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Abstract

One of the fundamental challenges when dealing with medical imaging datasets is class

imbalance. Class imbalance happens where an instance in the class of interest is relatively

low, when compared to the rest of the data. This study aims to apply oversampling strate-

gies in an attempt to balance the classes and improve classification performance. We evalu-

ated four different classifiers from k-nearest neighbors (k-NN), support vector machine

(SVM), multilayer perceptron (MLP) and decision trees (DT) with 73 oversampling strate-

gies. In this work, we used imbalanced learning oversampling techniques to improve classi-

fication in datasets that are distinctively sparser and clustered. This work reports the best

oversampling and classifier combinations and concludes that the usage of oversampling

methods always outperforms no oversampling strategies hence improving the classification

results.

Introduction

Machine learning has enabled us to extract patterns from data to build predictive models.

However, machine learning models tend to suffer from class imbalance especially in biomedi-

cal diagnosis [1]. In this context, class imbalance describes the skewed representation of a dis-

ease phenotype, whereby some classes appear more frequently [2]. Having an imbalanced class

label can lead to biased learning classification in algorithms such as k-nearest neighbors (k-

NN), support vector machines (SVM), decision trees (DT) and multilayer perceptron (MLP).

This occurs as a result of inherent tendencies to preference and overfit towards the majority

classes [3]. We assume in many machine learning classifier algorithms that the number of

instances (classes) is roughly similar. However, by biasing training towards the majority clas-

ses, we risk overlooking the unique and occasionally more important minority classes.

There are currently three categorical approaches to managing imbalanced data. The sim-

plest method is to take an Algorithm level approach whereby classifiers are tuned for class
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imbalance based on existing classifier learning algorithms, one example is k-NN [4]. The sec-

ond group of methods take a Data Level approach, which includes preprocessing methods (i.e

the Synthetic Minority Oversampling Technique (SMOTE) [5]-see Fig 1), whereby additional

training samples are generated for minority classes to rebalance the class distribution. The

third method lies between the data and algorithm level approaches called the Cost Sensitive

technique [6–8]. In these techniques, a higher cost is assigned to minority samples during the

training process, well known examples are SVM[9] and ADACost [10]. In this paper, we only

consider Data Level preprocessing methods, specifically oversampling methods. These meth-

ods tackle the root of the imbalanced learning problem, which is the lack of data. Secondly,

they also allow easy application of a machine learning pipeline, unlike cost-sensitive and classi-

fier specific solutions.

Some real life examples of class imbalanced problems include credit card fraud detection

[11], text recognition [12] and crucially in healthcare diagnostics [13]. Increasingly advances

in machine learning classification, especially in the field of medical imaging, are being used to

diagnose diseases and predict treatment outcomes in various medical conditions [14]. In our

work, we will be looking closely at classifying diabetic peripheral neuropathy (DPN) subjects.

Diabetic peripheral neuropathy (DPN) is a common condition affecting half of all diabetic

subjects and is a challenging condition to manage effectively [15]. With current treatments,

the best outcome we can achieve is 50% pain relief in only a third of subjects. The current

approach assumes that all subjects respond similarly to a given drug when in fact there is a

wide variability in response. Over the last 10 years, we have demonstrated using magnetic reso-

nance (MR) neuroimaging that altered brain structure and functional connectivity could serve

as a possible Central Pain Signature (CPS) for painful DN [16, 17], which could provide a

means of stratifying subjects to the right treatment first time.

The primary aim of this study was to determine whether oversampling improves the diag-

nostic performance of machine learning classification trained on MR imaging features. We

compared 73 oversampling techniques against a baseline of no oversampling and conventional

SMOTE to justify our exhaustive approach. Our secondary aim was to determine which over-

sampling strategies result in the best performance reported over two distinct datasets (clus-

tered and sparse-see Fig 2). Both our datasets utilises MR imaging features specifically resting

state and structural features commonly associated with the pain pathways in DPN subjects [16,

17]. The first consisted of an imbalanced binary classification dataset that is traditionally a

multiclass classification problem. For this dataset, we tried to classify painful DPN from three

other groups consisting of healthy volunteers (HV), no neuropathy (noDPN) and painless

DPN. Our second sparser dataset investigated oversampling methods when applied to a

smaller dataset in a particularly focused disease phenotype. Here we looked closer at painful

DPN in particular responsiveness to treatment.

Materials and methods

MRI methods

Subjects. Our dataset comprises subjects with diabetes (n = 121) and heathy controls

(n = 37). All subjects underwent detailed clinical and neurophysiological assessments to diag-

nose and phenotype DPN [18]. Subjects with diabetes were divided into three groups: no DPN

(N = 42); painless DPN (N = 40) and painful DPN (N = 39). In the first analysis (DTS1), we

classified subjects with painful DPN from the rest of the subjects. There were no significant dif-

ferences in mean age or gender distribution (p> 0.05) between these two groups.

For the second analysis a different subset of subjects with painful DPN, which have been

assessed for response to neuropathic pain treatment was used (DTS2). We divided these
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subjects into responders and non-responders. We used the NTSS-6 questionnaire, which

grades neuropathic pain intensity and duration, to define responders [N = 13] with a score

[19] below seven and non-responders [N = 40] with a pain score seven or above. Table 1 also

shows the other characteristics of the two binary classification datasets used. Written informed

consent for the study was obtained before subjects participated in the study which has prior

approval by the Sheffield Local Research Ethics Committee.

Dataset assessment. As shown in Table 1, Dataset 1 (DTS1-see S1 Table) comprises of

diabetic and healthy control (HC) subjects separated into painful and non-painful subject clas-

ses. Dataset 2 (DTS2- see S2 Table) depicts only DPN subjects separated into responders and

non-responders to treatment.

ATR refers to number of attributes or features used, column N is the total number of

instances or subjects, N+ is the majority sample class, N- is the minority sample class and lastly

IR is the imbalanced ratio (N+/N). Both datasets have similar imbalanced ratios with IR� 3

and ATR number. Keeping IR and ATR constant allows us to focus this paper on exploring

the two types of datasets. We kept the ATR similar by selecting the best features from our

imaging data using recursive feature elimination (RFE) method as described in the next sec-

tion. As shown in Fig 2, DTS1 have a more structured sub grouping or sub clustering structure

as the non-painful class contains HC, painless and no DPN, which have distinctive

Fig 1. Depicts diagram of conventional SMOTE algorithm.

https://doi.org/10.1371/journal.pone.0243907.g001

Fig 2. Depicts the two dataset described in Table 1. DTS1 above shows classes with more pockets of bunching

together (Clustered) whereby the DTS2 is a more sporadic class dataset (Sparser).

https://doi.org/10.1371/journal.pone.0243907.g002
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neuroimaging characteristics. DTS2 however is a more random or sparser dataset with a

smaller minority sample size. In addition, all the subjects in this dataset are painful DPN sub-

jects making this dataset highly similar in neuroimaging characteristics.

Image acquisition & processing. MRI acquisition. In the weeks before treatment all sub-

jects underwent MRI using a Phillips Achieva 3 Tesla system (Phillips Medical Systems, Hol-

land) with a 32-channel head coil. Anatomical data were acquired using a T1-weighted

magnetisation prepared rapid acquisition gradient echo sequence with the following parame-

ters: repetition time (TR) 7.2 ms, echo time (TE) 3.2 ms, flip angle 8˚, and voxel size 0.9 mm3,

yielding isotropic spatial resolution. A 6-minute resting-state fMRI sequence was acquired

while subjects fixated on a cross using a T2�-weighted pulse sequence, with TE = 35ms;

TR = 2600ms, in-plane pixel dimensions = 1.8mmx1.8mm, contiguous trans-axial slices thick-

ness of 4mm were orientated in the oblique axial plane parallel to the AC-PC bisection, cover-

ing the whole cerebral cortex.

Resting state. ROI-ROI based analysis was performed using the CONN (version 18.a) [20]:

functional connectivity toolbox software. This software was also used to perform all prepro-

cessing steps (using the default preprocessing pipeline), as well as subsequent statistical analy-

ses, on all subject scans. In CONN’s preprocessing pipeline, raw functional images were slice-

time corrected, realigned (motion corrected), unwarped, and coregistered to each subject’s

T1-weighted dataset in accordance with standard algorithms. Resulting images were then nor-

malized to Montreal Neurological Institute (MNI) coordinate space, spatially smoothed (5

mm full-width at half maximum), and resliced to yield 2 × 2 × 2 mm voxels. Regional mean

blood oxygenation level dependent time series were extracted from each patient for 10 chosen

regions with each ROI defined with a spherical radius of 5mm. The 10 sources chosen were

the insular cortex (l,r), postcentral gyrus(l,r), precentral gyrus(l,r), thalamus(l,r) and the cingu-

late gyrus(a,p) region. Pearson’s correlation coefficients were calculated for each region’s

BOLD time series correlating with every other region’s BOLD time series to form a symmetric

10x164 matrix for each patient. The correlation coefficients were z-transformed using Fishers

transform to normalize the distribution

Structural processing. Cortical reconstruction and volumetric segmentation were performed

with FreeSurfer software [21] (http://surfer.nmr.mgh.harvard.edu). Preprocessing includes

motion correction and averaging [22] of volumetric T1-weighted images, removal of non-

brain tissue [23] using a hybrid watershed/ surface deformation procedure, affine registration

to the Talairach atlas [24, 25], intensity normalization, tessellation of the gray matter-white

matter boundary, automated topology correction [26, 27], and surface deformation following

intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at

the location where the greatest shift in intensity defines the transition to the other tissue class

[28, 29]. Intensity and continuity information from the entire three-dimensional MR volume

in segmentation and deformation procedures is used to produce surface-based maps. These

maps subsequently produce representations of cortical thickness calculated as the closest dis-

tance from the gray/white to the gray/cerebrospinal fluid boundaries at each vertex on the tes-

sellated surface (34). Cortical thickness (in mm), volumes of the insular cortex, postcentral

gyrus, precentral gyrus, thalamus and the cingulate gyrus were assessed.

Table 1. Shows parameters of the datasets used in this study.

Dataset ATR N(N+/N-) IR

DTS1 14 158(119/39) 3.051

DTS2 13 53(40/13) 3.077

https://doi.org/10.1371/journal.pone.0243907.t001
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Machine learning methods

Oversampling strategies. In this work we have kept the IR as one after the application of

oversampling for all classification experiments. There are more than 100 variants of SMOTE

in the literature [30], but we have only adopted 73 oversamplers in our study and have dis-

counted techniques that are essentially similar. In total we conducted 292 oversampling classi-

fication experiments and four no oversampling experiments using four different classifiers.

We have also categorised the oversamplers based on their key characteristic operating princi-

ples as reported by [31] and shown in S3 Table.

As shown in S3 Table, each oversampling method falls into a few operating principles, however

some techniques are unique and does not fall into any particular operating principle. In the results

section, we report which operating principles perform best on our two datasets. By reporting the

best oversamplers in this way, it should also allow future studies with similarly sparser or clustered

datasets to select potential oversamplers not described in this work. In the rest of this section, we

will endeavor to summarise some of the most prevalent operating principles:

Dimensionality reduction. These techniques reduce the dimensions of the data to a lower

dimensional space. Some common techniques are principal component analysis (PCA) and

linear discriminant analysis (LDA).

Component-wise sampling. Attributes are sampled independently in this method and the

assumption is that the entire volume of a hypercube spanned by two neighboring minority

samples belongs to the minority class.

Ordinary sampling. These techniques are very similar to conventional SMOTE methods

(see Fig 1) and adapt the underlying principle that new minority samples are generated in

between two neighbouring minority line sections.

Borderline. Borderline methods increase the number of minority samples that border

majority samples. The objective of using a borderline method is to allow the classifier to be

able to distinguish between these borderline observations more easily.

Using a sampling density. The key principle of density based methods are to assign a

weighted distribution for different minority class examples.

Use of clustering. In these methods, clustering techniques are used to identify minority con-

cepts, and then the oversampling is done within the individual clusters independently.

Classifier algorithms. We used four different classifiers covering neural network meth-

ods, ensemble methods and lazy learners. These were chosen as they offer classifier diversity

and have also been adopted most in imbalanced learning literature as base classifiers [32]. The

four classifiers used were:

k-NN. K-nearest neighbor (k-NN) [33, 34] is a lazy learning algorithm storing all instances

corresponding to training data points in n-dimensional space. Once new discrete data is

received, it analyses the closest k number of instances saved (nearest neighbors) and returns

the most common class as the prediction. We trained the k-NN classifier used in this work by

optimising the number of nearest neighbours and using uniform weighting between them.

SVM. Linear support vector machines SVM [35] try to classify cases by finding a separating

boundary termed hyperplane. The distances from the hyperplane boundary relate to the likeli-

hood of a subject belonging to a class. SVM has been used in a range of problems and they

have already been successful in pattern recognition in bioinformatics, cancer diagnosis [36]

and other areas.

MLP. Multilayer perceptron is a class of feedforward deep, artificial neural network com-

posing of more than three layers of nodes. They are the input layer, a hidden layer and an out-

put layer whereby each input node is a neuron that uses a nonlinear activation function. In

training MLP, a supervised learning technique called backpropagation is utilised.
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DT. Decision tree uses a tree-like graph or model of decisions and their possible conse-

quences and is an algorithm that only contains conditional control statements. This classifier

uses the tree representation in which each leaf node corresponds to a class label and attributes

are represented on the internal node of the tree.

Performance measures. One of the most crucial processes of defining a machine learning

model is model evaluation. In binary classification problems traditional metrics such as accu-

racy, precision and recall have been widely accepted as standard evaluation measures. These

are not suitable in imbalanced scenarios, since the performance of the majority class will be

overrepresented. Usage of oversampling techniques maintains a reasonable performance for

the majority samples whilst improving the classification of minority samples. We will compare

three performance measures in this work. These are the G-score, F1 score and AUC score. Pre-

vious works have investigated the effectiveness of different measures and have concluded that

these measures fit best for imbalanced data problems [37–40]. Firstly, introducing some acro-

nyms TP, TN, FP and FN are the number of true positive, true negative, false positive and false

negative samples, respectively, and P = TP +FN, N = TN +FP, the selected measures are

defined as follows.

G score the geometric mean of accuracies achieved on minority and majority instance:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP
P
�
TN
N

r

ð1Þ

F1 score is interpreted as a weighted average of the precision (PR) and recall (RE):

F1 ¼ 2 �
PR:RE
PRþ RE

; ð2Þ

PR ¼
TP

TP þ FP
; ð3Þ

RE ¼
TP

TP þ FN
ð4Þ

Where precision measures samples correctly classified as positive, and recall describes the

proportion of all positive samples classified as positive.

AUC score (Area Under the receiver operating characteristic Curve) characterises the area

under the curve of sensitivities plotted against corresponding false positive rates (FPR):

FPR ¼
FP

FPþ TN
ð5Þ

Experimental protocol. All analyses were performed using the Scikit-learn package in

Python [41]. Oversampling algorithms based on S3 Table above were implemented by adapt-

ing a freely available imbalanced learning toolbox [42] to apply the described oversampling

strategies. Our full experimental workflow can be seen in Fig 3 and is described below.

The first step in our experiment involved data exploration and cleaning. This involved

selecting the most relevant regions (10 regions described in MRI Processing section above)

from the resting state and volumetric brain image analysis in the brain that define our classifi-

cation problems as reported in previous work [16, 17]. Next, both our datasets were numeri-

cally normalised and standardised to a common scale. A dimensionality reduction feature

selection method was then implemented using the RFE method to avoid selecting highly corre-

lated features. After feature selection the original imbalanced dataset was oversampled before
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cross validation. We also split the data with a 0.3/0.7 (training/testing split) split according to

subject classes found in Table 1. We described in the rest of this subsection, the details of the

evaluation methodology.

Classifier parameters. To evaluate each classifier we selected different combinations of

hyperparameter tuning parameters. In our MLP classifier, we used one hidden layer and speci-

fied the logistic activation functions and hidden units as 10%, 50% and 100% of the number of

input features. In our k-NN classifier, we used standard or distance weighted decision func-

tions with L2 distance and the k voting neighbors as 3, 5 or 7. For the DT classifier, we selected

Fig 3. Schematic diagram illustrating the imbalanced learning workflow.

https://doi.org/10.1371/journal.pone.0243907.g003
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Gini-impurity or entropy as the splitting criterion, unbounded and with a maximum depth of

3 and 5. We used a linear SVM with L1 and L2 penalties with compatible hinge or squared

hinge loss and regularisation parameter C to be 1 and 10.

Cross validation. We evaluated classification performance by repeated stratified k-fold

cross-validation with 10 splits and 10 repeats.

Performance evaluation. The performance of all oversampler classifier combination (OC) is

carried out on 30 random oversampler parameter combination with six different classifier

parameter combinations. We also oversampled the training set data before classifier training.

We evaluated F1, AUC and G-score and reported the top results for each dataset, classifier and

oversamplers. We consistently used an average score (average over AUC, F1 and G score) (AS)

over the three performance measures in this paper to compare oversamplers and classifiers

allowing an unbiased performance evaluation.

Result

All detailed findings from 292 oversampling and four no oversampling experiments are shown

in supplementary tables, S4 Table for DTS1 and S5 Table for DTS2.

Oversampling algorithm comparison

We have shown the top 10 performers for each dataset in Tables 2 and 3 below, aggregated by

the performance measure results over all four classifiers. Next, we ranked the oversamplers

using the average rank (average AUC, F1 and G rank) to obtain a more unbiased oversampler

ranking rather than ranking using AS.

The top performers always perform better than baseline comparisons (no oversampling or

SMOTE). Usage of oversampling measures, including baseline SMOTE, outperforms no over-

sampling measures as shown in Table 2. When compared to No Oversampling, the best over-

sampler (Rank 1) gives an improved AS performance of 12.9 percent for DTS1 and 13.2

percent for DTS2. We also conducted an independent samples T test to test the significance of

oversampling versus no oversampling and reported a p value of 0.159 for DTS1 and 0.044 for

DTS2.

Using baseline SMOTE also yields an AS boost of 14.2 percent for DTS1 and 11.3 percent

for DTS2. Comparing baseline SMOTE to the best oversampler there was an improvement of

Table 2. Top 10 performing oversamplers for DTS1 versus baseline (no oversampling and SMOTE) averaged across four classifiers.

DTS1

Rank sampler AUC F1 G AS AUCRank F1Rank GRank avgRank

1 Assembled_SMOTE 0.7655 0.5603 0.7151 0.6803 3 3 5 3.67

2 SL_graph_SMOTE 0.7606 0.5635 0.7199 0.6813 12 1 1 4.67

3 ProWSyn 0.7629 0.5600 0.7143 0.6791 5 4 6 5.00

4 polynom_fit_SMOTE 0.7669 0.5585 0.7138 0.6797 2 10 7 6.33

5 Lee 0.7619 0.5592 0.7127 0.6779 7 7 9 7.67

6 AND_SMOTE 0.7629 0.5573 0.7120 0.6774 6 13 12 10.33

7 CURE_SMOTE 0.7670 0.5587 0.7095 0.6784 1 8 24 11.00

8 Selected_SMOTE 0.7633 0.5597 0.7094 0.6775 4 5 25 11.33

9 SMOTE_FRST_2T 0.7584 0.5563 0.7167 0.6771 17 17 2 12.00

10 distance_SMOTE 0.7602 0.5587 0.7103 0.6764 13 9 20 14.00

Baseline SMOTE 0.7522 0.5436 0.7032 0.6663 49 46 41 45.33

Baseline No Oversampling 0.6877 0.4041 0.5612 0.5510 72 74 74 73.33

https://doi.org/10.1371/journal.pone.0243907.t002
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1.33 percent for DTS1 and 1.92 percent for DTS2. DTS1 also shows that Assembled_SMOTE

[43] and SL_graph_SMOTE [44] are the best oversampling performers. Based on the average

rank for DTS2 the Lee [45] and polynom-fit-SMOTE [46] oversampling algorithm performs

the best.

Classifier comparison

SVM is the best performing classifier compared to the other four classifiers (see Table 4).

Based on AS scores, SVM performs 3.74 percent better than MLP the next best classifier for

DTS1 and 5.42 percent better than MLP in DTS2. DT is also consistently the worst performing

classifier choice. We also compared SVM versus the other 3 base classifiers when oversampling

is used, this correlated to a p value of 0.024 for DTS1 and 0.044 for DTS2 when we conducted

an independent T test.

Oversampling classifier combination comparison

Top 10 best oversamplers with their respective classifiers is shown in Table 5. We ranked these

based on AS scores and show that an oversampler combination with SVM classifier always

Table 3. Top 10 performing oversamplers for DTS2 versus baseline (no oversampling and SMOTE) averaged across four classifiers.

DTS2

Rank sampler AUC F1 G AS AUCRank F1Rank GRank avgRank

1 Lee 0.8903 0.7322 0.8501 0.8242 1 2 1 1.33

2 polynom_fit_SMOTE 0.8872 0.7337 0.8489 0.82327 3 1 3 2.33

3 SMOTE_TomekLinks 0.8854 0.7299 0.8494 0.82157 8 4 2 4.67

4 SMOTE_IPF 0.885 0.7305 0.8424 0.8193 9 3 7 6.33

5 CE_SMOTE 0.8894 0.7261 0.8388 0.8181 2 6 11 6.33

6 Assembled_SMOTE 0.8856 0.7239 0.8459 0.81847 7 9 4 6.67

7 G_SMOTE 0.8857 0.7226 0.8427 0.817 6 11 6 7.67

8 SMOBD 0.8839 0.7242 0.8452 0.81777 11 8 5 8

9 Edge_Det_SMOTE 0.8798 0.7258 0.8424 0.816 21 7 8 12

10 SDSMOTE 0.8823 0.7208 0.8409 0.81467 16 14 9 13

Baseline SMOTE 0.8779 0.7086 0.8286 0.80503 22 28 29 26.33

Baseline No Oversampling 0.831 0.5662 0.6795 0.69223 69 71 71 70.33

https://doi.org/10.1371/journal.pone.0243907.t003

Table 4. Shows the average and top performing AS over all oversamplers for the four different classifier types in

DTS1 and DTS2.

DTS1

Classifier AUC F1 G AS

k-NN 0.7397 0.5225 0.6849 0.6490

MLP 0.7796 0.5597 0.7137 0.6843

DT 0.6597 0.4680 0.6369 0.5882

SVM 0.8170 0.6051 0.7430 0.7217

DTS2

Classifier AUC F1 G AS

k-NN 0.7948 0.8886 0.8130 0.8321

MLP 0.8124 0.9058 0.8300 0.8494

DT 0.6566 0.7116 0.7037 0.6907

SVM 0.8786 0.9462 0.8861 0.9037

https://doi.org/10.1371/journal.pone.0243907.t004
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outperforms oversampler combination with DT, k-NN and MLP. This is true for both the

datasets. The SVM classifier provided the top performing AS score at 0.76 for DTS1 and 0.93

for DTS2. Looking into DTS1, the top performers using the SVM classifiers are A_SUWO [47]

and Borderline_SMOTE1 [48], which perform the best amongst all the oversamplers. The top

performing SVM oversampler combinations for DTS2 are SMOTE_Cosine [49] and Borderli-

ne_SMOTE1 [48] achieving the highest AS score.

Operating principles

The top three operating principles for DTS1 are Ordinary Sampling, Density Based and

Application (see Table 6). Some examples of Ordinary Sampling are ProWSyn [50] and

ADASYN [51]. ADASYN also falls in the Density Based category. Other examples of in the

Density Based category are A_SUWO [47]. This oversampler is the top performing OC as

shown in Table 5. The top three principles for DTS2 were Application, Uses Classifier and

Ordinary Sampling. Examples of oversamplers in the Uses Classifier operating principle

includes SMOTE_IPF [52]. The next top principle was Application, these were oversamplers

developed for specific applications with an example of CE_SMOTE [53] oversampler. CE_S-

MOTE and SMOTE_FRST_2T [54] also falls in both the Application and Ordinary Sampling

principle which is placed in two of the top three operating principles for DTS2. On the

Table 5. Shows the top performers ranked by AS scores over the four columns reporting the four classifier techniques used.

DTS1

Classifier SVM DT k-NN MLP

Rank Sampler AS Sampler AS Sampler AS Sampler AS

1 A_SUWO 0.7588 Borderline_SMOTE2 0.6253 CURE_SMOTE 0.6841 Stefanowski 0.7183

2 Borderline_SMOTE1 0.7563 MSMOTE 0.6169 polynom_fit_SMOTE 0.6836 polynom_fit_SMOTE 0.7153

3 SMOTE_ENN 0.7509 SMOTE_ENN 0.6144 NRAS 0.6831 SMOTE_D 0.7148

4 SL_graph_SMOTE 0.7499 SL_graph_SMOTE 0.6111 Gazzah 0.6814 CBSO 0.7136

5 Borderline_SMOTE2 0.7496 ISOMAP_Hybrid 0.6106 Gaussian_SMOTE 0.6786 DE_oversampling 0.7132

6 SMOTE_TomekLinks 0.747 AND_SMOTE 0.6103 ProWSyn 0.6777 MWMOTE 0.7132

7 SDSMOTE 0.7463 Assembled_SMOTE 0.6093 SOI_CJ 0.6766 distance_SMOTE 0.7095

8 SMOTE_FRST_2T 0.7436 ADOMS 0.6084 MDO 0.6749 ISMOTE 0.7091

9 LN_SMOTE 0.7431 LN_SMOTE 0.6083 Lee 0.6723 SN_SMOTE 0.7077

10 SMOBD 0.7417 SMOBD 0.6076 LLE_SMOTE 0.672 ADOMS 0.7055

DTS2

Classifier SVM DT k-NN MLP

Rank Sampler AS Sampler AS Sampler AS Sampler AS

1 SMOTE_Cosine 0.93 LVQ_SMOTE 0.7221 SMOTE_IPF 0.8406 Borderline_SMOTE2 0.8549

2 Borderline_SMOTE1 0.9263 Lee 0.7207 CE_SMOTE 0.838 cluster_SMOTE 0.8525

3 SDSMOTE 0.9203 SMOTE_D 0.7107 SMOTE_OUT 0.838 SMOTE_IPF 0.852

4 polynom_fit_SMOTE 0.92 SMOBD 0.7054 CBSO 0.8365 Edge_Det_SMOTE 0.85

5 G_SMOTE 0.9198 Assembled_SMOTE 0.7017 polynom_fit_SMOTE 0.835 SMOTE_FRST_2T 0.8494

6 SMOTE_OUT 0.9198 CE_SMOTE 0.6978 SMOTE_TomekLinks 0.8338 NDO_sampling 0.8477

7 Assembled_SMOTE 0.9196 G_SMOTE 0.6974 Selected_SMOTE 0.832 SMOTE_TomekLinks 0.8475

8 Lee 0.9188 NRSBoundary_SMOTE 0.6968 Borderline_SMOTE2 0.8284 CURE_SMOTE 0.8468

9 MWMOTE 0.9179 polynom_fit_SMOTE 0.6968 MWMOTE 0.8264 CBSO 0.8462

10 cluster_SMOTE 0.917 Random_SMOTE 0.696 CURE_SMOTE 0.8262 SMOTE_D 0.8449

Each row represents the oversampling technique providing the top results reported in descending order. We did this over both DTS1 and DTS2.

https://doi.org/10.1371/journal.pone.0243907.t005
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contrary, we observed moderate performance when using density estimation or dimensional-

ity reduction.

Discussion

The two key findings from this study were 1) using an oversampling strategy results in better

classification performance than not oversampling at all. When we implemented oversampling

on average across both datasets and performance measures, we demonstrated a 14.3 percent

improvement. 2) classification can be improved further by empirically using 73 oversamplers.

We reported the best oversamplers, classifier and operating principles for DTS1 and DTS2. In

this work, we did not review or discuss oversampling techniques in depth, however objectively

using these as a measure for classification improvement. We have also not considered under-

sampling or hybrid methods as we have only have a small minority total sample size.

For DTS1 (more clustered), Assembled SMOTE and SL_graph_SMOTE were the best over-

samplers. Both these techniques are categorised principally as Borderline methods. These

methods perform well on DTS1 as the clusters of minority and majority samples are more

assembled together or closely packed. Hence, by using Borderline methods we can distinguish

between the two instances more easily. The top 5 oversamplers for DTS 1 are further discussed

in S1 Appendix. Individually the best overall OC is A_SUWO when used with SVM. This

method is ideal for this dataset as it works best to differentiate sub-clusters of minority samples

from majority classes that are close together. It oversamples the sub-clusters by assigning

weights to their instances whilst avoiding generating overlapping synthetic instances by con-

sidering the majority instances that overlap minority ones. In terms of operating principles,

Ordinary Sampling, Density Based and Application methods are the best performers. These

principles are ones that implement oversampling very similar to conventional SMOTE. One

reason these are successful is that it makes the right compromise between introducing variance

and staying close to the original distribution of our dataset.

In DTS2, a smaller and sparser dataset with a smaller minority sample. The best overall

oversampler was Lee whereby a noise filtering approach very similar to the k-NN approach

was used. Using a post-processing noise-filtering step enhances the performance on a small

minority sampled dataset. The top 5 oversamplers for DTS 2 are further discussed in S1

Appendix. Individually the best OC is SMOTE-Cosine with SVM as the base classifier. This

Table 6. Table comparing operating principles over DTS1 and DTS2 based upon oversamplers categorized in S3 Table.

DTS1 DTS2

RANK Operating Principle AS Operating Principle AS

1 Ordinary Sampling 0.6689 Application 0.8004

2 Density Based 0.6677 Uses Classifier 0.8002

3 Application 0.6656 Ordinary Sampling 0.7949

4 Uses Clustering 0.6644 Uses Clustering 0.7940

5 Componentwise Sampling 0.6626 Componentwise Sampling 0.7928

6 Borderline 0.6624 Density based 0.7884

7 Uses Classifier 0.6614 Borderline 0.7861

8 Memetic 0.6597 Sampling By Cloning 0.7807

9 Dimensionality Reduction 0.6563 Changes Majority 0.7624

10 Changes Majority 0.6549 Noise Removal 0.7614

11 Noise Removal 0.6505 Memetic 0.7600

12 Sampling By Cloning 0.6489 Dimensionality Reduction 0.7506

13 Density Estimation 0.6383 Density Estimation 0.7310

https://doi.org/10.1371/journal.pone.0243907.t006
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oversampler has been shown to work better with the SVM classifier [49]. Oversampling based

on Application and Uses Classifier operating principles gives the best performance, whereas

the worst performance is achieved with density estimation and dimensionality reduction.

These methods fail due to the number of minority samples being extremely low (N- = 13) and

the number of attributes (ATR = 13) is not smaller than the number of N-. Secondly due to the

sparse nature of this dataset N- can sometimes be mistakenly identified as noise [31].

In terms of number of misclassified cases, there was little change when comparing the over-

sampling techniques for both DTS1 and DTS2. However, we observed a significant change in

misclassification as compared to no oversampling. When we used oversampling in DTS1, we

found a misclassification of 21.1 percent or 15 out of 71 misclassified cases as compared to

27.6 percent or 13 out of 47 cases in the no oversampling case. When we used oversampling,

we found a similar trend for DTS2 with 8.3 percent misclassification or 2 out of 24 cases as

compared to 12.5 percent or 2 of 16 cases when no oversampling was considered. We reported

these numbers based on a 70/30 training testing split and using the top OC performer for both

datasets.

As a whole, SVM performs better than the other three classifiers. SVM is robust, precise

and easier to train on smaller datasets. SVM also has the ability to generate nonlinear decision

boundaries using methods designed for linear classifiers and adopts a flexible decision bound-

ary. This adaptive boundary ability is very important in handling the problem of imbalanced

datasets [9, 55]. In our results, we have found the AUC scores are comparatively higher as

compared to the F1 or G score. This was because the features (ATR) were selected maximising

AUC. There is scope to improve the AS scores further by better feature selection and hyper-

parameter tuning of the classifier (in the present study, parameter tuning was constrained by

computational time). However, we emphasise that the objective of this work was primarily to

compare oversamplers over our two datasets rather than pushing AS scores. Future experi-

ments will explore a larger sample size for the smaller datatset (DTS2). We will also explore

using other base classifiers such as unsupervised principle component analysis and K-means

clustering techniques.

To conclude, we have reported the most appropriate oversampling approaches for two dis-

tinct datasets. In addition, to our knowledge, this is the first study addressing 73 different over-

sampling strategies to improve the diagnostic performance of machine learning classification

on MRI datasets. Our findings provide an insight into the best approach to improving the

binary classification of imbalanced datasets.
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