB (Murtaugh et al., 1986). It is well known that 
ATRA-induced Tgase-2 is involved in promoting the neurite 
outgrowth and differentiation of NB. It is interesting and sur-
prising that Tgase-2 has a role in invasion of ATRA-induced 
NBs. However, the detailed role and mechanism of Tgase-2's 
involvement in ATRA-induced invasion of NB remains unclear. 
In this report, we showed that Tgase-2 is involved in ATRA-
induced invasion and MMP expression by NF-kB activation. 

MATERIALS AND METHODS

Materials
The All-trans retinoic acid and other common chemicals 

were purchased from Sigma (St Louis, MO, USA). Tissue cul-
ture media and serum were acquired from WelGENE (Seoul, 
Korea). The matrigel matrix was obtained from BD Bioscienc-
es (Franklin Lakes, NJ, USA). Lipofectamine 2000 Reagent 
was from Invitrogen (Carlsbad, CA, USA). Tgase-2 antibody 
was purchased from Neomarkers (Newington, NH, USA), and 
antibodies against b-actin were acquired from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Rabbit polyclonal an-
tibodies against phospho-65, IkBa were from Cell Signaling 
Technology Inc. (Beverly, MA, USA). shRNA-lentiviral par-
ticles against human transglutaminase 2 and control lentivi-
ral particles were from Santa Cruz Biotechnology Inc. (Santa 
Cruz, CA, USA).

Cell culture and ATRA treatment
SH-SY5Y cells were grown in a medium containing 10% 

serum, and 1% antibiotics (10,000 mg/ml streptomycin and 
10,000 units/ml penicillin) at 37oC in a humidified incubator 
with 5% CO2. The cells were incubated in a medium contain-
ing 3% serum for 12 hr and then treated with 5 mM RA or 
vehicle (DMSO) for 2 days. Treatment of cystamine was per-
formed also in a medium containing 3% serum.

Invasion assay using transwell plates
Cell invasion was studied using matrigel-coated (0.7 mg/

ml) transwell inserts, as described previously (Mehta et al., 
2004; Cha et al., 2011). Trypsinized cells were suspended in 
serum-free medium without RA, and 5×105 cells were added 
to the upper chamber of the transwell inserts. Medium with 
3% serum was added to the lower chamber. After 24 hr incu-
bation of SH-SY5Y cells, the nonmigrated cells on the upper 
surface of the membrane were scraped off, and the cells on 
the lower surface were stained using the Hema 3 staining sys-
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tions (Guidez et al., 1998). Cell pellets were resuspended in 
isotonic buffer (10 mM HEPES, pH 7.5, 2 mM MgCl2, 3 mM 
CaCl2, 300 mM Sucrose, 0.2 mM PMSF, 0.5 mM DTT, 10 mg/
ml aprotinin) and incubated on ice for 15 min. Cells were then 
lysed by adding 0.6% IGEPAL A-630 solution and vortexed 
vigorously for 10 s. Centrifuge immediately for 30 seconds at 
10,000g. Transfer the supernatant to a fresh tube. This frac-
tion is the cytoplasmic fraction. Resuspend the crude nuclei 
pellet in high salt buffer (20 mM HEPES, pH 7.9, 25% glycerol, 
420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 
1 mM NaF, 1 mM sodium orthovanadate) and centrifuge at 
12,000g for 5 min at 4oC. This fraction is the nucleus fraction.

Statistical analysis
The statistical significance of the data was evaluated using 

a one-way analysis of variance, the 0.05 probability level indi-
cating significant differences.

Fig. 2. Expression of MMP-2 and MMP-9 in ATRA-induced inva-
sion in SH-SY5Y. (A) Representative gelatin zymograms demon-
strating MMP-9 and MMP-2 activity of SH-SY5Y cells treated with 
5 mM ATRA (w/wo CTM at 100 mM) in 24-h serum-free conditioned 
medium. (B) Densitometric analysis of MMP-9 from zymogram of 
(A). (C) Densitometric analysis of MMP-2 from zymogram of (A).

Fig. 1. Invasion of ATRA-treated SH-SY5Y cells and effects of cysta-
mine on invasion of ATRA-treated SH-SY5Y cells. (A) Effects of ATRA 
on invasion of SH-SY5Y cells. The SH-SY5Y cells were treated with 
various amount of ATRA (1-10 mM). Average number of invaded cell 
from (B). (B) Photographs of invaded SH-SY5Y cells. Cells invaded 
through the membrane after 48 h of incubation were stained and pho-
tographed. (C) Effects of cystamine on invasion of SH-SY5Y cells. The 
SH-SY5Y cells were treated with (5 mM) or without ATRA for 24 h, or 
treated with ATRA and various amounts of cystamine for 1 h. Average 
number of invaded cells from (D). (D) Photographs of invaded SH-
SY5Y cells. Cells invaded through the membrane after 48 h of incuba-
tion were stained and photographed. *p<0.05 versus control (Con) or 
#p<0.05 versus ATRA (5 mM). 
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RESULTS

One day ATRA treatment promotes invasion and cysta-
mine inhibits ATRA-induced invasion of SH-SY5Y 

To examine the role of Tgase-2 in 1 day treatment effect of 
ATRA on invasion of SH-SY5Y cells, ATRA is added to SH-
SY5Y cells and invasion was examined by in vitro invasion 
assay, using matrigel matrix-coated transwell inserts. The ef-
fect of ATRA on the capacity of the cells to invade tissue bar-
riers was studied in an ATRA treatment for 1-2 days. ATRA 
dose-dependently increased the invasion capacity (Fig. 1A, 
1B). Cystamine (CTM), well-known Tgase inhibitor, dose-
dependently suppressed ATRA-induced invasion of SH-SY5Y 
(Fig. 1C, 1D).

ATRA induces MMP-9 and MMP-2 activation and cysta-
mine inhibits MMP-9 and MMP-2 in SH-SY5Y cells  

To elucidate how CTM inhibits the ATRA-induced invasion 
of the SH-SY5Y cells, we examined whether CTM affects the 
MMPs activity of SH-SY5Y cells. We tested the activities of 
MMPs in ATRA-induced invasion of SH-SY5Y cells by zymog-
raphy. ATRA (5 mM) induced MMP-9 and MMP-2 in SH-SY5Y 
cells after 1 day of treatment (Fig. 2A). CTM reduced the activ-

ity of MMP-9 and MMP-2 in the SH-SY5Y cells (Fig. 2A-C).

Gene silencing of Tgase-2 inhibits the expression of MMP-
2 and MMP-9 in ATRA induced invasion of SH-SY5Y cell 

CTM is non-specific Tgase inhibitor. To clarify the involve-
ment of Tgase-2 in the mechanism of CTM which suppressed 
the MMP-2 and MMP-9 activation of ATRA-induced invasion 
of SH-SY5Y cells, gene silencing of Tgase-2 was done. The 
siRNA of tgase-2 decreased the expression of Tgase-2 protein 
(Fig. 3A). A zymogram showed that ATRA increased the activi-
ties of MMP-2 and MMP-9 and the gene silencing of Tgase-2 
reduced the MMP-9 and MMP-2 activity compared with mock 
or negative control (Fig. 3B-D). 

ATRA induces activation of NF-κB, and CTM inhibits it 
MMP-2 and MMP-9 are related with NF-kB activation. The 

involvement of Tgase-2 in NF-kB in SH-SY5Y cells with 1 
day treatment of ATRA was examined using CTM and gene 
silencing. ATRA dose-dependently increased Tgase-2 and de-
creased the expression of IkBa in the cell and increased the 

Fig. 3. Effects of gene silencing of Tgase-2 on expression of 
MMP-2 and MMP-9 in ATRA-induced invasion of SH-SY5Y. (A) 
Western blot of Tgase-2 in ATRA and with or without Tgase-2 siR-
NA treated SH-SY5Y cells. (B) Representative gelatin zymograms 
demonstrating MMP-9 and MMP-2 activity of SH-SY5Y cells treat-
ed with 5 mM ATRA with or without Tgase-2 si-RNA in 24-h serum-
free conditioned medium. (C) Densitometric analysis of MMP-9 
from zymogram of (B). (D) Densitometric analysis of MMP-2 from 
zymogram of (B).

Fig. 4. Activation of ATRA-induced NF-kB, and suppression of 
ATRA-induced NF-kB activation by CTM or gene silencing. (A) 
Western blot of Tgase-2 and IkBa in ATRA-induced invasion of 
SH-SY5Y cells. (B) Western blot of NF-kB p65 in nucleus fraction 
and IkBa in cytosol fraction of ATRA-treated SH-SY5Y cells (w/
wo CTM at 100 mM). (C) Western blot of NF-kB p65, and Tgase-2 
in nucleus fraction and IkBa and Tgase-2 in cytosol fraction in 
SH-SY5Y and SH-SY5YShTG2 with or without ATRA. (D) Proposed 
scheme of involvement of Tgase-2 in ATRA-induced invasion of 
SH-SY5Y cells.
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expression of Tgase-2 (Fig. 4A).
Moreover, ATRA treatment increased the nucleus p65 and 

Tgase inhibitor CTM suppressed the p65 in nucleus (Fig. 4B). 
CTM treatment also decreased the Tgase-2 expression and 
increased the expression of IkBa. We established Tgase-2 
deficient SH-SY5Y cells (SH5YShTG2) with lentivirus containing 
Tgase-2 (Fig. 4C). ATRA did not induce the translocation of 
p65 to nucleus in SH5YShTG2 cells (Fig. 4C). In contrast, ATRA 
did not degrade the IkBa in cytosol of SH5YShTG2 cells com-
pared with SH-5YShcon cells (Fig 4C).

DISCUSSION

Joshi et al. clearly showed the involvement of Tgase-2 in 
short-term treatment of ATRA-induced SH-SY5Y migration 
(Joshi et al., 2006). In here, we showed that 1 day treatment 
of ATRA promotes invasion and cystamine inhibits ATRA-in-
duced invasion of SH-SY5Y (Fig. 1).

Tgase-2 is an enzyme which mediates the crosslinking 
of lysine and glutamine residues leading to form isopeptide 
bond (Lee and Kim, 2009). This enzyme is involved in sur-
vival and resistance of anticancer agents such as doxorubi-
cin via activation of NF-kB (Kim et al., 2006; Lee and Kim, 
2009). Tgase-2 is also involved in migration of cancer cells. 
Tgase-2 is a strong binding partner of fibronectin, and interac-
tions between surface Tgase-2 and integrins and proteins in 
ECM such as fibronectin are known to play an important role 
in adhesion and migration (Akimov et al., 2000; Priglinger et 
al., 2004; Zemskov et al., 2006). Recently we showed that 
cytosolic Tgase-2 mediates the sphingosylphosphorylcholine-
induced migration (Park et al., 2011). 

However, the specifics of how cytosolic Tgase-2 is involved 
in invasion are unknown. Especially the fact that cystamine 
suppressed the ATRA-induced invasion of SH-SY5Y cells 
suggested that Tgase-2 plays an important role in neuroblas-
toma invasion.

Fig. 2's zymography confirms that ATRA-induced invasion 
of SH-SY5Y cells is implicated in activation of MMP-2 and 
MMP-9. These results are similar to those for ATRA-resistant 
SK-N-BE(9) (Farina et al., 2002).  

Initially, the involvement of Tgase-2 in activation of MMPs 
induced by ATRA was confirmed by cystamine (Fig. 2). Metal-
loproteinases such as MMP-9 are well-known to be involved in 
invasion in many tumor cells (Woessner, 2002). Indeed, a pos-
itive correlation has been observed between the expression of 
metalloproteinases and the aggressiveness of NBs and other 
human malignancies (Mackay et al., 1992; Sato et al., 1995; 
Festuccia et al., 1996; Sugiura et al., 1998). 

Cystamine inhibited the Tgase-2 via SH-group of cystein 
in active site and is not quite specific for Tgase-2. To confirm 
whether Tgase-2 is involved in MMP-2 and MMP-9 activity, 
gene silencing of Tgase-2 experiment was done. As a result, 
gene silencing of Tgase-2 suppressed the MMP-2 and MMP-9 
in ATRA-induced invasion of SH-SY5Y cells (Fig. 3). These re-
sults suggested that Tgase-2 is involved in MMP-9 and MMP-
2 activation leading to invasion of neuroblastoma.

To investigate how Tgase-2 is involved in the activation of 
MMP-2 and MMP-9 in ATRA-induced invasion of neuroblas-
toma, we tested effect of the Tgase inhibitor on the activation 
of NF-kB in neuroblastoma. In classical model, activation of 
the transcriptional response is mediated by translocation of 

the nuclear factor-κB such as p65, which is held by inhibitors 
of NF-kB proteins such as IkBa (Natoli and Chiocca, 2008). At 
first, we tested whether ATRA induced activation of NF-kB in 
SH-SY5Y cells. ATRA-induced NF-kB activation was proved 
by disappearance of IkBa band and increase of p65 in nuclear 
fraction by western blot (Fig. 4). Therefore decrease of IkBa 
and translocation of p65 result in NF-kB activation (Fig. 4). 
ATRA-induced NF-kB activation also was observed in ATRA-
resistant SK-N-BE(9) cells and neuro-2 cells (Farina et al., 
2002; Condello et al., 2008). Therefore, these similarities sug-
gested that NF-kB is important in ATRA-resistance of neuro-
blastoma and Tgase-2 might play a role in ATRA resistance 
via NF-kB activation.

Cystamine (Tgase inhibitor) and gene silencing of Tgase-2 
suppressed the activation of NF-kB of neuroblastoma by ATRA 
(Fig. 4). It is proved by p65 and IkBa western blot. Cystamine 
suppressed the translocation of p65 to nucleus. It is not avail-
able the exact explanation how ATRA induced activation of 
NF-kB activation. One possible explanation is that RAR or 
RXR might form complex with p65 or p50 (subunit of NF-kB) 
to activate NF-kB. Examples of interaction of RAR and NF-kB 
were reported (De Bosscher et al., 2006). Other explanation is 
that proteins induced by ATRA stimulate the activation of NF-
kB. The latter one is more plausible since it is reported that 
Tgase-2 activates the NF-kB by IkB polymerization in microg-
lia cells and SH-SY5Y/TG2 cells expressing full-length human 
Tgase-2 (Lee et al., 2004). 

In Fig. 4B, IκBα level in the cytosolic fraction was not de-
creased by ATRA, while ATRA clearly decreased IκBα in the 
whole cell lysates (Fig. 4A). This discrepancy suggested that 
the decreased amount of IkBa in the whole lysates might be 
contributed by the IkBa in the nuclear fraction. Several reports 
demonstrated that IkBa enter the nucleus and dissociates NF-
kB from DNA and shuttle it back to the cytoplasm (Arenzana-
Seisdedos et al., 1995; Karin and Ben-Neriah, 2000). But our 
explanations require further studies.

The role and precise mechanism of activation of NF-kB 
in neuroblastoma is not clear, it is expected that Tgase-2 in-
duced by ATRA might mediate the activation of NF-kB in neu-
roblastoma. These expectation suggested that Tgase-2 might 
be involved in the activation of NF-kB in ATRA-resistant neu-
roblastoma such as SK-N-BE(9) (Farina et al., 2002). Well-
known role of Tgase-2 in neuroblastoma is related with out-
growth of neurite in differentiated NB cells. Therefore it is very 
interesting involvement of Tgase-2 in activation of NF-kB. Re-
cent reports emphasize the role of Tgase-2 in survival: Doxo-
rubicin induces the persistent activation of intracellular trans-
glutaminase 2 that protects from cell death (Cho et al., 2012); 
Tgase-2 is associated with a protective role in TNF-a-induced 
cell death as well as in 1-methyl-4-phenylpyridinum-induced 
cytotoxicity (Kweon et al., 2004; Beck et al., 2006); moreover, 
overexpression of Tgase-2 in SH-SY5Y cells induces inflam-
mation–related genes (Lee et al., 2006). In fact it is now com-
monly accepted that the signaling pathways and the genetic 
programs that orchestrate embryonic development and tis-
sue morphogenesis including differentiation are re-activated 
in cancer cells and can lead to the neoplastic dissemination 
of tumours (Schmidt et al., 1995; Boccaccio and Comoglio, 
2006). Therefore Tgase-2 in neuroblastoma must be recon-
sidered to be an important target for activation of MMPs and 
NF-kB in NB which are important players in invasion of NB 
cells (Fig. 4D).
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In conclusion, our results showed that Tgase-2 is involved 
in ATRA-induced activation of MMP-2 and MMP-9 and inva-
sion of SH-SY5Y cells via activation of NF-kB. The results also 
suggested that the suppression of ATRA-induced Tgase-2 
might suggest a new way of blocking the invasion and metas-
tasis of neuroblastoma.
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