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Abstract
The Drosophila wing is covered by an array of distally pointing hairs that has served as a

key model system for studying planar cell polarity (PCP). The adult cuticular hairs are

formed in the pupae from cell extensions that contain extensive actin filaments and microtu-

bules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear

from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin

proteins promote the formation of long actin filaments of the sort thought to be important for

hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role

in hair morphogenesis. Both loss of function mutations and the expression of a constitutively

active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The

conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and

activation of the cytoskeleton to the distal most part of wing cells. It also ensures the forma-

tion of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may

be part of this mechanism. We found the expression of constitutively active Dia greatly ex-

pands the region for activation of the cytoskeleton and that dia functions antagonistically
withmultiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Fur-

ther we established that purified fragments of Dia and Mwh could be co-immunoprecipitated

suggesting the genetic interaction could reflect a direct physical interaction.

Introduction
The Drosophila wing is covered with an array of distally pointing hairs that defines the planar
cell polarity (PCP) of the tissue [1,2]. Genetic studies led to the identification of the frizzled
(fz)/starry night (stan) pathway as the key regulator of PCP [3]. Further studies have shown
that this pathway functions in other body regions and is conserved in essentially all animals to
regulate PCP [2,4]. A characteristic of the system is that protein members of the pathway accu-
mulate on either the distal, proximal or both of these sides of pupal wing cells [1,2]. A second
pathway, the ds/ft pathway also regulates PCP [5–8]. In the wing and the eye ds/ft is generally
thought to function upstream of the fz pathway [9–11] and there is evidence that it does so by
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regulating the orientation of the microtubule cytoskeleton that is used for the directed traffick-
ing of PCP proteins [12–14]. Although the microtubule cytoskeleton has received more atten-
tion with regard to the asymmetric accumulation of PCP proteins it is worth noting that two
genes that encode proteins that promote actin filament depolymerization, twinstar (tsr-cofilin)
[15] and flare (flr-AIP1) [16] have been found to be essential for the generation of wing PCP
and the distinctive protein accumulation pattern.

Mutations in genes that regulate the actin cytoskeleton often result in abnormal hairs.
Among the good examples are the bundling proteins singed (fascin) [17] and forked (forked)
[18,19] that result in twisted and bent hairs and the myosins crinkled (myosin VIIa) [20] and
zipper (myosin II) [21,22] which result in short, split and multipled hairs. Mutations in the
small GTPases Rho1, Dcdc-42 and the effector Rho kinase (Drok) also result in short, split and
multipled hairs [23–25]. Perhaps the most extreme hair phenotypes are associated with tsr and
flrmutations [15,16]. Mutations in the slingshot phosphatase that dephosphorylates and acti-
vates cofilin also produces hair morphology phenotypes [26]. Drugs that antagonize the actin
cytoskeleton also result in abnormal hair morphology providing further evidence for the im-
portance of actin in hair growth [27]. The growing hair is likely to contain long actin filaments
[28]. Formins are known to promote the formation of long linear actin filaments [29,30] and
hence are strong candidates for having a role in hair morphogenesis. Indeed, one formin, di-
aphanous (dia) is known to be important for the morphogenesis of denticles in the embryo
[31]. Denticles are in some ways similar to hairs/trichomes and many, but not all genes show
similar mutant phenotypes in both [32]. We explored the role of the Drosophila formin genes
in wing hair development and found dia to be a key gene. Both loss and gain of function muta-
tions result in dramatic abnormalities in hair morphology. We also established that dia also
plays an important role in the morphogenesis of sensory bristles, a another polarized cell type
where linear actin filaments are prominent and thought to be important [33,34].

Growing hairs also contain centrally localized microtubules that are likely to be important
for hair growth [23,27,35]. Indeed, the application of drugs or the expression of transgenes that
antagonize the microtubule cytoskeleton results in the formation of multiple hairs [13,27].
There is however, little loss of function genetic data establishing the importance of the microtu-
bule cytoskeleton in hair outgrowth.

The fz/stan pathway regulates wing PCP by restricting the activation of the cytoskeleton
that drives hair morphogenesis to the distal most part of the cell [3]. Themultiple wing hairs
(mwh) gene is the most downstream member of the fz pathway and hence is a strong candidate
for mediating at least part of this restriction [3,36,37]. Mwh accumulates on the proximal side
of wing cells prior to hair morphogenesis and later it is also found in the growing hair [36,37].
mwhmutations result in most wing cells forming 3 or more hairs with aberrant polarity at ab-
normal locations along cell periphery [3,36,37]. A variety of data suggests that Mwh acts as an
inhibitor of the actin cytoskeleton. For example, the high level over expression ofmwh leads to
a delay in hair initiation, loss of function mutant cells form extra hairs and ectopic actin fila-
ments and the expression ofmwh in cultured cells leads to actin phenotypes [36,37].

The sequence of the Mwh protein suggests a possible mechanism for mediating PCP control
of the actin cytoskeleton. The amino terminal half shows similarity to the same region in Di-
aphanous family formins [36,37]. This region contains two sequence motifs: a GTPase binding
domain (GBD) and a formin homology 3 domain (FH3) [38,39]. The GBD-FH3 domain was
divided into 3 structural domains: a GBD domain (which is smaller than the region originally
identified as the GBD), a diaphanous inhibitory domain (DID), and a dimerization domain
(DD) [29,40–44]. Dia activity is inhibited by the intramolecular binding of the C terminal
DAD (diaphanous autoregulatory domain) to the DID [42,45]. In this conformation the car-
boxy terminal FH1 and FH2 domains cannot promote actin polymerization. A conformational
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change occurs with the binding of Rho-GTP and this relieves the inhibition. Previous data
from our lab suggested that Mwh was also activated by Rho-GTP binding implying that Mwh
also exists in an auto inhibited state [25]. However, the Mwh protein does not contain FH1 and
FH2 domains, and is not expected to be able to promote actin polymerization like true formins.
The existence of a dimerization domain within the similarity region of Mwh and Dia suggests
that Mwh might heterodimerize with Dia and inhibit Dia function.

We report here that the expression of a constitutively active Dia (CA-Dia) in pupal wing
cells greatly increases the area where F-actin accumulation is seen at the start of hair formation.
Thus, it appears that the presence of CA-Dia antagonizes the ability of the fz/stan pathway to
restrict the activation of the cytoskeleton to a small distal region. We also carried out genetic
studies that showmwh and dia act antagonistically in wing hair development and that purified
fragments of these two proteins interact in vitro. Surprisingly this physical interaction was not
based on the DD domains that we suspected would mediate the dimerization. These data sug-
gest that one possible mechanism by which the fz/stan pathway regulates wing PCP is by the
direct inhibition of Dia by Mwh.

Results

The role of dia in wing hair morphogenesis
Dia and other formins are known to promote the polymerization of long actin filaments, which
are thought to be important for hair morphogenesis [28,46]. All of the six Drosphila formins
are expressed in pupal wings and none show an increase in expression at the time of hair for-
mation hence expression pattern did not point to any candidates [47]. To determine if any for-
min played a non-redundant role in wing hair morphogenesis we used transgene mediated
RNAi driven by ptc-Gal4 to knock down levels of the Drosophila formins in the wing [48]. We
tested: dia, cappuccino, DAAM, formin 3, CG32138 and Formin homology 2 domain containing
ortholog (Fhos). Of these only dia showed a substantial wing hair phenotype consistent with a
possible role as a downstream target of the fz pathway and/or a key role in hair morphogenesis.
A hint of a mutant phenotype was seen for CG32138, but its weakness and weak penetrance
lead us to give it a low priority for further study. No phenotype was seen in the knockdowns of
the other formins. In a separate set of experiments we also used transgene mediated RNAi
knockdowns to determine if Arp2/3 complex proteins, which promote the formation of
branched actin networks [49,50] had a role in hair morphogenesis. We found that knocking
down p16ARC (CG9881), Arp11 (CG12235), Arc-p34 (CG10954), Arpc3A (CG4560), Arpc3B
(CG8936) and Arp14D (CG9901) using UAS-dicer2; ptc-Gal4 all produced a similar set of phe-
notypes with varying severity (S1 Fig.). The most common was a swollen hair base (S1 Fig.).
This was seen in essentially all hairs in the proximal part of the ptc domain. We also observed
double hair cells of normal polarity (black arrow), branched hairs (red arrowhead), polyploid
cells and decreased alignment of neighboring hairs (red arrows). We also failed to see a pheno-
type with a knock down of spire, another actin regulator.

The predominant phenotype seen with the knock down (kd) of dia was polyploid cells
(Fig. 1G, arrows, arrowheads). When we used ptc-Gal4 to drive the kd this was seen all wings
but only in a thin band (~3 cells wide) down the center of the wing where ptc-Gal4 drives ex-
pression at the highest level (Fig. 1G). Polyploid cells were not surprising as dia is known to
have an important role in cytokinesis [51,52]. Greater than 95% of the cells in this band ap-
peared to be polyploid. Twenty six percent (0.04sd) formed multiple hairs (Fig. 1G, arrows)
and 70% (0.04sd) formed a single hair that was longer than normal (Fig. 1G, arrowheads).
Both types of cells/hairs are easily recognized as being polyploid due to their larger size and the
greater distance between neighboring cells hairs [53]. It is worth noting that the fz pathway is
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functional in polyploid wing cells [53] but it is not able to scale to force the formation of only a
single hair in these large cells. To minimize the formation of polyploid cells and cell death [51]
we used temperature shifts and a temperature sensitive Gal80 to limit the period of time when
dia expression was knocked down to after cell division had ceased in the wing [54]. Under fa-
vorable conditions when we used ap-Gal4 as a driver we found multiple hair cells (mhc) that
did not appear to be polyploid (Fig. 1I, large arrows) and some regions where hairs showed ab-
normal polarity (Fig. 1I, asterisks). The frequency of these hairs was variable from fly to fly per-
haps due to slight variation in the timing of the temperature shift. In addition to the mhc we
also saw hair morphology abnormalities including split hairs and short single hairs (Fig. 1I,
small arrows). Chemical inhibitors of actin polymerization such as cytochalasin-D produce
similar hair morphology phenotypes [27].

The use of ap-Gal4 in these experiments leads to minor folds in the wing presumably due to
dia being knocked down in and leading to cell shape changes in dorsal but not ventral cells.
The presence of such distortions makes it difficult to be certain that the abnormal polarity phe-
notype is a primary defect. To get around the distortion problem we needed to examine a tissue

Fig 1. Wing hair phenotypes of both loss of function and gain of function diamutations. A-C are SEM images and D-I are bright field images. A.
Oregon-R, B. An ap>CA-diawing at a lower magnification to see the folded wing phenotype. C. An ap>CA-diawing shown at the same magnification as the
wild type in A. Note the bumpy and folded cells and that hairs do not show a consistent polarity. Large arrows point to cells with thick hairs that contain a
number of thin distal projections, some of which are branched. Small arrows point to cells that contain more than one independent hair. Arrowheads point to
very small hairs/projections. D. ap>CA-dia. In all bright field images distal is to the right and proximal to the left. Large arrow points to a hair with a thick
proximal region and 3 thin distal projections. The small arrows point to cells that formed multiple independent hairs. Grey arrows point to cells that formed
branched hairs. The arrowheads point to very small hairs. Many of the cells show abnormal polarity (polarity should be pointing toward the right). E. Amwh1

wing where hairs show abnormal polarity (i.e. they do not point to the right (distally). The arrows point to cells that formed multiple hairs. The arrowheads point
to very small hairs. F. ap>CA-diawing showing a light micrograph of the very strong phenotype shown in SEM in C. The pattern of hairs is too abnormal to
easily interpret. G. ptc>dia-RNAi. The arrows point to polyploid cells in the region where ptc-Gal4 drives the highest level of expression that formed multiple
hairs. The arrowheads point to polyploid cells that formed a single hair. Note the hairs are longer than the hairs outside of the region where ptc drives the
highest level of expression (marked by the an asterisk). H. A wing region containing unmarked dia5 clones that produced several polyploid cells that form
more than one hair (arrows). Such an abundance of clone cells was unusual in our experiments. I. A wing region of a ap>dia-RNAi fly that contains diploid
multiple hair cells (large arrow). Note that in contrast to G and H the multiple hair cell is not larger than the neighboring cells. Some of the cells form very small
hairs (small arrows). Some of the hairs show a weak polarity phenotype (asterisk).

doi:10.1371/journal.pone.0115623.g001
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whose shape was not distorted in the experiment. As an alternative to the wing we chose to ex-
amine hair polarity on the notum of ap-Gal4 pTubGal80ts /+; UAS-dia-RNAi/+ flies (Fig. 2).
The overall shape of the notum cuticle is only slightly altered in this genotype and the tissue
was not flattened for microscopy. We observed both polyploid mhc (arrow) and diploid mhc
(Fig. 2BC). Interestingly, we also routinely observed swirling trichome patterns that are typical
of PCP mutants (Fig. 2B–E, arrowheads). Indeed the dia kd phenotype on the thorax was simi-
lar to the strength seen in null alleles of PCP genes. None of these phenotypes are seen on wild
type flies (Fig. 2A). We also examined clones homozygous for the hypomorphic dia5 allele
[51]. We rarely recovered clones, and when observed in wing discs clones were very small and
in adult wings most clone cells were polyploid (Fig. 1H, arrows). The rarity of the clones (typi-
cally 0–5 clones per adult wing) precluded a detailed analysis. Polyploid cells were seen both in
the wing blade and at the wing margin (S2 Fig.). In addition to polyploid cells we also saw rare
multiple hair cells that appeared to be diploid. Further, we saw evidence of cell death due to the
generation of clones in the wing. For example, some wings showed evidence of a loss of sections
of wing margin (S2 Fig.). Similar phenotypes are seen in a number of mutations that cause cell
death [55,56]. We observed bristle phenotypes in these flies, such as a loss of the socket cell and
duplicated shafts (S2 Fig.) suggestive of defects in the asymmetric cell divisions that give rise to
the bristle sense organ [57,58]. When we examined the notum of flies that contained dia5

clones we observed the occasional loss of bristles and small patches of notum with hairs that
appeared to be formed by polyploid cells (S3 Fig.). We also saw what appeared to be diploid
mhc (S3 Fig.) and potential polarity abnormalities (S3 Fig.). On the whole the dia5 clone phe-
notypes were quite similar to those seen with dia knock downs and served to validate the
knock downs.

Fig 2. Notum trichome phenotypes.Minimal projections of stacks of bright field images of the notum
(dorsal thorax). Note all of the hairs and bristles on the Ore-R (A) point posteriorly (down). In the dia
knockdowns (B, C) there are polyploid cells (arrows), deformed bristles (asterisks) and many hairs
(trichomes) do not point posteriorly. Some of these appear to be diploid (arrowheads). The other panels are of
fz pathway mutants for comparison. D. frizzled, E. fuzzy, and F.mwh. Note the misoriented and swirling hair
polarity in D and E. Note the strong multiple hair cell phenotype in F.

doi:10.1371/journal.pone.0115623.g002
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The overexpression of wild type Dia-GFP produced a small number of multiple hair cells
(Fig. 3A, red ovals). Since Dia activity is regulated post-translationally it is not surprising that
wing cells were only mildly affected by Dia overexpression. To eliminate the ability of cells to
post-translationally down regulate the activity of the excess Dia protein we expressed two dif-
ferent constitutively active (CA) Dia variant proteins (DiaΔDad (we refer to this variant as CA-
Dia) and FH3FH1FH2 [59]). In both cases they lack the Dad domain which is essential for
auto-inhibition. We obtained similar phenotypes from both but primarily used CA-Dia as it
was slightly more potent. Consistent with these proteins being potent constitutive activators of
actin polymerization we found them to be lethal when expressed by most Gal4 drivers. To get
around the lethality we used Gal80ts and temperature shifts to limit CA-Dia expression to a
short period of time after cell division had ceased in the wing (1–12 hr starting 24–28 hr awp
(either ap-Gal4 pTubGal80ts or ptc-Gal4 pTubGal80ts were used) [54]. Much stronger pheno-
types were seen with ap-Gal4, presumably due to the expression of ptc-Gal4 strongly declining
in the 12 hours prior to hair initiation. In wings displaying the strongest phenotypes the wing
did not fully expand (Fig. 1B), wing cells were bulged (Fig. 1B, C) and the wing blade was

Fig 3. Antagonistic genetic interaction between dia andmwh.Genotypes are provided on the images. Red circles highlight multiple hair cells. Note the
increased number of multiple hair cells in the ap>dia-GFP; mwh/+ (B) wing compared to ap>dia-GFP (A) and ap-Gal4/+; mwh/+ (C) by themselves.
Quantitation is shown in G (p<0.001). Note the increased number of multiple hair cells in the ap>CA-dia;mwh/+ (E) wing compared to ap>CA-dia (D) and
ap-Gal4/+; mwh/+ (F) by themselves. Quantitation is in H (p< 0.01). In all of these wings a ptub-Gal80ts transgene was present and a temperature shift was
done to restrict the length of time the dia transgene was expressed (see text for details). * indicates a significant difference (t-test).

doi:10.1371/journal.pone.0115623.g003
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highly folded (Fig. 1B). Many of the hairs pointed in abnormal directions and were short and
thick with a collection of very thin distal extensions (that were often branched) (Fig. 1C, large
arrows). Many hairs were curved and/or branched, and some cells formed multiple indepen-
dent hairs (Fig. 1C, small arrows) some of which were very small (Fig. 1C, arrowhead). Such
wings are so abnormal it is difficult to interpret the phenotypes. More informative were wings
that displayed somewhat weaker phenotypes (Fig. 1D) due to a more limited time of CA-Dia
expression. These wings contained cells that formed multiple independent hairs (small arrows),
very short hairs (arrowheads), hairs with thickened proximal regions and multiple thin exten-
sions (large arrows), curved hairs, and split hairs (grey arrows). It was common in such wings
to find regions where hair polarity was abnormal (Fig. 1D).

We examined pupal wings to directly assess the consequences of expressing CA-Dia before
and during the time of hair initiation as well as later in hair morphogenesis (Fig. 4). Once again
we limited the period of expression by using Gal80ts and a temperature shift. We primarily uti-
lized ptc-Ga4 as the driver because the animals were healthier, their developmental timing was
more reproducible and the weaker phenotypes were easier to interpret. Prior to hair initiation
affected cells showed much stronger cortical F-actin staining than is seen wild type cells
(Fig. 4A, A’, A”, asterisk vs pound). This cortical staining extended from the apical to basal
level of the wing cells (Fig. 4 A”, arrow). The expression of CA-Dia resulted in cells being
shorter on the apical/basal axis but having a larger apical surface. At hair initiation two types of
cells were seen in the ptc domain. Many showed at most minor abnormalities (Fig. 4E, arrows).
In others F-actin accumulated over a wider region (Fig. 4CE, asterisks) than normal (Fig. 4L,
asterisks) and hair outgrowth was delayed (Fig. 4E, asterisks). In wild type cells F-actin accu-
mulated over approximately 8.7% (0.02sd) of the apical cell surface at hair initiation (Fig. 4L,
asterisks), while in the strongly affected ptc>CA-dia cells (Fig. 4E, asterisks) this was increased
to 33% (0.07sd). This 3.8 fold difference was highly significant (t-test, p = 4 X10-12). This sug-
gested that the multiple hair phenotype of CA-Dia is due to cells failing to restrict the location
for actin polymerization to a small region around the distal vertex. We also noticed F-actin
bundles/filaments in the apical regions of cells apart from the region of hair morphogenesis
(Fig. 4CD, arrowheads). These are not seen in wild type (Fig. 4KL) but are seen inmwhmu-
tants (Fig. 4M, arrowheads) [37]. In addition we observed thin filopodia like processes that
contained actin extending from hairs (Fig. 4BC, arrows). These are not seen in equivalently
treated normal wings (e.g Fig. 4J, arrow). These could be related to the thin extensions of hairs
seen in the SEM images of apGal4 pTubGal80ts /+; UAS-CA-dia/+ wings (e.g Fig. 1C). We also
examined CA-Dia expressing pupal wings after hair extension was essentially complete (after
40–42 hrs awp). At this time the wing cells start to flatten and chitin deposition is first detected
[60]. The flattened wing cells have a larger apical cell surface and this leads to an increase in the
surface area of the wing resulting in the wing folding in the pupal cuticle wing sac. Coincident
with the start of chitin deposition actin foci accumulate under the apical surface of the wing
[60]. In ap-Gal4>CA-dia pupal wings these foci were almost completely eliminated from the
dorsal cells but not ventral cells (S4 Fig.) and wing cell flattening was reduced. It seems likely
that CA-Dia interferes with chitin and cuticle deposition, which contributes to the CA-Dia
wing blade phenotype seen in the SEM (Fig. 1BC).

Dia is known to also regulate microtubules [46]. We examined the distribution of
microtubules in wing cells that expressed CA-dia and found increased cortical tubulin
immunostaining that was similar to the F-actin staining seen in those cells (Fig. 4FG vs HI).
In general, the tubulin abnormalities appeared less severe than the actin abnormalities but
it remains an open question as to which is more important in producing the
mutant phenotypes.
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Fig 4. Effect of expression of CA-dia on pupal wings. All panels with the exception of M (mwh) are of ptc>CA-dia pupal wings. A phalloidin stained pupal
wing (A, A’, A”) prior to hair initiation shows increased F-actin staining along the lateral cell membranes (arrows). Both a maximal projection (A) and
orthogonal views (A’, A”) are shown. The cells in the middle of the ptc domain have increased apical size (*) and are shorter (A’) compared to cells outside
the domain (#). B-D. Are each maximal projections of two optical sections separated by 0.3 um from a ptc>CA-dia pupal wing stained for F-actin during hair
outgrowth. B-D are successive maximal projections of two optical sections as one moves from the dorsal surface ventrally. The wing was not completely flat
or orthogonal to the microscope axis. B. Arrows point to hairs that contain a long thin filopodial like distal extension. C. Arrows point to hairs that contain a
long thin distal extension. Asterisks mark cells where F-actin accumulation was seen over a larger region of the apical cytoplasm than normal. Arrowheads
point to actin filaments/bundles not normally seen in such cells. D. Arrowheads point to actin filaments/bundles not normally seen in such cells. E. A single
optical section of a different ptc>CA-dia pupal wing stained for F-actin during hair outgrowth. Note the two types of cells. Some have relatively well formed
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dia and bristle morphogenesis
The sensory bristles of Drosophila are another convenient cell type to examine the role of the
actin and microtubule cytoskeletons in polarized growth [34,61,62]. In experiments done to ex-
amine the wing phenotype (see above) we observed that the expression of CA-Dia resulted in a
range of highly abnormal bristles. These included split bristles, bent bristle and dramatically
shortened bristles (S3 Fig.). The severity of the phenotype was dependent on the length and
timing of CA-dia expression and we did not examine this quantitatively. In principle, bristle
abnormalities can arise from defects in bristle growth [34,61,62] or due to the collapse of ex-
tended bristles due to defects in cuticle deposition [63]. Indeed, collapse can give rise to very
short bristles similar to those obtained after expression of CA-Dia (S3 Fig.) [63]. We carried
out limited in vivo imaging experiments on bristles where CA-Dia was expressed and observed
typical CA-dia phenotypes during bristle outgrowth (S3 Fig.). Thus, at least part of the bristle
phenotype is due to defects in primary bristle outgrowth. We cannot rule out a contribution
due to a failure to maintain bristle morphology, although we did not detect any evidence for
this mechanism. We also observed abnormal aristae in ap>CA-dia flies (S5 Fig.). The abnor-
malities included a short and thick central core (arrows) and short, split and wispy side
branches (arrowheads). We previously obtained the former after injection of microtubule in-
hibitors into pupae and the latter after injection of actin antagonists [64].

We detected more modest phenotypes when dia was knocked down in bristle forming cells.
The most common phenotypes were bent and/or split bristles and wispy bristle tips (S3 Fig.)
and these were not found on all animals.

mwh and dia interact genetically
The experiments described above established that too much Dia activity in pupal wing cells re-
sulted in a number of dramatic wing and hair morphology abnormalities including several that
were PCP like phenotypes. This included many cells that formed multiple hairs, some of which
were very short and hairs with abnormal polarity. Further, many of the cells that formed multi-
ple hairs formed 3 or more hairs. The only PCP gene that shares this set of phenotypes ismwh
[3,36]. This suggested that themwhmutant phenotype could be due at least in part to excess
Dia activity. We carried out a number of genetic experiments to test this hypothesis. When
GFP-diaphanous was over expressed (UAS-GFP-dia/ap-Gal4 ptub-Gal80ts at 29°C), only occa-
sional double hair cells were observed (Fig. 3A). A reduction in the dose ofmwh (UAS-GFP-
dia/ ap-Gal4 ptub-Gal80ts; mwh/+) resulted in a large increase in the number of cells producing
two hairs (Fig. 3B). We quantified this phenotype in the region distal to the posterior cross vein
(Fig. 3G) and found the average number of double-hair cells was significantly increased
(P<0.001, t-test).

We also found similar interactions in wing cells that expressed constitutively active Dia
(UAS-GFP-CA-dia/ ap-Gal4 ptub-Gal80ts vs UAS-GFP-CA-dia/ ap-Gal4 ptub-Gal80ts;mwh/+)
(Fig. 3D–F). Once again the difference in the number of multiple hair cells was significant

hairs (arrows). Others show delayed hair outgrowth and an unusually large region stained by F-actin (asterisks). F-I are images from a ptc>CA-dia pupal
wing prior to hair initiation stained for both tubulin (red—G, I) and actin (green—F, H). The upper panels are from inside the ptc domain and the lower panels
from the same wing but outside of the ptc domain. Note the brighter staining and increased lateral accumulation of both F-actin and tubulin in cells inside the
ptc domain (asterisks) compared to outside of the ptc domain (pound sign). J and K are from the same pupal wing as BCD, but in this case from outside of
the ptc domain so these cells should be phenotypically wild type. The hairs (J—arrow) appear normal. The distinctive ectopic actin filaments/bundles seen in
C and D (arrowheads) are not visible in either J or K (K is from just below the apical surface). L is from a region outside of the ptc domain from the same wing
as E. It shows a region of the wing where hair initiation is occurring (two small hairs are marked by arrows). Note how much smaller the region of apical
cytoplasm that stains brightly for F-actin (asterisks) is compared to when CA-Dia is expressed (E). M is amwhmutant wing stained for F-actin. Extra actin
filaments are seen in the apical cytoplasm (arrowheads).

doi:10.1371/journal.pone.0115623.g004
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(Fig. 3H) (P<0.01, t-test). These data established that there is an antagonistic relationship be-
tweenmwh and dia.

Dia and Mwh co-localize in wing cells and growing hairs
To determine where Dia was localized in pupal wing cells we immunostained pupal wings ex-
pressing GFP-Dia. Dia preferentially localized to the cell periphery prior to hair initiation
(Fig. 5A) and later was found in growing hairs (Fig. 5B). As was described previously Mwh was
preferentially found at the proximal side of wing cells prior to hair initiation and was then
found in the growing hairs. We also co-immunostained for these two proteins in pupal wing
cells and observed substantial co-localization in growing hairs (Fig. 5EFG). We quantified this
and found an average correlation coefficient for immunostaining in the hair of 0.5513 (S6 Fig.).
These experiments established that Mwh and Dia are found in the same region of pupal wing
cells and could potentially interact directly.

Mwh and Dia interact physically
The interactions detected in genetic experiments could be a mediated by a direct or indirect in-
teraction between Mwh and Dia. To distinguish between these two models we first attempted

Fig 5. Localization of Dia and Mwh in pupal wings. In ptc>dia-GFP pupal wings prior to hair formation Dia
localizes at the cell periphery (A). During hair elongation (B-G) Dia preferentially localizes in a punctate
manner to the hair. At 34 hr awp (after white prepupae) both actin and Dia concentrate in the growing hairs
(B-D, arrows). Later in wing development (E-G)(~40 hrs awp) the hair has moved to the center of the cell and
Dia and Mwh are preferentially localized to the hair (arrows). Thus, the two proteins are localized in the same
region of wing cells and are in position to interact.

doi:10.1371/journal.pone.0115623.g005
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to determine if Dia and Mwh could be co-immunoprecipitated from wing disc extracts. When
we precipitated protein using an anti-GFP antibody we detected a band the size of GFP-Dia
((Fig. 6A, lane 3) that was only seen when GFP-Dia was expressed (Fig. 6, compare lanes 3 and
14) indicating that the IP was specific. When we probed the precipitated material with anti-
Mwh antibody we did not observe a convincing band at the expected size of Mwh (Fig. 6A,
lane7). Increasing the exposure resulted in the appearance of a faint band at that size (Fig. 6A,
lane 8- arrow). Assuming this band was Mwh we estimated only 0.04%Mwh was associated
with Dia. This was suggestive (but not compelling) evidence that these two proteins could be in
a common complex. Why might the co-IP be so weak if the two proteins were in a common
complex? One possibility is that the proteins could be present in a complex that was not stable
to the experimental procedure. Alternatively, both proteins are likely activated by the binding
of Rho1-GTP and it is possible that only a small fraction of one or both proteins is in an active
form. Inactive proteins might not be able to interact. Another possibility is that at least one of
these proteins (e.g. Dia) is preferentially found in one or more alternative complexes that do
not contain Mwh. Only “left over” Dia might be present in a complex with Mwh. Finally, we
used wing discs and not pupal wings (which are much more difficult to dissect without fixa-
tion) as the source of material and this difference in developmental stage could contribute to ei-
ther of the latter two possibilities. This seems quite plausible asmwh expression increases
sharply around the time of hair intiation [47].

To obtain more definitive evidence as to whether or not these two proteins could interact
physically we chose to carryout in vitro experiments. To eliminate possible problems due to the
proteins being auto-inhibited we examined protein fragments where known (Dia) and putative
(Mwh) auto-inhibition sites were removed. The use of a fragment of Mwh was also necessary as
we were unable to purify full length Mwh in a soluble form. We tested a His tagged Mwh-GBD-
FH3 fragment and a GST tagged Dia-CC-FH1-FH2 fragment. In a His pull down assay on E.
coli extracts expressing the two proteins we found the GST tagged CC-FH1-FH2 fragment of
Dia was pulled down (Fig. 6B, lane 6). In the absence of his-Mwh-GBD-FH3 (Fig. 6B, lane 5)
there was no pull down of GST-Dia-CC-FH1-FH2 indicating that the pull down was specific for
a Mwh-Dia interaction. The E. coli extracts were not expressing any other fly proteins so it
seemed quite likely that this interaction was a direct one. To confirm this was the case the pro-
tein fragments were purified (S7 Fig.) and tested in a his pull down. The purified proteins gave a
strong co-IP (Fig. 6C, lane 5) confirming that these two protein fragments can interact directly.
These results suggest that the antagonistic genetic relationship between dia andmwh is due to a
direct physical interaction. We note that the GST-Dia-CC-FH1-FH2 fragment did not contain
the DD so that domain is not responsible for the interaction. The structural basis for the interac-
tion is unknown at this point and determining that will require additional experimentation.

Discussion

The function of Dia in the morphogenesis of wing hairs
Growing wing hairs contain actin filaments and a variety of data establishes that these fila-
ments are important for hair morphogenesis [16,17,18,19,22–25,27,28]. It is likely that long
actin filaments are important and this led us to suspect that one or more of the 6 Drosophila
formins would be important for hair morphogenesis. In knock down experiments only dia pro-
duced a strong hair phenotype. We cannot rule out any of the other formins also functioning
in hair morphogenesis as we did not determine the effectiveness of the knock downs and we
did not do experiments to rule out redundancy. Indeed the very weak phenotype seen with a
knock down of CG32138 could be due to either of these. For the DAAM formin published stan-
dard genetic tests argue against a role in wing hair morphogenesis [65].
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A range of phenotypes were seen with both loss (lof) and gain of function (gof) conditions
for dia that implicate Dia in both hair morphogenesis and PCP. Many of the hair morphology
phenotypes (e.g. branched hairs, thickened hairs) seem likely to be related to the abnormal acti-
vation of the actin cytoskeleton. Given the extensive literature on the role of Dia in regulating

Fig 6. Co-immunoprecipitation experiments show that Dia and Mwh can interact physically.Co-Immunoprecipitation experiment from cells that
expressed both full length Dia-GFP and Mwh (A). The arrow points to the weak band that is the size expected for Mwh. The asterisks point to a band
recognized by anti-Mwh antibody that is likely due to cross reaction. His pull downs of E. coli extracts made from cells that expressed his-GBD-FH3(Mwh)
and GST-CC-FH1-FH2(Dia) pulled down the Dia fragment (B). Note that a protein the expected size of GST-CC-FH1-FH2(Dia) is recovered in a his pull down
(lane 6) and this requires the co-expression of Mwh (compare lane 6 and lane 5). This indicates that the his pull down of GST-CC-FH1-FH2 is due to an
interaction with Mwh. His pull downs of purified his-GBD-FH3(Mwh) and GST-CC-FH1-FH2(Dia) (C). There is a strong his pull down of GST-CC-FH1-FH2
(lane 5) arguing there is a direct interaction between Mwh and Dia.

doi:10.1371/journal.pone.0115623.g006
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the actin cytoskeleton these phenotypes were not surprising. The involvement in PCP was less
expected. The severity of the hair morphology phenotypes complicated but did not eliminate
our ability to examine the role of Dia in PCP. Alterations in Dia activity led to the formation of
multiple hair cells, hairs of abnormal polarity and swirling hair patterns, all of which are classic
phenotypes of PCP mutants [1,2,3].

dia andmwh in wing PCP
The fz PCP pathway normally functions to restrict the activation of the cytoskeleton to a small
region around the distal most part of wing cells [3]. When CA-Dia was expressed actin poly-
merization was activated over a larger cellular region than normal and this resulted in multiple
hair cells. Thus, CA-Dia interfered with the ability of the PCP pathway to restrict activation of
the cytoskeleton to a small part of the cell. This suggested that spatially limiting Dia activation
could be a downstream function of the PCP pathway. Themwh gene is the most downstream
known component of the pathway and hence is a candidate to mediate such a function. Our
observations are consistent with this hypothesis. Notably, the multiple hair cell phenotype as-
sociated with CA-Dia expression included the formation of tiny hairs, which is a distinctive
phenotype ofmwhmutants [3,36,37,66] and no other PCP mutants. In addition, the expression
of CA-Dia resulted in the formation of ectopic actin filaments (or bundles of filaments) just
below the apical surface of wing cells, which is also observed inmwhmutants but not other
PCP mutants [37]. Further, we observed antagonistic genetic interactions between Dia and
Mwh, we found the two proteins partially co-localize in pupal wing cells and we established
that the two proteins could directly interact. We suggest that the binding of Mwh to Dia could
prevent Dia from activating the actin cytoskeleton and in this way the PCP pathway could lo-
calize the activation of the cytoskeleton. Our data however, cannot rule out the possibility that
the antagonistic relationship between dia andmwh is due to both independently regulating the
actin cytoskeleton. This hypothesis needs to be considered given that we did not see a strong
co-IP from wing discs.

In our experiments where CA-Dia was expressed the fz/stan pathway was functional but it
was not able to block the hyper activation of the cytoskeleton. Indeed, the consequences of CA-
Dia expression were more severe than loss of fz/stan pathway function. This could be due to ei-
ther the over expression of CA-Dia overwhelming the system or to the constitutively active na-
ture of the protein. Of course both factors could be important. It is worth noting that the fz/
stan system appears to be finely tuned as both gain and loss of function mutations give rise to
PCP phenotypes and it is unable to scale to insure a single distally pointing hair is formed in
polyploid cells [53]. Hence it is not surprising that it appears limited in its ability to deal with
cytoskeletal perturbations.

In vertebrates the DAAM formin has been implicated in PCP [67] and in mediating an in-
teraction between Dishevelled and Rho. There is a DAAM in Drosophila but it does not appear
to play a role in PCP [65], rather it appears to function in trachea development. Additional sys-
tems will need to be studied to determine if any other members of the formin family play a role
in PCP.

Hair initiation and dia
When we expressed CA-Dia in pupal wing cells we observed increased accumulation of
F-actin, consistent with the well-known activity of Dia in other cells types/systems. Prior to
hair initiation the increased F-actin was largely restricted to the lateral cell membranes. Thus,
the presence of CA-Dia was not sufficient to induce hair formation and other factors must be
important in regulating the initiation of hair morphogenesis. The expression of many genes
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changes dramatically around the time of hair initiation [47] and one or more of these are good
candidates for such a function. One of these, shavenoid is a particularly strong candidate as
mutations in this gene lead to the loss of hair formation in some cells and a substantial delay in
initiation in others [68].

When hair initiation began in cells expressing moderate levels of CA-Dia increased F-actin
was primarily seen over the distal apical region of the cell. This region was much larger than
normal but still only represented a minority of the cell. Thus, even in the presence of CA-Dia
the wing cells still retained significant spatial control over actin polymerization. This seems
likely to be due to the PCP mediated localization of factors that regulate the actin cytoskeleton
as there was still a distal bias to activation of the cytoskeleton. The Mwh protein could serve
this role by inhibiting endogenous Dia and/or CA-Dia proximally leading to a higher level of
actin cytoskeleton activation distally where both CA-Dia and endogenous Rho1 activated Dia
could stimulate actin polymerization. Mwh could also be acting independently of its interac-
tion with Dia. There is reason to believe that wing PCP involves both negative regulation proxi-
mally and positive regulation distally [1,37,69]. The Dsh protein is a candidate for being a
positively acting factor for mediating this distal bias. Dsh is localized on the distal side of wing
cells [70] and in cultured cells it has been shown to regulate Dia activity by the local activation
of Rho1 [71]. This was in the context of regulating spindle orientation but it is easy to see how
a similar mechanism could lead to the preferential activation of Dia on the distal side of wing
cells. The endogenous Dia protein being preferentially activated on the distal side of wing cells
could bias the location for hair initiation even in the presence of uniformly distributed CA-Dia.

dia gain and loss of function mutations both give rise to multiple hair cells
It is notable that both dia lof and gof genotypes lead to multiple hair cells. It is an unusual prop-
erty shared by most of the genes of the fz pathway that both gof and lof genotypes lead to simi-
lar mutant phenotypes [72,73]. In these cases it is thought that asymmetric protein
accumulation is essential for function and this is lost both when an active protein is not present
or when it is over expressed and over saturates the asymmetry system. We also know that mu-
tations that decrease the activity of the actin cytoskeleton [20,24] and treatment with actin cy-
toskeleton inhibitors [27] give rise to multiple hair cells. Here it is thought that the multiple
hairs result from the lower activity of the cytoskeleton leading to a failure to properly refine the
area when the cytoskeleton is activated to insure only a single hair is formed [25,73]. This can
explain the dia lof mhc phenotype. The hyper-activation due to the over expression of CA-Dia
leads to the activation being spread over a much larger region and this also appears to lead to
multiple hairs forming. Proper PCP in the fly wing appears to require the function of an effi-
cient and highly regulated cytoskeleton.

Dia and bristle morphogenesis
Diaphanous has primarily been studied with respect to its regulation of the actin cytoskeleton
but it is also known to regulate the microtubule cytoskeleton [46]. Indeed we detected changes
in both cytoskeletons associated with the expression of CA-Dia. The expression of CA-Dia led
to particularly dramatic alterations in bristle morphogenesis. The phenotypes ranged from
branched, bent and shortened bristles to “stubs” where the bristle was less than 10 percent of
its normal length. The branched and bent bristles were reminiscent of those induced by the in-
jection of inhibitors of actin polymerization such as cytochalasin D and latrunculin A [62] and
we suspect they are due to effects of CA-Dia on the actin cytoskeleton. We are aware of two
previous reports of a “stub” bristle phenotype. Such bristles were seen after the injection of mi-
crotubule antagonists such as colchicine into pupae [62]. Stub bristles were also found to arise
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from the collapse of long bristles due to a failure to form a functional cuticle [63]. In vivo imag-
ing of pupae that expressed CA-Dia in growing bristles showed that severe bristle abnormalities
were present during outgrowth. We take these observations as support for the hypothesis that
the stub bristle phenotype was due to the effects of CA-Dia on the microtubule cytoskeleton.
The fat short central segment of the arista seen in ap>CA-dia flies is also likely to be due to ef-
fects on the microtubule cytoskeleton [64]. That Dia regulates both the actin and microtubule
cytoskeletons complicates the interpretation of mutant phenotypes. We have not seen microtu-
bule abnormalities inmwhmutant cells so we think it likely that themwh-like hair phenotypes
are due to effects of CA-Dia on the actin cytoskeleton but specific Dia effector mutations will
be required for an unambiguous answer.

Methods and Materials

Fly Genetics
All flies were raised at 25°C unless otherwise stated. Unless otherwise stated stocks were ob-
tained from the Bloomington Drosophila stock center at the Indiana University or were gener-
ated in our lab and previously described [36]. UAS-diaΔDad (aka CA-dia) and UAS-
FH3FH1FH2 transgenic flies were generous gifts fromMark Peifer at the University of North
Carolina. To direct transgene expression, we used the Gal4/UAS system [74]. For immunos-
taining, white pupae were collected and grown at 25°C or 29.5°C for varying lengths of time be-
fore fixation. For Western blotting and co-immunoprecipitation, the wing discs were dissected
from third instar larva of flies grown at 25°C. The Genbank protein number for Mwh is
AAF478454 and Dia is AAF53922.

Imaging
Adult wings. Adult wings were dehydrated in 100% ethanol and then mounted in Euparal. To
visualize hairs on the notum thoraxes were mounted in Gary’s magic Mountant. Spacers were
used to keep the cover slip from crushing the tissue. Mounted samples were examined under
the bright field microscope. Images were obtained using a Spot-RT digital camera (Diagnostics
Instruments) on a Zeiss Axioskop II microscope. In some cases Metamorph was used to obtain
3D stacks of images. Minimum projections of such stacks were used to increase the effective
depth of field and to allow us to visualize 3D structures such as the hairs on the notum.

Quantitative analysis of the genetic interaction between dia andmwh and between CA-
dia andmwh. To characterize the genetic interaction between dia andmwh, we scored the
number of multiple hair cells in the region distal to the posterior cross vein in 20 wings. The
significance of the difference was evaluated using two-sample unequal variance Student t-Test.
A similar method was used to quantify genetic interaction between CA-dia andmwh.

Image Acquisition and Analysis. We used ImageJ to quantify aspects of both confocal im-
ages of pupal wings and bright field images of adult wings. Pupal wings were examined by con-
focal microscopy using a Zeiss 510 Meta confocal microscope.

As evidence for the co-localization of Dia and Mwh in the hair, the grey scale values of the
immunostaining signal for GFP-Dia and Mwh were individually determined along a line
drawn across the proximal region of 5 different hairs (an example is shown in S6 Fig.). The
purpose for the line not crossing the whole length of the hair is to avoid crossing the cell pe-
riphery where Mwh had strong staining. The correlation coefficient between plot values of
GFP-Dia and Mwh staining were calculated using Microsoft Excel. The average correlation co-
efficient was calculated based on values from 5 different hairs.

Immunostaining. Immunostaining was done on paraformaldehyde fixed samples by stan-
dard procedures as described previously [36].
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Polyclonal rabbit anti-GFP antibodies and monoclonal mouse anti-GFP antibodies were
purchased from Invitrogen. A rat polyclonal anti-Mwh antibody was generated in our lab [36].
Alexa 568 phalloidin was purchased fromMolecular Probes. Alexa 488- and Alexa 568-conju-
gated secondary antibodies were purchased from Molecular Probes.

Molecular Biology
Plasmid Constructs. The UAS-mwh-GBD-FH3–3HA construct was made by amplifying the
appropriate segment ofmwh encoding the GBD-FH3 domain adding Gateway cassette se-
quences (Invitrogen) on both sides. The primers are 50-GGGGACAAGTTTGTACAAAA
AAGCAGGCTTCCAAAAC

ATGTACAGCAAGGAAAACCAGCG-30 and 50-GGGGACCACTTTGTACAAGAAA
GCTGGGTCGATGCCCTCGTCCTCGTG-30. The cDNA was cloned into Donor 221

vector (Invitrogen) to generate entry clone which was then cloned into pTWH, one of the Car-
negie Gateway Vectors constructed by T. Murphy to generate expression constructs with
C-terminal 3HA tag.

To make UAS-GBD-FH3-GFP construct for examining over expression phenotype, the
entry clone of GBD-FH3 described above was cloned into pTWG, one of the Carnegie Gateway
Vectors constructed by T. Murphy to generate an expression construct with a C-terminal
GFP tag.

UAS-GFP-dia and UAS-CA-dia constructs were generated in Mark Peifer lab at the Univer-
sity of North Carolina.

Purified proteins. The 6His-GBD-FH3(Mwh) protein was produced by subcloning DNA en-
coding aa 60–491 into pET28a and GST-CC-FH1-FH2(Dia) protein was produced by subcloning
the region encoding aa 448–1029 into pGEX. They were expressed in E. coli and purified by stan-
dard techniques such as affinity chromatography and molecular size exclusion chromatography.

Co-immunoprecipitation andWestern blotting. 300 wing discs were dissected from third
instar larvae for immunoprecipitation assays and an additional 15 wing discs as extract for use
as a positive control for Western blotting (WB). Standard immunoprecipitation and WB pro-
cedures were performed at 4°C [36]. SeeBlue Plus2 Pre-Stained Protein Standard (Invitrogen)
was used as protein size marker and 3–8% premade NuPAGE Tris-Acetate gels (Invitrogen)
was used to separate proteins.

Polyclonal rabbit anti-GFP antibodies were used for co-immunoprecipitation of GFP-Dia
and Mwh. Mouse anti-GFP antibody and rat anti-Mwh antibodies were used in WB to detect
GFP-Dia and Mwh respectively. Detection was by chemiluminescence (Amersham) in early ex-
periments and later by infrared fluorescence (Licor)

Supporting Information
S1 Fig. Arp2/3 complex proteins function in hair morphogenesis. Transgene mediated
RNAi was driven by ptc-Gal4. Aprc3a (A) and Arpc3b (BC) knockdowns are shown as exam-
ples. The black arrows point to double hair cells, black arrowheads to swollen bases, red arrows
to hairs that have fallen over and are not well aligned with their neighbors, red arrowheads to
split hairs and the asterisk to a region where a it appears that a cell did not form a hair.
(TIF)

S2 Fig. Wing phenotypes seen with dia5 clones. Polyploid cells at the margin produce over-
sized (A, B) hairs and bristles and in some cases duplicated bristles that lack socket cells. Evi-
dence of cell death is seen by the formation of wing nicks (C).
(TIF)
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S3 Fig. Bristle phenotypes associated with altered dia activity. A variety of bristle abnormi-
ties are seen in part of a tergite (dorsal abdomen) in neur-Gal4 ptub-Gal80ts/UAS-CA-dia flies.
The arrows point to bristles that show the stub phenotype. A pair of abnormal scutellar bristles
(arrows) from a neur-Gal4 ptub-Gal80ts/dia-RNAi fly. The adult notum of a neur>CA-dia,
actin-GFP fly used for in vivo imaging (C). The arrow points to a severely abnormal bristle that
was followed in time lapse. The insert shows an image from the in vivo imaging experiment
where the relevant bristle was abnormal during bristle growth. A notum with a putative dia5

clone (D) is missing a bristle, contains polyploid cells (arrow) and diploid hair cells (arrow-
head). Also note the abnormal hair polarity. Highly abnormal bristles from ap>CA-dia; ptub-
Gal80ts/+ notums (arrows) (E, F). The severly affected bristles are macrochaetae and the nearby
relatively normal bristles are microchaetae.
(TIF)

S4 Fig. CA-dia expression leads to defective hairs and a loss of actin foci associated with
chitin deposition. Starting at the dorsal surface and moving ventrally images of ap-Gal4 pTub-
Gal80ts/+; UAS-CA-dia/+ pupal wings stained for F-actin. Each image is a maximum projec-
tion of 3 optical sections that represent 0.6um along the dorsal/ventral axis. Arrows in A and B
point to multiple hairs cells. The arrows in C point to ectopic actin filaments not normally seen
in wing cells. The arrows in H point to actin foci in ventral cells found associated with chitin
deposition. These are missing from the dorsal cells. The arrows in K point to normal
ventral hairs.
(TIF)

S5 Fig. The phenotype of CA-Dia in the arista.Oregon R (A) and ap>CA-dia (B) arista are
shown. The arrow points to the central core which is grossly short and fat in ap>CA-dia. The
arrowheads point to laterals which are short and deformed in ap>CA-dia.
(TIF)

S6 Fig. Dia and Mwh co-localize in growing hairs. The relative intensity of immunostaining
for Dia-GFP (green) and Mwh (red) along the proximal part of a growing hair is shown. The
presence of substantial Mwh at the cell periphery prevented us from extending the line of mea-
surement to the full length of the hair.
(TIF)

S7 Fig. Evidence that the his6-GBD-FH3(Mwh) and GST-CC-FH1-FH2 proteins used were
pure. The purified proteins were examined by PAGE and western blotting to confirm their pu-
rity. The GST-CC-FH1-FH2 protein migrates slightly faster than the 94 kd marker and the his-
GBD-FH3 protein migrates at approximately 45kd.
(TIF)
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