
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20331  | https://doi.org/10.1038/s41598-020-77389-0

www.nature.com/scientificreports

Discriminating pseudoprogression 
and true progression in diffuse 
infiltrating glioma using 
multi‑parametric MRI data 
through deep learning
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Eric Liao2, Sandra Camelo‑Piragua3, Michelle Kim4, Larry Junck5, Jayapalli Bapuraj2, 
Ashok Srinivasan2 & Arvind Rao1*

Differentiating pseudoprogression from true tumor progression has become a significant challenge in 
follow‑up of diffuse infiltrating gliomas, particularly high grade, which leads to a potential treatment 
delay for patients with early glioma recurrence. In this study, we proposed to use a multiparametric 
MRI data as a sequence input for the convolutional neural network with the recurrent neural 
network based deep learning structure to discriminate between pseudoprogression and true tumor 
progression. In this study, 43 biopsy‑proven patient data identified as diffuse infiltrating glioma 
patients whose disease progressed/recurred were used. The dataset consists of five original MRI 
sequences; pre‑contrast T1‑weighted, post‑contrast T1‑weighted, T2‑weighted, FLAIR, and ADC 
images as well as two engineered sequences; T1post–T1pre and T2–FLAIR. Next, we used three CNN‑
LSTM models with a different set of sequences as input sequences to pass through CNN‑LSTM layers. 
We performed threefold cross‑validation in the training dataset and generated the boxplot, accuracy, 
and ROC curve, AUC from each trained model with the test dataset to evaluate models. The mean 
accuracy for VGG16 models ranged from 0.44 to 0.60 and the mean AUC ranged from 0.47 to 0.59. For 
CNN‑LSTM model, the mean accuracy ranged from 0.62 to 0.75 and the mean AUC ranged from 0.64 
to 0.81. The performance of the proposed CNN‑LSTM with multiparametric sequence data was found 
to outperform the popular convolutional CNN with a single MRI sequence. In conclusion, incorporating 
all available MRI sequences into a sequence input for a CNN‑LSTM model improved diagnostic 
performance for discriminating between pseudoprogression and true tumor progression.

Diffuse infiltrating gliomas can be astrocytic or oligodendroglial in nature. Astrocytomas are graded from low 
grade (WHO grade 2) to anaplastic (WHO grade 3) and glioblastoma (WHO grade 4). Whereas oligodendroglial 
tumors can present as low grade (WHO grade 2) or anaplastic (WHO grade 3). Regardless, progression is part 
of the natural disease, and determining true tumor progressive disease (PD) versus pseudoprogression (PsP) or 
treatment related changes is important for appropriate management and clinical decision making. More than 
half of these gliomas are glioblastomas (GBM)1 in which the median survival for GBM patients is about 15 
 months2,3 despite the radiation and chemotherapy treatment and the average 2-year survival rate is only 8–12%4. 
The current standard treatment for gliomas is surgical resection of the tumor followed by radiation therapy and 
chemotherapy, which are used to slow down the growth of residual tumor after  surgery5.

MRI is the mainstay in the assessment of the tumor in the preoperative and postoperative period. During 
treatment and follow-up, in MRI studies, the treated tumors show an increase in size and enhancement in the 
absence of tumor recurrence without clinical deterioration. This is due to treatment-related effects and this can 
be divided into pseudoprogression (PsP) or radiation  necrosis6. In this study, we defined PsP according to the 
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Response Assessment in Neuro-Oncology (RANO) criteria as follow; PsP is radiologically defined as new or 
enlarging area of contrast enhancement occurring early after the completion of radiotherapy in the absence of 
true  PD7–10. PsP is thought to represent a localized tissue reaction with an inflammatory component and associ-
ated edema and abnormal vascular permeability which explains the imaging  features11. This imaging features is 
similar to true tumor progression. Distinguishing PsP from true progressive disease (PD) is an imaging challenge 
especially in the cerebral white  matter11. The temporal profile of appearance is crucial. PsP typically occurs early 
in the post treatment period; in approximately 60% of cases it occurs within the first 3 months of completion of 
treatment but the duration varies from a weeks to up to 6 months after  treatment12–14. It was recently reported 
that the incidence of PsP ranges from 9 to 30%8,10,15–17. In contrast, radiation necrosis may appear months to 
several years after radiation therapy and involves a space occupying necrotic lesion with mass effect and neu-
rological  dysfunction6,18.

Differentiating PsP from true PD has become a significant challenge in high grade glioma follow-up, which 
leads to a potential treatment delay for patients with early tumor  recurrence6. The current standard practice for 
diagnosis of recurrent disease is surgical biopsy but it is an invasive procedure with limited in accuracy depending 
on the biopsy site and lesion  heterogeneity12,19. Alternatively, various conventional and advanced MRI sequences 
such as pre- and post-contrast T1-weighted images, T2-weighted images, and fluid attenuated inversion recovery 
(FLAIR) have been used to differentiate PsP from true PD with follow-up  scans10. The diagnosis of PsP on these 
MR images is based on the changes in the lesion site on follow-up images. However, this usually takes several 
weeks to identify PsP and true PD.

Several studies have investigated in differentiating PsP from PD using advanced MRI techniques. Galldiks 
et al. assessed the clinical value of O-(2-18F-fluoroethyl)-l-tyro-sine (18F-FET) PET in the differentiation of 
PsP and early tumor progression after radiochemotherapy of glioblastoma. They investigated a group of 22 
glioblastoma patients with new contrast-enhancing lesions on standard MRI within the first 12 weeks after 
completion of radiochemotherapy with concomitant temozolomide. They showed that 18F-FET PET could be a 
promising method for overcoming the limitations of conventional MRI in differentiating PsP from early tumor 
 progression20. Hu et al. investigated relative cerebral blood (rCBV) volume values to differentiate high-grade 
glioma recurrence from post-treatment radiation effect using localized dynamic susceptibility-weighted con-
trast-enhanced perfusion MR imaging (DSC) measurements. They used forty tissue specimens collected from 
13 subjects and found a threshold value of 0.71 differentiating the histopathologic groups with a sensitivity of 
91.7% and a specificity of 100%. They showed that rCBV measurements obtained by using DSC can differentiate 
high-grade glioma recurrence from the tumor recurrence and post-treatment radiation effect. Prager et al. and 
Wang et al. investigated the utility of diffusion and perfusion imaging to differentiate tumor progression from 
 pseudoprogression21,22. Chuang et al. examined roles of several metabolites in differentiating recurrent tumor 
from necrosis in patients with brain tumor using MR  perfusion23. Detsky et al. investigated that IVIM-based 
diffusion and perfusion measurements would be able to differentiate post-radiation recurrent or progressive 
tumor from radiation  necrosis24. Reimer et al. investigated whether a voxel-wise analysis of ADC values may 
differentiate between PD and  PsP25.

Attempts in differentiating PsP from PD have included the use of several computer-aided diagnosis systems 
such as texture  analysis26,  radiomics27, machine  learning28,29, and deep  learning30,31. Image texture analysis has 
been used to characterize the spatial distribution and assess the repeating patterns of local variations in gray-
level intensities within an  image32, providing important information on tumor  microenvironment33. Chen et al. 
uses second-order statistics, such as contrast, energy, entropy, correlation, and homogeneity, from gray level 
co-occurrence matrix (GLCM) to differentiate PsP and true PD on MRI  images26. Kim et al. developed a radi-
omics model using multiparametric MRI to differentiate PsP from early tumor progression in patients with 
 glioblastoma27. Several studies showed that the artificial intelligence and machine learning methods are useful in 
solving diagnostic decision-making problems in clinical research. Hu et al. uses machine learning algorithms with 
multiparametric MRI features to identify PsP from tumor recurrence in patients with resected  Glioblastoma28. 
Recently, Jang et al. investigated the feasibility of a combination of a convolutional neural network (CNN) and 
a long short-term memory (LSTM) deep learning model to determine PsP and true PD in GBM  patients30. 
Their dataset consisted of nine successive axial images of post-contrast T1-weighted sequence before and after 
administration of gadolinium. Their CNN-long short term memory (CNN-LSTM) structure with clinical and 
MRI data yielded high performance in differentiating PsP from true PD in GBM patients (an area under the 
curve [AUC] of 0.83)30.

The primary application of CNNs is classifying images and performing object recognition within an image. 
Recurrent neural networks (RNNs), on the other hand, are superior for learning temporal patterns in deep neural 
networks. RNN applications encompass a variety of problems such as speech recognition, language translation, 
and image captioning. LSTM is a special type of RNN, which can remember each and every information through 
time. The combination of CNN and LSTM is capable of learning a series of time-based images in a specific MRI 
modality. In this study, instead of using a series of time-based images, we proposed a set of multiparametric MRI 
data as a spatial sequence input for the CNN-LSTM framework, which can remember each and every information 
through multiparametric MR images. Our proposed approach uses all available MRI sequences at a specific time 
point and can incorporate all information from each sequence and predict patients’ outcome. As far as we know, 
this is the first study for the proposed CNN-LSTM with multiparametric MRI data as a spatial sequence input.

To evaluate the performance of the CNN-LSTM model with our proposed sequential data, we estimated 
the area under the ROC curve (AUC) and compared that with the fine-tuned VGG16 network, which is one of 
the most popular deep learning models that was pre-trained on the ImageNet  dataset34. The hypothesis for this 
study is that our proposed CNN-LSTM model with all available MRI sequence data will show better diagnostic 
performance than the conventional CNN model with a single MRI sequence as input for discriminating between 
PsP and true PD in diffuse infiltrating gliomas.
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Results
For VGG16 model, we split the dataset of each modality into three folds and fed it into VGG16 architecture to 
build a model for classification problem of PsP. Table 1 summarize the results for the classification accuracy and 
AUC with 95% confidence interval for each modality for VGG16 models. The mean accuracy for all modalities 
in VGG16 models ranged from 0.44 to 0.60 and total mean accuracy for the VGG16 model is 0.52. The mean 
AUC for all sequences ranged from 0.47 to 0.59 and total mean AUC for VGG16 model is 0.53. For the CNN-
LSTM model, we prepared a set of dataset with multiple modalities as a spatial sequence dataset; 3, 5, and 7 MRI 
sequences. The mean accuracy for each spatial sequence dataset is 0.62, 0.70, and 0.75, respectively and the mean 
AUC for each spatial sequence dataset is 0.64, 0.69, and 0.81, respectively (Table 2, Fig. 1). These mean accura-
cies and AUC values were computed from threefold cross-validation for both VGG16 and CNN-LSTM models.

We applied threefold cross-validation in the training set and boxplots were computed form this threefold 
validation. A set of 3, 5, and 7 multiparametric MRI data for CNN-LSTM model have the mean AUC of 0.64, 
0.69, and 0.81, respectively (Fig. 2). Figure 3 shows boxplots of AUC for VGG16 and CNN-LSTM models. For 
the results with threefold cross-validation, please see Tables S1–S4 in the Supporting information.

Discussion
Following the extensive revisions in the 2016 WHO classification of CNS tumors, there has been further iteration 
of the classification giving a more granular definition of gliomas. The term diffuse gliomas is the more preferred 
term for tumors with tumors based on astrocytic, oligodendroglia or a mixture of both with tumor behavior fur-
ther determined by their molecular fingerprint based on IDH mutations and presence of the 1p19q co-deletions. 
The concept of diffuse gliomas has been further enhanced by more recent  recommendations35,36. Regardless of 
the classifications, the treatment of these tumors is challenge, given the recent reports of the median survival for 
glioblastoma patients at about 15 months and a median progression free survival of 6.2–7.5  months37. During the 
treatment, an increasing number of patients show changes in tumor enhancement patterns in MRI in absence of 
true PD. This becomes a major challenge in glioblastoma follow-up and leads to a potential treatment delay for 
patients with early glioblastoma recurrence. Recently, the classification problem of PsP and true PD based on 
machine learning with multiparametric MR images has received increasing interest. Tiwari et al. investigated 
distinguishing brain tumor progression from pseudoprogression on routine MRI using machine  learning38. Abrol 
et al. investigated differencing PsP from true PD in glioblastoma patients using radiomic  analysis39. However, only 
a few studies proposed differentiating PsP from true PD based on the deep neural network  framework30,40,41. The 
potential underlying reasoning for this is insufficient data, inability of deep learning to capture real variations in 
the data unless the data size is large enough. Deep learning requires large amounts of data more than any other 
machine learning algorithm. This is a typical problem in healthcare.

LSTM is a special kind of recurrent neural network that is designed to avoid the long-term dependency 
problems and vanishing gradient problems that are typically encountered in RNNs. In recent years, LSTMs have 
received increasing attention in the medical domain such as predicting future medical  outcomes42, segmentation 
of pancreas in MRI  images43, automated diagnosis of arrhythmia with variable length heart  beats44 and classifica-
tion of histopathological breast cancer  images45.

Jang et al. applied the CNN-LSTM structure to determine PsP from true PD in GBM patients. Their dataset 
consisted of MRI data and clinical feature data with 78 patients (48 PsP and 30 true PD patients)30. They incor-
porated clinical feature data into MRI data and their CNN-LSTM structure with both clinical and MRI data 
outperformed the model of CNN-LSTM with MRI data alone (AUC = 0.69).

Table 1.  Classification mean accuracy, AUC, and 95% C.I. for VGG16 models.

Accuracy AUC 95% C.I

T1 pre 0.51 0.53 [0.47–0.64]

T1 post 0.48 0.49 [0.39–0.59]

T2 0.44 0.51 [0.41–0.62]

FLAIR 0.55 0.55 [0.44–0.67]

ADC 0.48 0.47 [0.38–0.57]

T1post–T1pre 0.60 0.59 [0.49–0.70]

T2–FLAIR 0.58 0.54 [0.42–0.66]

Table 2.  Classification mean accuracy, AUC, and 95% C.I. for CNN-LSTM models.

Accuracy AUC 95% C.I

3 modalities: T1 pre, T1 post, and T2 0.62 0.64 [0.51–0.77]

5 modalities: T1 pre, T1 post, T2, FLAIR, and ADC 0.70 0.69 [0.59–0.79]

7 modalities: T1 post–T1 pre, T2–FLAIR, and 5 modalities 0.75 0.81 [0.72–0.88]
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Figure 1.  ROC curves for VGG16 deep learning models with each MRI sequence for prediction of PsP from 
TP. Each ROC curve for each modality obtained from threefold cross-validation (CV1, CV2, and CV3). The 
x-axis is the true negative rate (TNR) or specificity and the y-axis is true positive rate (TPR) or sensitivity. The 
mean AUC, area under ROC curve, values were (a) 0.53 for pre T1-weighted, (b) 0.49 for post T1-weighted, (c) 
0.51 for T2-weighted, (d) 0.55 for FLAIR, (e) 0.47 for ADC map, (f) 0.59 for post T1–pre T1, (g) 0.54 for T2–
FLAIR images.

Figure 2.  ROC curves for CNN-LSTM deep learning models with a different set of sequences for prediction 
of PsP from TP. Each ROC curve for each modality obtained from threefold cross-validation (CV1, CV2, and 
CV3). The x-axis is the true negative rate (TNR) or specificity and the y-axis is true positive rate (TPR) or 
sensitivity. The mean AUC, area under ROC curve, values were (a) 0.64 for a set of 3 modalities, (b) 0.69 for a 
set of 5 modalities, and (c) 0.81 for a set of 7 modalities.
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The typical limitation of deep neural networks in clinical applications is the relative lack of data, making 
them vulnerable to  inaccuracies46. For this reason, our proposed approach with a multiparametric MRI sequence 
dataset will overcome this limitation and have the benefit of using all available imaging sequences in a MRI 
study. Further, this method has the capability of learning important information over the multiparametric MRI 
sequence dataset simultaneously.

In the present study, we included two modalities, T1post–T1pre and T2–FLAIR, by subtracting pre-contrast 
T1-weighted images from post-contrast T1-weighted images and FLAIR images from T2-weighted images, 
 respectively47. These two engineered modalities will give us the extent of the enhancing areas and indirectly 
indicates the more fluid tissue against solid tissue, respectively. In theory, the FLAIR sequence is similar to 
a T2-weighted image but solid abnormalities remain bright but fluid tissues become dark. The subtraction 
of T2-weighted from FLAIR gives us information about more fluid tissue against solid tissue. Our proposed 
CNN-LSTM can incorporate all information from each sequence and predict patients’ outcome. In addition, 
the rationale of subtracting the pre- and post-contrast T1 weighted sequence was to accurately segment the 
enhancing portion of the lesion. The enhancing solid portions of the tumor on the T1 weighted image may exhibit 
heterogeneous T2 hyperintense signal. Perifocal edema is also hyperintense on the T2 and FLAIR sequence. The 
idea of subtracting the T2 and FLAIR sequence is to demonstrate 1) the enhancing solid T2 heterogeneous por-
tion of the lesion and separating it from non-solid non-enhancing edema. Assessment of the T2 hyperintense 
portions of the lesion is particularly important on the basis of the new concerns of this appearance on GBMs as 
noted in the recent  papers48.

In this study, we examined the feasibility of CNN-LSTM with a set of multiparametric MRI sequence data for 
identifying PsP from true PD. There are limitations in our retrospective study. First, it appeared that the VGG16 
model with each modality does not have a good classification ability. This is because we still have a relatively 
small dataset for PsP (n = 7) and true PD (n = 36) for each modality. However, our proposed approach adds a 
multifaceted analysis by combining all MRI modalities when compared with the case of analyzing individual 
modalities. As a result, the proposed model confers a relatively high AUC of 0.81 under the best CNN-LSTM 
model. Future studies could validate these results using a larger sample size. Second, our results for CNN-LSTM 
models show increasing performance when we use more multiparametric MRI data as spatial sequence data. 
However, it appeared that the computational time for training increases according to the number of modalities in 
a set of sequence data. For example, a set of 3-modalities sequence data used 50 epochs to reach the best results 
while a set of 5-modalities sequence data and a set of 7-modalities sequence data used 200 and 500 epochs to 
reach the best results, respectively. This is not surprising since CNN-LSTM take a set of multiparametric MRI 
sequence dataset as an input. However, optimizing the CNN-LSTM structure may be required for the best per-
formance and computational time in the future study. In this study, deep learning models were trained on our 
workstation with an Intel i9 3.50 Ghz 12-core processor, 128 GB system memory, and a single GPU (NVIDIA 
GeForce RTX 2080 TI).

In this study, we demonstrated the state-of-the-art CNN and RNN-based deep neural network, CNN-LSTM, 
with our proposed data frame, a set of multiparametric MRI data. These multiparametric MRI data as a spatial 
sequence input were fed into CNN layers for feature extraction. Then, the output from the CNN layers was 
fed into the LSTM layer to take all sequences into account for the final prediction. Incorporating all available 
MRI sequences into a sequence input for a CNN-LSTM model improved diagnostic performance for discrim-
inating between pseudoprogresson and true tumor progression by leveraging correlation between multiple 
sequences. Therefore, our proposed method with a CNN-LSTM model and multiparametric MRI data combines 

Figure 3.  Boxplots of AUC for VGG16 and CNN-LSTM models. The first seven box plots are for VGG16 with 
an individual MRI sequence, and last three box plots are for CNN-LSTM with multiparametric MRI sequences. 
Statistics were collected from threefold cross validation and the red lines in the boxplots represent the median 
values.
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the advantages of both extracting important features from images with CNN and learning from all sequences 
simultaneously with LSTM.

We believe that this study is novel in two aspects. First, we increased image data for the deep learning 
algorithm by creating engineered sequences. Second, we incorporated all available MRI modalities, including 
engineered modalities for our proposed model. These data augmentations are elegant and straightforward, com-
pared to conventional deep learning augmentation methods (e.g., rotation, scaling, flip, etc.) because each MRI 
sequence was designed to highlight differences in the signal of various tissues representing unique pathological 
characteristics of tumors. For example, T1-weighted images are useful for evaluation of anatomic tissue structures 
and T2-weighted images are useful for high signal tissue, including fluid-containing structures. As a corollary 
to the histopathologically validated machine learning radiographic biomarkers described in the  literature29, 
our methodology appears to be more robust given the fact that it discriminates tumor progression across the 
spectrum of diffuse infiltrating gliomas rather than of glioblastoma alone.

Our proposed model is capable of taking in multiple MRI sequences and leveraging correlation between them 
simultaneously to distinguish PsP from true PD. There are several studies with multiparametric MRI input data 
on CNN. However, they are different from our proposed method. Currently, multiparametric MRI data with the 
deep learning study are either large volumes of multiparametric MRI input data or based on fusion techniques 
such as image fusion, feature fusion, and classifier  fusion49. The key difference between CNN and CNN-LSTM is 
that CNN-LSTM accepts multiple images as a sequence input and remembers and incorporates all input images 
simultaneously while CNN process an image at a time. LSTM is commonly used with time series data and there 
are several studies used CNN-LSTM for the classification tasks in MRI but they used temporal (multiple time 
points) images in a single modality. As far as we know, this is the first study for the proposed CNN-LSTM with 
multiparametric MRI data as a spatial sequence input.

In this study, we have demonstrated the feasibility of the CNN-LSTM with a set of multiparametric MRI data 
as a spatial sequence input. This approach was able to discriminate PsP from true PD and the results from our 
study showed that our proposed CNN-LSTM with multiparametric MRI data outperforms conventional VGG16, 
one of the most popular deep learning models commonly used in medical image analysis. VGG16 does not have 
good classification power with our relatively small dataset, while our proposed method with multiparametric 
MRI data has relatively high classification power with our given dataset, which would be considered a strength 
of the proposed method. Further, our approach will potentially help the deep neural network model in clinical 
applications where the image data are not sufficient for training a model by adding a multifaceted analysis with 
engineered sequences.

Methods
Patient data. A retrospective study of 43 biopsy-proven patient data identified as diffuse infiltrating glio-
mas (astrocytoma or oligodendroglioma) presenting originally as high grade glioma (WHO grade 3 or 4), who 
underwent adjuvant chemoradiation therapy after gross total surgical tumor resection and multiple follow up 
MRI scans between 2010 and 2018 were used in this study. This study was carried out in accordance with rel-
evant guidelines and regulations, and this retrospective analysis of data from MR images was approved and writ-
ten informed consent was waived by the University of Michigan Institutional Review Boards (IRBMED). The 
studies were retrieved from the Electronic Medical Record Search Engine (EMERSE) and DataDirect databases 
of the  University50. Table S5 lists the primary integrated diagnosis and the secondary evaluation for PsP and PD 
where all tumors are confirmed pathologically to progress to high grade gliomas (WHO grade 3 or 4).

Imaging data. All MRI studies were obtained following the primary resection procedure. The imaging 
dataset were selected at three time points. In this study, we only used the MRI data at a time point as a baseline 
study, which is being closest to the follow-up operation confirming PsP or PD (Table  S5). The dataset con-
sists of five different MRI sequences such as pre-contrast T1-weighted, post-contrast T1-weighted, T2-weighted 
FSE, T2-Fluid-Attenuated Inversion Recovery (FLAIR), and ADC maps. In addition to these, we included two 
modalities that are generated by subtracting pre-contrast T1-weighted images from post-contrast T1-weighted 
images (T1post–T1pre) and FLAIR images from T2-weighted images (T2–FLAIR). Figure 4 shows the original 
five MRI sequences (A–E) and two engineered sequences (F. T1post–T1pre, G. T2–FLAIR) for a patient with 
PsP. All patients with GBM were imaged using both Philips (Philips Eindhoven, Netherlands) and GE (GE Medi-
cal systems, Milwaukee, WI, USA) MR scanners.

All patients had histological proof for recurrence and true PD. Out of 43 patients, seven patients were con-
firmed by histopathological evaluation to have PsP. The rest 36 patients were confirmed to be true PD cases. Cases 
diagnosed as pseudo progression (PsP) by histopathology were those cases in which the majority (> 90%) of the 
resected tissue has histologic features of treatment effect. If a viable residual tumor was seen (< 10%), this has 
to be minimal or non-proliferative, indicating that the radiologic changes were mostly due to reactive/necrotic 
tissue rather than proliferative tumor. All MRI images were normalized using white-stripe  normalization51 in R 
(R Foundation for Statistical Computing, Vienna, Austria), using the White Stripe package.

Deep learning structure. Convolutional Neural Network (CNN) has become dominant in various com-
puter vision tasks and attracting interest across a variety of domains including medical image classification tasks. 
In this study, we used VGG16 and CNN-LSTM architectures. VGG16 is one of the most popular CNN models 
that was pre-trained on the ImageNet  dataset34 and was used with various medical image classification tasks. 
First, we used the VGG16 with each MRI sequence to train model for fine-tuning. All images were resized to 
224 × 224 pixels with 3 channels as input. We used the VGG16 model that was pre-trained from ImageNet and 
this model only accepts input image size of 224 × 224 × 3. We simply stack each MRI grayscale image (224 × 224) 
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to make 3-channel image (224 × 224 × 3) to mimic the RGB structure. This technique is commonly used with a 
pre-trained deep learning model in medical image  analysis52,53. VGG16 contains 16 convolutional layers with 
small receptive fields 3 × 3 and five max-pooling layers with the size of 2 × 2 and involve 144 million parameters. 
We froze the weights of layers except the weights from last four layers of the VGG16. This step fine-tuned our 
model with our dataset.

We combined the CNN with RNN based LSTM for the second portion of our study. RNN is specifically 
designed to take a series of inputs and remembers the previous information. LSTM network is a special type 
of RNN. LSTM units include a memory cell that can maintain the previous information in the memory cell 
for a longer period of time. LSTM is typically used in the time series data. All RNN models have the form of a 
chain of repeating modules of neural network. A common LSTM also has this structure but the LSTM unit is 
composed of a cell and three gates, namely an input gate, an output gate, and a forget gate. The cell remembers 
information over the sequence intervals and these gates allow the information to pass to another time step 
when it is  relevant54. In this study, we used a combination of CNN and LSTM structures (CNN-LSTM), with 
multiparametric MR images as a spatial sequence dataset. In this study, we coin the term “spatial sequence” to 
refer to a set of multiple MRI images for a patient (e.g., the same axial images of T1, T2, and FLAIR sequences) 
in no specific order to differentiate from the terms commonly used in the MRI sequence (e.g., T1/T2 sequence) 
and in the LSTM model (e.g., time sequence).

First, we used three CNN-LSTM models with a different set of sequences, which are a set of 3 MRI sequences, 
5 MRI sequences, and 7 MRI sequences, respectively, as an input spatial sequences to pass through CNN-LSTM 
layers. In each CNN layer, we used a 2D convolutional layer followed by a max pooling layer with a 2 × 2 kernel 
size. We added a batch normalization layer to normalize the activations of the previous layer at each batch. This 
layer maintains the mean activation close to 0 and the activation standard deviation close to 1. Each CNN layer 
contains 2 × 2 kernels to generate 64, 128, and 256 filters, respectively. We used the binary cross-entropy that 
measure the performance of a classification model as a loss function and the stochastic gradient descent optimizer 
to minimize this loss function. The flatten layer was added at the end of the CNN layers to flatten the output and 
feed into LSTM layers. In LSTM layers, a set of flattened patches from the output of CNN entered LSTM sequen-
tially. The model has a hidden LSTM layer with 24 units followed by a dense layer to provide the output (Fig. 5). 
CNN-LSTM uses entire images and classify PsP or true PD. The deep learning network structures were imple-
mented in Python, using Keras library with Tensorflow backend (Python 3.6, Keras 2.2.4, Tensorflow 1.12.0).

Data analysis. In the fine-tuned VGG16 Model, various augmentation methods were applied to the training 
dataset such as rescaling, rotation, shift, shear, and horizontal flip using image data preprocessing function in 
the Keras neural network library. MR images for each sequence were fed into the VGG16 model. For the CNN-
LSTM model, we created 3 sets of spatial sequence dataset such as a set of 3, 5, and 7 MRI sequences. The detail 
modalities in each spatial sequence dataset are listed in Table 2. In each spatial sequence dataset, we included two 
engineered sequences that were generated by subtracting pre-contrast T1-weighted images from post-contrast 
T1-weighted images to show the extent of the enhancing area of the tumor. Then, we subtracted FLAIR images 
from T2-weighted images to show the difference between the perifocal edema and the more substantial portion 
of the tumor.

Figure 4.  A GBM patient (PsP) with various MRI scans such as (A) pre-contrast T1-weighted, (B) post-
contrast T1-weighted, (C) T2-weighted, (D) Fluid-Attenuated Inversion Recovery (FLAIR), and (E) ADC 
images. In this study, we included two engineered modalities (F) T1post–T1pre and (G) T2–FLAIR. And (H) 
the region of interest (ROI) is shown on a post-contrast T1 image.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20331  | https://doi.org/10.1038/s41598-020-77389-0

www.nature.com/scientificreports/

We performed a threefold cross-validation in the training dataset and generated the confusion matrix, accu-
racy, and ROC curve from each trained models with the test dataset for each fold. Also, we estimated the area 
under the ROC curve (AUC) with a 95% confidence interval to evaluate the trained model in the test dataset.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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