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Abstract: In this study, we aimed to apply an untargeted LC/QTOF-MS analysis for the identification
of compounds that positively and negatively affect the acceptance of coffee beverages from liquid
coffee concentrates (CLCs) before and after storage. The metabolomic results were integrated with
physicochemical and sensory parameters, such as color, pH, titratable acidity, and oxygen contents,
by a bootstrapped version of partial least squares discriminant analysis (PLS-DA) to select and
classify the most relevant variables regarding the rejection or acceptance of CLC beverages. The
OPLS-DA models for metabolite selection discriminated between the percent sensory acceptance (the
Accepted group) and rejection (the Rejected group). Eighty-two molecular features were considered
statistically significant. Our data suggest that coffee sample rejection is associated with chlorogenic
acid hydrolysis to produce ferulic and quinic acids, consequently generating methoxybenzaldehydes
that impact the perceived acidity and aroma. Furthermore, acceptance was correlated with higher
global scores and sweetness, as with lactones such as feruloyl-quinolactone, caffeoyl quinolactone,
and 4-caffeoyl-1,5-quinolactone, and significant oxygen levels in the headspace.

Keywords: untargeted metabolomics; concentrated liquid coffee; sensory analysis; high-performance
liquid chromatography; mass spectrometry

1. Introduction

Coffee is the third most consumed beverage globally, preceded only by water and tea.
In 2020, despite the economic impact of the pandemic, 166 million sacks of coffee were
consumed worldwide [1]. In countries such as the USA and Japan, most coffee categories
depicted growth: 21 and 32% for the instant coffee category with market values close to
1000 and 4900 MUSD in the USA and Japan, respectively; 23 and 19% for the roasted and
ground coffee category with market values of 14,700 and 5477 MUSD, respectively; and
in the iced/ready-to-drink coffee segment (RTD), 11% growth and a 14% decline with
market values of 10,600 MUSD and 13,900 MUSD, respectively. Despite the decline in the
RTD category in Japan, its value remains remarkable compared to that of most traditional
categories, such as roasted and ground coffee or instant coffee [2]. The RTD category has
seen more than 140 launches during the past year, with more than 10% of these claiming
either distinctive sensory profiles associated with the extraction process (cold brew) or
another flavor attribute related to premiumization of the product. These new products
require exceptional flavor and aroma, a brand-new experience, and an extended shelf life
that is compatible with new consumption habits [2].

The coffee market has a deep appreciation for Colombian coffee due to its soft palata-
bility, delicate acidity, and intense aroma. Colombian coffee has more acidity, citrus-like and
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fruity red notes, and a soft taste. Sometimes, the postharvest process imparts dedicated fer-
mented notes to the cup, which is a unique characteristic of washed coffees. The emergence
of the specialty coffee segment has motivated science to examine the chemical phenomena
occurring among coffee cultivars and their origin and postharvest and posterior processing
to produce highly appealing products with special sensory profiles [3]. The understanding
of the sensory profiles of coffee beverages has migrated from hedonic attributes that assess
the product’s quality to descriptors that provide detailed information on products that meet
the quality criteria required by processing but are specific for certain markets. However, the
identification of chemical markers related to the sensory quality of coffee products has been
a challenge [4–6]. The roasted and ground coffee segment has widely incorporated this
sensory description of the products, but this is not the case for instant coffee or concentrated
extracts, as coffee bean and posterior extract processing imparts features that diverge from
the traditional profile expectation.

Moreover, the chemical composition of coffee beverages comprises a wide range of
families of substances present in different concentrations. To date, more than 1000 com-
pounds have been reported [7,8]. Numerous studies have been conducted to understand
the impact of chemical composition on the final coffee beverage, including origin [9–11],
cultivar [12,13], postharvest processing [11], and industrialization [6,14]. Prior to 2006,
most of these studies utilized multivariate statistical methods to explain the variability of
the complex data, accompanied by instrumental analytical methods with conventional de-
tectors, known as targeted analysis. Nevertheless, this approach does not provide sufficient
resolution power to explain the overall variation and complete correlation with the sensory
attributes to assess the shelf life of the new products.

The perception of coffee quality is mainly driven by its aroma, while acceptance of
the beverage is mostly related to the perceived taste. The hedonic attributes usually used
to assess the product do not discriminate across the chemical fingerprints of the samples,
while the analytical platforms available for study do not provide sufficient granularity for
specific compound and reaction identification. Novel techniques including metabolomics
allow a better understanding of the chemical coffee composition in different matrices, such
as green coffee, coffee-based beverages, and roasted and ground coffee. The application of
untargeted metabolomics approaches in food science has emerged as a powerful tool to
explore the complete set of metabolites in these matrices, known as food metabolomics or
foodomics [14–18].

In recent years, food metabolomics has been applied to all stages of food systems,
from farms to industrial food processing and food intake [19]. Untargeted metabolomics
analyses of coffee have been carried out to identify the coffee’s origin [11], correlation
with sensory quality before roasting [12], roasting process [4,6,20,21], beverage and ex-
traction methods [11,20], and instant coffees [6]. However, there have not been enough
metabolomics studies to find the chemical markers that are associated with sensory rejec-
tion of coffee drinks from liquid coffee concentrates (CLCs) that have spent time in storage.
In our previous paper, we performed a targeted analysis to describe the dependence of CLC
acceptance based on decrement of the sensory quality and how these attributes correlate
with changes in the chlorogenic acid and carbohydrate contents [21].

Nevertheless, the chemical mechanisms involved in sensory deterioration are un-
known because of the complex composition of CLCs as coffee products. Evaluation of this
complexity has been used as an approach to understand the chemical reactions related to
sensorial spoilage of CLCs and to develop mitigation strategies. Similarly, the chemical
markers responsible for quality loss and taste differences in CLCs are currently not fully
understood. If the chemical markers and reaction mechanisms are identified, these studies
might be used to design mitigation alternatives for shelf life extension.

As reported in previous studies, the most critical attribute associated with CLC
spoilage is the aroma and increased perceived acidity. Aroma reductions occur due to
reactions between chlorogenic acids (CGAs), particularly 5-CQA and 3-CQA, and avail-
able oxygen to form quinic acid, ferulic acid, hydroxyhydroquinone (HHQ), and other
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related compounds [22–25]. Previous studies have demonstrated a possible correlation
between aroma reduction and the interaction of oxygen with mercaptofurans in coffee
beverages [25,26]. The development of undesirable acidity during coffee beverage storage
has been suggested due to the hydrolysis of chlorogenic acid lactones and changes in the
release of chlorogenic acids linked to melanoidins [27–29]. Other studies have argued that
these reactions generate changes in the aroma profile, imparting spicy and phenolic notes
from methoxy phenols as products of these chemical mechanisms of degradation [29,30].
Metabolomics has been implemented to investigate some coffee applications (green and
roasted coffee) but has not yet been considered for CLCs.

This study’s objective was to compare the sensory acceptance of beverages produced
from CLCs on an industrial scale and then stored for at least six months at room tempera-
ture with their frozen controls to determine correlations between their physicochemical
properties. Thus, an untargeted metabolomics approach was applied to select the main
metabolites and identify possible chemical markers associated with CLC sensory quality
and acceptance. The metabolomic results were integrated into physicochemical and sensory
parameters such as color, pH, titratable acidity, and oxygen contents by a bootstrapped
version of partial least squares discriminant analysis (PLS-DA) to select and classify the
most relevant variables regarding the rejection or acceptance of CLC beverages. The results
showed that the identified metabolites allow the assessment of possible deteriorative reac-
tions involving chlorogenic acids and their related compounds and methoxybenzaldehydes.
Changes in these kinds of substances were correlated with variations in the aroma and
acidity attributes. Overall, these findings agree with some reports by other authors on
coffee beverages.

2. Materials and Methods
2.1. Coffee Samples

CLC samples were prepared from coffee roasted to be mild-dark (CIELab L* = 25.00 ± 0.4)
in a food processing plant that produces instant coffee (Colcafé S.A.S., Medellín, Colombia).
The process involved a percolation battery with six extractors, each loaded with 300 kg
of coffee and fed 180 ◦C steam under constant flow for extraction. Then, the liquid was
processed by freeze-concentration to reach a concentration of 35–37% TDS. In this part
of the process, the concentration increased in the range of 10–15% TDS. Finally, to avoid
microbiological spoilage, the CLC was pasteurized at ultrahigh temperature (121 ◦C for
5 s). The package consisted of an aseptic bag with the following characteristics: 2 L
capacity and a double-layer film with an external film layer composed of polyethylene
(PE)/polyethylene terephthalate (PET)/PE and an internal layer composed of PE/ethylene-
vinyl-alcohol (EVOH). The samples were stored under two different temperature conditions,
at 25 ◦C or frozen at −30 ◦C, for 120 days for analysis to achieve sensory differences due to
deterioration changes.

The specifications for the transmission rate in this package system were as follows: oxy-
gen transmission of 0.16 cc/m2/day at 25 ◦C and water vapor permeability of 11 g/m2/day.
Before storing the samples, the contents of oxygen in the headspace of the packages and
the portion dissolved in the extract were determined.

2.2. Untargeted Metabolomic Analysis
2.2.1. Metabolomic Analysis by RP-LC-QTOF-MS

First, 40 mg of each sample was taken for metabolite extraction; these values were
adjusted according to the total dissolved solids (TDS). Then, each sample was mixed with
820 µL of Type I water, vortexed for 5 min, and then placed in an ultrasonic bath for 5 min.
After that, the samples were centrifuged at 16,000 rpm and 4 ◦C for 10 min. A mixture
of 20 µL of the supernatant and 180 µL of Type I water was transferred to an Eppendorf
tube for further analysis. Analysis was performed using an Agilent Technologies liquid
chromatography–quadrupole time-of-flight–mass spectrometry (LC–QTOF–MS) system
(Agilent Technologies, Waldbronn, Germany). The extract was injected onto an InfinityLab
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Poroshell 120 EC-C18 column (3 × 100 mm 2.7 µm, Agilent, CA, USA) maintained at
30 ◦C. The flow rate of the mobile phase (A: Milli-Q water with 0.1% formic acid (v/v),
B: acetonitrile with 0.1% formic acid (v/v)) was 0.4 mL/min. The gradient elution started
at 2% B, increased to 98% B over 19 min, and ended by going back to the initial conditions
in 1 min, where it was held for 5 min to allow column re-equilibration. During both
analyses, two reference masses were used and continuously infused into the system for
constant mass correction: m/z 121.0509 (C5H4N4) and m/z 922.0098 (C18H18O6N3P3F24)
for positive ionization mode (ESI+) and m/z 112.9856 [C2O2F3 (NH4)] and m/z 1033.9881
(C18H18O6N3P3F24) for negative ionization mode (ESI−). The mass spectrometry system
was operated in full-scan mode from 50 to 1100 m/z. Data were collected in centroid mode
at a scan rate of 1.00 spectrum per second, the capillary voltage was set to 3000, the drying
gas flow rate was 8 L/min at 325 ◦C, the gas nebulizer was set to 50 psi, the fragmentor
voltage was 175 V, the skimmer was 65 V, and the octupole radio frequency voltage (OCT
RF Vpp) was set to 750 V for both positive and negative ionization modes.

2.2.2. Quality Control (QC) Samples

The reproducibility of sample preparation and the stability of the LC–MS system
were evaluated by employing QC samples. QC samples were prepared by pooling equal
volumes of each extracted sample, and then 10 QC samples were injected at the beginning
of the analysis to equilibrate the chromatographic system, after every five randomized
coffee samples, and at the end of each sample sequence.

2.2.3. Data Treatment

Deconvolution, alignment, and integration were performed using algorithms such
as Molecular feature extraction and Recursive feature extraction in Agilent MassHunter
Profinder B.10.0 software. After that, a manual inspection was performed, aiming to clean
up background noise and unrelated ions. Finally, the acquired data were exported to Excel
for filtering by presence and reproducibility, keeping only the metabolites present in 100%
of the samples in at least one group while maintaining a coefficient of variation in the QC
samples of less than 20%.

2.2.4. Statistical Analysis

To evaluate statistically significant differences between the metabolomic profiles of
the groups, univariate statistical analysis (UVA) and multivariate statistical analysis (MVA)
were performed using SIMCA 16.0 (Umetrics, Umea, Sweden) and MATLAB (R2019b,
Mathworks, Inc., Natick, MA, USA), respectively. First, MVA based on principal com-
ponent analysis (PCA) was applied to evaluate the acquired data quality, verifying that
the QC samples were correctly clustered in these models to guarantee the stability of
the analytical system. After that, orthogonal partial least square–discriminant analysis
(OPLS-DA) models were built to maximize and inspect the differences between the study
groups and select responsible metabolites for group separation. Pareto scaling was used for
transformation before statistical analysis. For UVA, data normality was verified by evaluat-
ing the Kolmogorov–Smirnov, Lilliefors, and Shapiro–Wilk tests and the variance ratio by
Levene’s test. The p value was determined parametrically (unpaired t test) or nonparamet-
ric (Mann–Whitney U test) with Benjamini and Bonferroni–Hochberg false discovery rate
post hoc correction (FDR). For data from both ionization modes, the significant variables
were selected by keeping only those that fulfilled the following parameters: (1) UVA (p
value with Benjamini–Hochberg FDR of <0.05); (2) MVA criteria (variable importance in
projection (VIP) of >2 with jack-knife confidence interval (JK) not including the zero value
from OPLS-DA with CV-ANOVA of <0.05); and (3) change percent of >50%.

2.2.5. Metabolite Identification

Accurate masses of statistically significant features were searched using the CEU Mass
Mediator tool (http://ceumass.eps.uspceu.es/, accessed on 15 June 2021) with databases

http://ceumass.eps.uspceu.es/
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such as METLIN (http://metlin.scripps.edu, accessed on 15 June 2021), KEGG (www.
genome.jp, accessed on 15 June 2021), HMDB (http://hmdb.ca, accessed on 15 June 2021),
and Lipid MAPS (http://lipidmaps.org, accessed on 15 June 2021). Finally, some metabolite
identities were confirmed by LC−MS/MS.

2.3. Integration of the Physicochemical and Sensory Properties
2.3.1. pH and Titratable Acidity

The pH and titratable acidity analyses were performed at 25 ◦C using a Mettler Toledo
DL 22 pH meter automatic system (Columbus, OH, USA). Titratable acidity was determined
by combining 100 mL of each beverage with 0.1 N NaOH until neutrality was reached
(pH 7.00).

2.3.2. Total Dissolved Solids (TDS) Content

The TDS content was determined by examining the relationship between the measured
Brix value and a correction factor, representing the concentration of sucrose in the sample.
The measurements were carried out using a Mettler Toledo R50 refractometer (Columbus,
OH, USA).

2.3.3. Color

Beverage color was measured using a Hunterlab D25 LT colorimeter (Reston, VA,
USA). Before each measurement, the instrument was calibrated using white and green tiles.
Color results are expressed as rectangular coordinates L*, a*, and b* in CIELab parameters,
in which L* indicates the degree of luminosity of whiteness or blackness (from 0 to 100).
In the chromatic portion of the color, a* represents color changes in the red (+a*) to green
(−a*) ratio, and b* indicates the blue (−b*) to yellow (+b*) ratio. Hue describes the overall
intensity, while chroma (saturation) may be defined as the strength or dominance of the
hue. Equations (1) and (2) depict the calculation of both parameters.

Hue = ±arctan
(

b∗

a∗

)
(1)

Chroma = +

√
(a∗)2 + (b∗)2 (2)

2.3.4. Oxygen and Carbon Dioxide Contents

Measurements of the oxygen (O2) and carbon dioxide (CO2) contents in the headspace
were made using a Moccon 325 analyzer (Minneapolis, MN, USA). The lower detection
limit with this instrument was approximately 0.1%, and the resolution was 0.01%.

2.3.5. Sensory Analysis

Sensory analysis was performed by a specialized panel from Colcafé S.A.S., with an
age range of 30 to 55 years. Ten judges were trained in discriminative and descriptive
testing for at least 100 h prior to the real analysis. Each analysis was performed in duplicate.
The analyses were performed in individual cubicles at a maintained relative humidity and
temperature of 50–65% and 25 ◦C, respectively, following the ISO 6658:2005 standard. Prior
to the sensory sections, each panelist had at least 100 h of training. Data were acquired
using Fizz sensory software V2.47.

Coffee beverages were prepared from a dilution of each CLC in hot water at 90 ± 2 ◦C
at pH 7.0 to obtain a beverage with 2% TDS. The freshly prepared coffee brews were
evaluated immediately. During the tasting sessions, 20 mL of coffee was served in a 50 mL
odorless plastic cup at 70 ◦C. The samples were coded with randomized 3-digit numbers.
Water was used for palate cleansing between samples.

The sensory evaluation comprised a descriptive test measuring the following attributes:
aroma, acidity, bitterness, body, sweetness, winey flavor, and overall perception of the
coffee beverages prepared from the CLCs. The intensity of each descriptor was scored on a

http://metlin.scripps.edu
www.genome.jp
www.genome.jp
http://hmdb.ca
http://lipidmaps.org
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scale from 0 to 10. Furthermore, in the second step, each panelist classified the samples into
one of two groups: “Accepted”, representing that they had accepted the consumption of
this product, and “Rejected”, representing rejection.

2.3.6. Parameter Identification and Classification Model

Twelve samples (six accepted and six rejected) with three replicates each were analyzed.
All considered parameters (i.e., the physicochemical and sensory properties and the oxygen,
carbon dioxide, and chlorogenic contents of the samples) were considered for possible
correlations and variable impacts on the classification of the accepted beverages. Before
assembling the model, each of the parameters was individually analyzed to evaluate
its capacity to discriminate the two groups (accepted and rejected beverages). For this
univariate analysis, normality was evaluated by the Shapiro test for each feature, analysis
of variance (ANOVA) was computed to feed the least mean squares mean estimation, and
Tukey’s pairwise comparisons were carried out to compare both types of beverages for
each attribute. When normality was not met, nonparametric Dunn tests were calculated for
median comparison and group discrimination.

After the univariate analyses, a bootstrapped version of PLS-DA was assessed for
classification and variable impact evaluation. Consequently, 100 training sets were ran-
domly sorted and stratified by the CLC code, in which 2 of the biological samples were
used for training and the whole dataset was used for model validation. This approach
was considered not to evaluate model accuracy (i.e., sensitivity and specificity evaluation)
but instead to identify variable impacts on each of the groups and possible correlations
across the feature types. For variable selection, both the VIP and selectivity ratio (SR) were
considered. After sorting the latter in descending order, those variables that did not meet
a specific threshold (1 for VIP and 4 for SR) were removed from the model in forward
stepwise optimization. Whenever the classification accuracy was maintained or decreased,
the variable being tested was removed from the feature pool. This was performed for all
variables that met the criteria. Cross validation with 5 samples was computed for latent
variable number selection. For representation, a mean score plot with 96% confidence
ellipses was constructed for the first two latent variables. The loading plot was considered
a bubble dispersion plot, in which the bubble size depicts the selectivity ratio and, hence,
the variable’s capacity to represent the variance of the dataset evaluated.

3. Results and Discussion
3.1. Untargeted Metabolomics by LC-QTOF-MS

In this study, we performed global metabolomics analysis using LC-QTOF-MS in
both positive and negative ESI modes to obtain the broadest range of metabolites from
concentrated liquid coffee. After data processing and filtering, the total numbers of features
found were 814 from positive ESI mode and 687 from negative ESI mode. To evaluate the
quality of the analytical platform, a PCA was built for each analysis. The clear clustering of
QC samples in the unsupervised PCA models (Figure 1A,B) evidenced the stability and
quality of the acquired data for both ESI analysis modes; therefore, this result supports that
the separation between the groups is related to real biological differentiation. PCA also
showed a clear separation between the samples that did and did not achieve acceptance
(Accepted and Rejected groups) (Figure 1C,D).

After assuring data quality, UVA and supervised MVA were performed to obtain
the differences between the groups. The differentiation of samples in the Accepted and
Rejected groups was achieved using an OPLS-DA model (Figure 2). The OPLS-DA score
plots showed evident separation of the groups. Acceptable values of the explained variance
(R2), the predicted variance (Q2), and the CV-ANOVA were achieved from both analyses.
Univariate analysis (UVA) was performed to assess the significance of each metabolite
separately for comparison. The parameters to select the metabolites that were statistically
significant in both ESI modes were those that met the following criteria: p value of <0.05 or
VIP of >1, with JK intervals not containing zero from OPLS-DA with CV-ANOVA of <0.05
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and change percent of >15%. The metabolites that met these requirements were identified
as putative, confirmed, or unknown and are presented in Table 1.
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Table 1. Metabolites significantly differentiated between the Accepted and Rejected groups using both ESI modes by untargeted metabolomics via quadrupole
time-of-flight mass spectrometry (GM-LC/MS-QTOF).

Compound Formula Mass RT (min)
Mass Error

(ppm) Adduct CVforQC (%) a DET CON
Rejected vs. Accepted Samples

Change (%) b VIP c p Value d

Cytosine C4H5N3O 111.0433 1.59 7 M+H 3.3 ESI+ Putative −55 1.5155 0.0086
Methylfuran-carboxylic acid C6H6O3 126.0317 4.45 5 M+H-H2O 4.3 ESI+ Putative −173 2.3476 0.0338 *

Octene-diynoic acid C8H6O2 134.0368 7.01 4 M+H-H2O 1.8 ESI+ Putative 29 1.5942 0.0649
Hydroxy-methylbenzaldehyde C8H8O2 136.0524 11.33 5 M-H 2.8 ESI− Putative 61 1.6083 0.0275 *

Methoxybenzaldehyde C8H8O2 136.0524 6.29 2 M-H 2.9 ESI− Putative 17 1.7607 0.0275 *
Vinylcatechol C8H8O2 136.0524 9.52 4 M-H 3.7 ESI− Putative 49 1.8414 0.0086

Hydroxyphenethylamine C8H11NO 137.0841 11.52 4 M+H-H2O 6.3 ESI+ MSMS 82 1.0769 0.0151
Benzofurancarboxaldehyde C9H6O2 146.0368 8.27 4 M+H 1.4 ESI+ Putative 29 1.4441 0.0411

Cinnamic acid C9H8O2 148.0524 8.95 5 M+H 1.6 ESI+ Putative 44 1.2417 0.0151
(Furanyl)-tetrahydropyridine C9H11NO 149.0841 1.57 5 M+H 3.4 ESI+ Putative −97 1.5258 0.0510 *

Ethylnicotinate C8H9NO2 151.0633 2.26 3 M+H 13.7 ESI+ Putative −130 1.6802 0.0086
Furfurylpyrrolidine C9H13NO 151.0997 6.29 4 M+H-H2O 5.8 ESI+ Putative 93 1.8865 0.0338 *

Methoxybenzoic acid C8H8O3 152.0473 8.42 3 M+H-H2O 2.5 ESI+ Putative 109 1.6151 0.0510 *
Hydroxycoumarin C9H6O3 162.0317 11.84 3 M-H 8.5 ESI− MSMS −92 3.4280 0.0275 *

Pyridoxal C8H9NO3 167.0582 1.51 5 M+H 3.4 ESI+ Putative 90 1.6302 0.0338 *
Carboline C11H8N2 168.0687 10.30 5 M+H 1.3 ESI+ Putative −29 1.1236 0.0411

Isovalerylalanine C8H15NO3 173.1052 2.60 16 M+Na 3.1 ESI+ Putative −101 1.1844 0.0151
Methyl-quinolin-diol C10H9NO2 175.0633 8.24 4 M+H 2.1 ESI+ Putative −78 2.3966 0.0510 *

(Cyclohexylmethyl)pyrazine C11H16N2 176.1313 3.53 1 M+K 1.8 ESI+ Putative 52 1.0421 0.0649
[2H-Pyrrol-(3H)-ylidenemethyl]-

furanmethanol C10H11NO2 177.0790 6.94 3 M+H-H2O 1.4 ESI+ Putative −65 1.2231 0.0151

Dimethyl-(1-pyrrolidinyl)-
cyclopenten-one C11H17NO 179.1310 8.88 5 M+H 3.6 ESI+ Putative −130 1.0109 0.0510 *

Caffeic acid C9H8O4 180.0423 8.90 3 M+H-H2O 8.0 ESI+/− Identified 37 1.0605 0.1320
Hydroxy-

(hydroxyphenyl)propenoicacid C9H8O4 180.0423 14.69 3 M+H-H2O 1.9 ESI+ Putative −27 1.5147 0.1320

Indole-propionic acid C11H11NO2 189.0790 11.14 4 M+H 4.9 ESI+ Putative −102 1.3162 0.0338 *
Quinic acid C7H12O6 192.0634 6.09 1 M-H 1.7 ESI− MSMS 16 1.5511 0.0086
Ferulic acid C10H10O4 194.0579 10.57 3 M+H-H2O 6.0 ESI+ Putative 161 1.5558 0.0338 *

(Furan+B63:B75yl)-hexahydro-
7H-cyclopenta[b]pyridinone C12H13NO2 203.0946 5.51 3 M+H 5.9 ESI+ Putative −173 1.6442 0.0338 *

Methylsalicyluric acid C10H11NO4 209.0688 1.33 3 M+H 5.2 ESI+ Putative 1918 2.5034 0.0338 *
1-Isothiocyanato-8-
(methylthio)octane C10H19NS2 217.0959 3.64 10 M+Na 5.5 ESI+ Putative 1011 1.6326 0.0338 *

1-Arabinofuranosylcytosine C9H13N3O5 243.0895 4.40 20 M+H 9.1 ESI+ Putative 199 1.0998 0.0086
243,0895@8,74 - 243.0895 8.74 - M+H 4.8 ESI+ Putative −95 1.0254 0.0510 *
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Table 1. Cont.

Compound Formula Mass RT (min)
Mass Error

(ppm) Adduct CVforQC (%) a DET CON
Rejected vs. Accepted Samples

Change (%) b VIP c p Value d

Hydroxy-(hydroxy-methyl-
hexenyl)benzofuran C15H18O3 246.1256 5.01 2 M+Na 2.8 ESI+ Putative −328 2.5216 0.0338 *

N-Phenylacetylasparticacid C12H13NO5 251.0794 3.12 2 M+H-H2O 5.2 ESI+ MSMS −254 2.2707 0.0338 *
N-Pyruvoyl-methoxy-
hydroxyanthranilate C11H11NO6 253.0586 1.36 3 M+H 3.2 ESI+ Putative 1860 1.9896 0.0338 *

N,N’-Diphenyl-
phenylenediamine C18H16N2 260.1313 1.67 10 M+Cl 3.6 ESI− Putative 25 1.0798 0.0086

268,1064@5,01 * - 268.1064 5.01 - M+H 5.6 ESI+ Putative −328 2.5216 0.0338 *
Evoxanthidine C15H11NO4 269.0688 4.40 7 M+H 3.5 ESI+ Putative 207 1.2801 0.0338 *
Trichostachine C16H17NO3 271.1208 7.32 3 M+H 10.9 ESI+ Putative 218 1.4652 0.0338 *

Deaminofusarochromanone C15H19NO4 277.1314 5.13 3 M+H 5.7 ESI+ MSMS 68 1.2220 0.0151
Eriodictyol C15H12O6 288.0634 11.34 1 M-H 3.9 ESI− MSMS 34 1.0096 0.0275 *

317,0903@3,49 - 295.1088 3.49 - - 1.6 ESI+ MSMS 94 1.1685 0.0510 *
ent-Hydroxybuphanisine C17H19NO4 301.1314 6.93 3 M+H 4.4 ESI+ Putative 205 1.9999 0.0338 *

291,1111@7,49 - 309.1212 7.49 - M+H 4.2 ESI+ Putative −189 1.1515 0.0411
O-p-Coumaroyl-D-glucose C15H18O8 326.1002 5.74 1 M-H-H2O 2.6 ESI− Putative 192 1.0547 0.0275 *

Guaiacin C20H24O4 328.1675 17.17 2 M+H 6.5 ESI+ Putative −197 2.3579 0.0338 *
331.215@13.47 C20H29NO3 331.2147 13.47 3 M+H 3.2 ESI+ Putative −102 1.1645 0.0338 *

5-O-Caffeoylshikimicacid//
4-Caffeoyl-1,5-quinolactone * C16H16O8 336.0845 12.84 1 M-H 6 ESI− Putative −100 2.4478 0.0275 *

Caffeoyl-quinolactone C16H16O8 336.0845 11.32 3 M+H 5.6 ESI+/− Putative −422 4.4402 0.0338 *
O-Caffeoylshikimicacid C16H16O8 336.0845 11.84 0 M-H 2.1 ESI− Putative −87 5.6218 0.0275 *
Feruloyl-quinolactone * C17H18O8 350.1002 13.86 1 M-H 5.8 ESI− Putative −82 3.3243 0.0275 *

Chlorogenic acid C16H18O9 354.0951 8.42 1 M-H 2.7 ESI− Identified 21 2.4680 0.0086
Cryptochlorogenic acid C16H18O9 354.0951 9.75 2 M-H-H2O 2.1 ESI− Identified −77 2.9124 0.0275 *

Neochlorogenic acid C16H18O9 354.0951 6.29 3 M+H 5.0 ESI+/− Identified 106 1.1735 0.0086
O-beta-D-Glucopyranuronosyl-D-

mannose C12H20O12 356.0955 1.38 1 M-H-H2O 2.8 ESI− Putative −23 1.1169 0.0150

N-Caffeoyltryptophan C20H18N2O5 366.4000 1.37 1 M-H 4.2 ESI− Putative −29 1.5959 0.0275 *
Piperundecalidine C23H29NO3 367.2147 18.79 7 M+H 6.9 ESI+ Putative −276 1.3874 0.0338 *

O-Feruloylquinicacid C17H20O9 368.1107 8.64 0 M-H 3.7 ESI− Putative 30 1.2937 0.0275 *
Pentamethoxyflavanone C20H22O7 374.1366 18.72 1 M+FA-H 3.7 ESI− Putative −48 1.0967 0.0275 *

412.1014@8.70 * C31H12N2 412.1000 8.70 1 M-H 3.6 ESI− Putative −73 1.1022 0.0275 *
439.1852@7.47//ValHisTyr C20H27N5O5 417.2012 7.47 6 M+Na 14.3 ESI+ Putative −543 1.8897 0.0338 *

ValHisTyr C20H27N5O5 417.2012 5.94 6 M+Na 9.2 ESI+ Putative −499 2.0702 0.0338 *
447,1498@4,01 - 447.1498 4.01 - M+H 5.0 ESI+ Putative −30 1.0433 0.4848
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Table 1. Cont.

Compound Formula Mass RT (min)
Mass Error

(ppm) Adduct CVforQC (%) a DET CON
Rejected vs. Accepted Samples

Change (%) b VIP c p Value d

(+)-CatechinC-glucoside C21H24O11 452.1319 16.70 2 M-H-H2O 3.9 ESI− Putative −39 1.0612 0.0275 *
481,138@11,29 - 459.1529 11.29 - M+H 7.2 ESI+ Putative 14895 1.2221 0.0338 *

N-[(Dihydropterinyl)methyl]-
(beta-D-ribofuranosyl)

anilinephosphate
C18H23N6O8P 482.1315 3.91 8 M-H-H2O 2.0 ESI− Putative −31 1.2776 0.0275 *

482,2526@15,50 - 482.2526 15.50 - M-H 2.7 ESI− Putative −26 1.4000 0.0275 *
498,3072@18,79 - 498.3072 18.79 - - 2.1 ESI+ Putative −245 2.7344 0.0338 *

Aconine C25H41NO9 499.2781 12.24 3 M+H 2.5 ESI+ Putative 21 1.3575 0.2402
Galactomannan C18H32O16 504.1690 1.59 1 M+H-H2O 2.9 ESI+ MSMS −108 1.0085 0.1796

Cafamarine C26H36O10 508.2308 17.19 0 M+FA-H 5.3 ESI− Putative −38 1.6678 0.0275 *
Dicaffeoylquinicacid C25H24O12 516.1268 7.92 2 M+H 6.3 ESI+ MSMS 65 1.2450 0.0338 *

Di-O-caffeoylquinicacid//
Dicaffeoylquinicacid C25H24O12 516.1268 8.91 3 M+H 4.6 ESI+ Putative 46 1.0344 0.1320

528,1487@8,70 - 528.1487 8.70 - M-H 4.2 ESI− Putative −35 1.2142 0.0275 *
PC(22:1) C30H58NO8P 591.3900 18.76 4 M+Na 10.9 ESI+ Putative −73 1.3013 0.0510 *

Kaempferiderhamnoside-
(succinylglucoside) C32H36O18 708.1902 7.97 2 M+H-H2O 5.9 ESI+ Putative 84 1.3239 0.0086

726,4535@18,99 - 726.4535 18.99 - M-H 3.4 ESI− Putative −26 2.2514 0.0275 *
PS(39:7) C45H74NO10P 819.5050 18.79 7 M+Na 5.3 ESI+ Putative −96 1.2246 0.0151

PC(DiMe(9,3)/MonoMe(11,3)) C45H79NO10P 824.5442 17.98 6 M+H 2.6 ESI+ Putative −115 1.0803 0.0510 *
PI(33:0) C42H81O13P 825.5461 18.06 3 M+H 4 ESI+ Putative −132 1.1234 0.0338 *

a CV, coefficient of variation in the metabolites in the QC samples; b Change, percent change in the abundance of the specified comparison calculated as (case-control)/control) * 100,
where the sign indicates the direction of change in the case group; c VIP, variable importance in projection; d p value * corresponding to the p values calculated by the Benjamini–Hochberg
false discovery rate post hoc correction (FDR < 0.05). GM: global metabolomics, LC: liquid chromatography, QTOF-MS: quadrupole time-of-flight mass spectrometry.
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As listed in Table 1, a total of 80 metabolites were determined to be statistically
significant for this comparison. Most of the difference between the Accepted and Rejected
groups corresponded to benzoic acids and their derivates, flavonoids, amino acid derivates,
and other organic acids.

3.2. Integration of Untargeted Metabolomics with Sensory and Physicochemical Properties

For a comprehensive understanding of the interactions among the sensory attributes,
the acceptability of the coffee beverages, and their chemical composition, univariate analysis
was applied to each variable type, and the statistically significant selected features were
parameters such as the color (a*, b*, hue, and chroma), titratable acidity, and oxygen and
carbon dioxide contents; these data are presented in Table 2.

Table 2. Means and standard deviations of the studied physicochemical properties and oxygen
features for accepted samples (n = 6) and rejected samples (n = 6).

Acceptance Group

Parameter Accepted Samples Rejected Samples

Physicochemical
Titratable acidity 59.93 ± 4.69 a 72.19 ± 3.25 b

Concentration [◦Bx] 35.96 ± 0.56 a 35.65 ± 0.26 a

pH 4.79 ± 0.16 a 4.76 ± 0.10 a

Chroma * 27.92 ± 1.99 b 25.09 ± 1.94 a

a* 20.47 ± 1.30 b 16.80 ± 1.39 a

b* 18.96 ± 1.86 a 18.63 ± 1.42 a

L* 12.59 ± 1.14 a 13.05 ± 0.78 a

Hue 0.75 ± 0.04 a 0.84 ± 0.02 b

Oxygen and carbon dioxide
O2—HS 7.63 ± 7.79 b 0.30 ± 0.02 a

CO2—HS 29.37 ± 16.89 a 40.48 ± 5.35 b

O2—Dissolved 0.24 ± 0.09 a 0.27 ± 0.06 a

O2—Saturation 3.08 ± 0.97 a 3.76 ± 0.8 b

* Chroma corresponds to the relationship between the color changes in the red (+a*) to green (−a*) ratio and the
blue (−b*) to yellow (+b*) ratio, represented by a* and b*, respectively.

Table 2 supports the assertion that neither the pH nor the CLC concentration determine
CLC acceptance. In contrast, titratable acidity and color variables such as a* (variation from
green to red), chroma, and hue were also characteristic of each group. Rejected samples
were characterized by a high titratable acidity and an a* value that had a tendency toward
green. Furthermore, the luminosity of the concentrates did not have an effect on acceptance.
Samples that had a high oxygen content in the headspace were associated with beverage
acceptance, and those with increased carbon dioxide contents were mostly rejected.

The dissolved oxygen content was not related to acceptance, while high oxygen
saturation was associated with the rejected samples. Nevertheless, these measurements
had considerable dispersion. The sensory attributes from each profile are described in
Figure 3. A box plot depicts the dispersion across samples.

Figure 3 portrays significant differences across the two groups for most of the attributes.
Acceptance was associated with improved aroma, sweetness, and global score, while
elevated acidity resulted in rejection. The bitterness, winey flavor, and body attributes
did not show a specific trend in either of the groups. All statistically significant variables
were included in the PLS-DA model. The scores model is presented in Figure 4A, and
the loadings plot is presented in Figure 4B, which depicts the interactions across the
evaluated parameters.
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acceptability associated with the Accepted and Rejected groups.

As with the multivariate metabolomics model, the classification achieved with the
integrated PLS-DA model was adequate for beverage acceptance classification. In Figure 4A,
Latent Variable 1 represented 91% of the variance for the X dataset, while it represented
89% of the variability for the Accepted group classification. In all cases, both groups were
accurately classified. The second component represented 2% of the variance for X and 7%
for the Accepted group. The left or negative side of LV1 was associated with acceptance,
whereas the right side was related to rejection. The second component, LV2, contains
samples that were strongly rejected on the negative side. The dispersion of rejection is
distributed across the two latent variables, while the dispersion of acceptance is distributed
across LV1.

Acceptance-related variables are on the negative side of the LV1 coordinate, and
rejected variables are on the positive side. The molecular features with higher molecular
weights (values over 336 a.m.u.), with the exception of caffeic acids, are lactones, esters
with shikimic acid, and unknown compounds, which are concentrated on the left side of
the plot; hence, they were correlated with acceptance. In contrast, molecular features on
the positive axis LV1 were associated with strongly rejected samples and, in turn, were
correlated with high and titratable acidity, ferulic, O-feruloylquinic and dicaffeoylquinic
acids, and methoxybenzaldehyde. Intermediate rejection samples were characterized by
elevated hue and high contents of chlorogenic and quinic acids.
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Figure 4. Bootstrapped PLS-DA biplot for acceptance classification. (A) Score plot for the averaged
PLS-DA model for the first two latent variables, and (B) the loadings and selectivity ratio (bubble
area) for the physicochemical, sensory, ESI−, and ESI+ datasets for the bootstrapped PLS-DA for
acceptance classification.

When these results were contrasted with those in Table 1, ferulic acid showed greater
variation (161) and was predominant in the Rejected group. Therefore, these findings agree
with those reported in the literature that correlated variations in chlorogenic acids with
beverage spoilage [20,24,25]. These chlorogenic acids are esters formed between quinic acid
and trans-cinnamic acids (caffeic, p-coumaric, and ferulic acids) [24,31,32]. Specifically, the
hydrolysis of feruloyl quinic acids in the presence of oxygen releases quinic acid and ferulic
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acid. In one pathway, the decarboxylation of ferulic acid (176.0473@10.57) acts as a precur-
sor of the formation of methoxybenzaldehydes (MN_136.0523@11.33, MN_136.0527@6.29,
MN_136.0524@8.42) [4,33]. The presence of these compounds might have a negative impact
on the acidity and aroma attributes, as they are correlated to product rejection. Methoxyben-
zaldehydes are present in coffee brews; however, these compounds promote undesirable
and unbalanced flavors at high concentrations. For example, 4-methoxyphenyl, 4-ethyl-
2-methoxyphenol (4-ethylguaiacol), and 4-ethenylguaiacol are associated with phenolic
and medicinal notes that are prone to result in rejection of the beverage [31]. According
to the organoleptic properties of chlorogenic acids (CGAs), caffeoylquinic acids result in
lower acidity than free acids such as quinic or caffeic acids. Moreover, dicaffeoylquinic
acid studies have shown a strong correlation between these attributes and metallic or bitter
flavors in beverages [32]. Hence, the higher carbon dioxide contents in the Rejected group
could be a product of the decarboxylation reactions of CGAs.

Quinic acid can react in another, parallel pathway, inducing hydroxyhydroquinone,
which reacts with thiols and benzylic thiols (such as FFT). These substances are highly aro-
matic (i.e., high aroma activity values) and associated with roast and coffee notes in coffee
beverages. These reactions have been thoroughly studied and have been demonstrated to
negatively impact the aroma [23,24].

Consequently, rejection of CLCs might be strongly associated with the degradation of
CGAs that results in the release of ferulic, quinic, and caffeic acids to start three degradation
pathways that promote changes in some of the sensory attributes, such as aroma and
acidity. These results agree with those presented in a previous work [21] and by other
studies [28,30,34].

In contrast, acceptance was mainly related to an enhanced aroma, high global scores,
and sweetness. Unknown metabolites 412.1014@10.14 and 439.1845@5.94 with high ex-
plicative powers (i.e., high selectivity ratios) were also related to this group. Furthermore,
several lactones promoted beverage acceptance, such as feruloyl-quinolactone, caffeoyl
quinolactone, and 4-caffeoyl-1,5-quinolactone. Although the sensory attributes did not
represent the same variance as the metabolites, their loadings were similarly distributed.
None of the oxygen-related variables were considered by the model, possibly due to high
dispersion. Nevertheless, this does not suggest that such variables are not explicative of the
deterioration phenomena; in contrast, they are highly correlated to most of the identified
pathways.

As depicted on the negative side of LV1, the Accepted group mostly contains features
such as lactones, chlorogenic-acid-derived compounds, and other unknown compounds,
such as 726.4535@18.99 with a higher molecular weight. Subsequently, lactones from
chlorogenic acids are a product of the roasting process [32,35]. Recent studies found that
compounds such as 3-O-caffeoyl-4-O-3-methylbutanoyl quinic acid and 3-O-caffeoyl-4-
O-3-methylbutanoyl-1,5-quinide were present in high concentrations in beverages that
were positively evaluated. The judges reported enhancements in the aroma, aftertaste,
and overall score attributes associated with these features. Consequently, this result might
indicate that no hydrolysis reactions had occurred, guaranteeing beverage acceptance.

4. Conclusions

An analytical strategy using untargeted metabolomics by LC/MS-QTOF and boot-
strapped PLS-DA was applied in this work to discriminate between the acceptance and
rejection of coffee beverages made from CLCs. Untargeted metabolomics analysis based on
LC/MS-QTOF successfully discriminated between the features that affected the acceptance
and rejection of CLCs. The correlations between chlorogenic acid hydrolysis and its impact
on sensory attributes and its association with the rejection of coffee beverages were identi-
fied. Similarly, the presence of methoxybenzaldehydes as the products of these reactions
suggests the importance of this pathway. Nevertheless, it is still unclear how all of the
chemical components are involved and react during storage. Further research is required
to understand the complex mechanisms of the deteriorative reactions in CLCs that affect
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consumer acceptance and the effects of lactone-type compounds. New studies that include
the synthesis and recombination of these compounds, along with characterization tech-
niques such as nuclear magnetic resonance (NMR) spectroscopy, might insightfully identify
the reaction mechanisms during the deterioration of sensory quality in CLCs. Moreover,
this accord elucidates the metabolites formed during storage, their impacts on sensory
evaluation, and the identification of mitigation strategies during the deteriorative process.
The current study is the first to contrast the composition and critical sensory attributes
with CLC shelf life by metabolomics analysis to understand sensory deterioration and the
chemical pathways involved.
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