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Introduction 
Alzheimer’s Disease (AD) exerts a significant worldwide impact. An estimated 44 million 
individuals currently live with this Major Neurocognitive Disorder. There are about 6.2 million 
Americans with AD dementia today and AD kills more people than breast cancer and prostate 
cancer combined. The National Institute on Aging estimates that the prevalence of AD doubles 
every five years beyond the age of 65 and as the population ages, a greater proportion of the 
population is affected. AD will cost the United States over $355 billion in 2021, rising to over 
$1.5 trillion by 20501 imposing a significant economic burden. Early diagnosis and treatment of 
neurocognitive disorders are critical in determining treatment approaches and shaping policy to 
prepare for the deluge of cases to come. This review describes current diagnostic approaches and 
treatment advances for AD. 

Current Diagnostic Strategies 
The evaluation of a person with suspected memory impairment includes a comprehensive set of 
assessments aimed at characterizing the etiology of cognitive decline and identifying treatable 
pathologies. These assessments include a detailed medical history, physical and mental status 
examinations, basic labs, and neuroimaging studies. Additional tools may also include 
neuropsychological testing and advanced brain imaging techniques. Once reversible causes have 
been ruled out, clues for specific causes of major neurocognitive disorder are sought. A history 
of multiple strokes, for example, may point towards a diagnosis of vascular dementia. A history 
of head trauma may suggest traumatic encephalopathy. A history of prolonged alcohol use 
disorder may support the diagnosis of an alcohol-related dementia. In adults over 60, the most 
frequent cause of progressive cognitive decline is AD.2 

Emerging Diagnostics 
Finding earlier and more definitive ways to diagnose AD has been the subject of significant 
amounts of research, and testing advances have been seen in the last decade with expanded use 
of positron emission tomography (PET) and magnetic resonance imaging (MRI), as well as in 
the identification of biomarkers in cerebrospinal fluid (CSF) and more recently serum. While 
limited, some of these diagnostic advances are available to the public, though typically at a high 
price. 
A high-level overview of emerging diagnostic strategies can be found below. 

Volumetric Data 
In simple terms, volume changes in specific brain regions can predict the likelihood of 
progression from mild cognitive impairment (MCI) to AD. These volume assessments can be 
done by radiologists or with the help of FDA-approved MRI volumetric data software packages 



such as Neuroquant and Neuoreader. Hippocampal volume changes in particular are regarded as 
an important AD biomarker.3 Because of limited sensitivity of this measure in diagnosing AD, 
however, MRI studies are regarded as a contributor to the diagnostic process but not sufficient in 
themselves for determining a diagnosis.4 

Diffusion Tensor Imaging 
Diffusion Tensor Imaging (DTI) is an advanced neuroimaging technique that uses the diffusion 
properties of water molecules to generate magnetic resonance images that correspond to changes 
in macroscopic axonal organization. This technique can be used to evaluate the structure of 
vertical cellular micro-circuits, termed “minicolumns.” Previous studies have demonstrated that 
minicolumns are known to be altered in a somewhat predictable and progressive manner during 
aging, MCI, and AD.5 Additionally, pathologic changes of cortex columnar architecture are 
associated with increased plaque load and cognitive decline.6 With the aid of proprietary 
software, DTI can be measured and used as a marker of neurodegeneration. 

PET Scan 
Pathologic species of two proteins, amyloid-β (Aβ) and hyperphosphorylated tau accumulate in 
the brains of persons with AD. PET scans are able to assess for both proteins and serve as a 
reliable biomarker. Amyloid accumulation precedes clinically significant cognitive changes and 
tau accumulation progresses in step with cognitive decline, suggesting the value of PET scans for 
diagnosis and measurement of disease progression.7 

CSF and Blood Tests 
Cerebrospinal fluid (CSF), accessible through lumbar puncture, surrounds the brain. Changes in 
the levels of Aβ and tau proteins in the CSF develop decades before the onset of clinically 
significant AD.8 Among the tests of CSF developed during recent decades, the most prominent 
are CSF Aβ42:Aβ40 ratio and the CSF tau phosphorylated at threonine 181 (P-tau181). CSF P-
tau217, measurable in the peripheral circulation, is hoped to provide a biomarker with very high 
sensitivity and specificity.9 
Because blood is more easily accessed than CSF, C2N Diagnostics in St. Louis, Missouri has 
developed and released a blood test called PrecivityAD which is available in most of the U.S. 
and to the European Union. The test uses mass spectrometry to detect specific species of beta-
amyloid in serum which are lower in AD. The test is not presently covered by insurance, 
representing a significant cost that may be defrayed for eligible individuals through a financial 
assistance program. The test is not a stand-alone diagnostic tool; rather the results are a 
probability score and are intended to be interpreted in concert with other testing means.10 
Additionally, research on plasma Aβ42:Aβ40 ratio and P-tau181 suggests potential value.11,12 

Implications of New Diagnostic Strategies: Risks vs. Benefits 

Benefits 
Although some people express the wish not to know, almost 90% of people surveyed in a large 
US study expressed a wish to know their diagnosis. Sixty-five percent of respondents said that 
even if they were asymptomatic they would be likely or somewhat likely to accept a medical test 
to assess for AD.13 Early detection offers the benefits of earlier access to medications, inclusion 



in clinical trials, the opportunity for lifestyle modification, and knowledge useful to families in 
preparing for the future while the affected individual remains able to participate actively in 
decision-making. 

Risks 
Early detection and disclosure, however, also carry risks. The mental health effects of receiving a 
diagnosis are known to be significant not only for patients but also for families. Multiple studies 
have documented a small increase in death by suicide in those with dementia, most prominently 
during the first three months after a diagnosis was made.14 This suggests the need for increased 
mental health support and monitoring particularly in the early months after a diagnosis is given, 
as well as the importance of educating family about suicide risk. As treatment options for early 
stage dementia increase, the benefits and risks of early diagnostic assessment will become a 
matter of great significance. 

Current Therapeutic Strategies and Options 
Several mechanisms have been proposed to account for the pathology of AD, and current 
treatments are counteract these mechanisms. The most widely accepted disease models are the 
amyloid cascade hypothesis, the tau hypothesis, the cholinergic hypothesis, and the 
excitotoxicity hypothesis. 
Our current AD medications were developed to address the cholinergic deficit that occurs early 
in AD. The selective loss of cholinergic neurons, an early pathologic finding in AD, results in a 
profound reduction in the neurotransmitter acetylcholine, which affects learning and memory 
neuronal circuitry. Facilitating cholinergic transmission was therefore an early approach to AD 
treatment which resulted in several palliative medications still in use.15–17 

Cholinesterase Inhibitors 
The primary action of the cholinesterase inhibitors is the reversible inhibition of cholinesterase, 
the enzyme which breaks down acetylcholine in brain synapses, thereby prolonging the effect of 
the diminished level of brain acetylcholine.18,19 Three cholinesterase inhibitors are currently 
used: donepezil, rivastigmine, and galantamine. Meta-analyses have shown that these agents 
delay decline in cognitive function, slow the decline in global clinical rating, and may delay the 
decline of activities of daily living (ADL) and emergence of adverse behaviors, as much as 6 to 
12 months on average.20,21 Significant side effects include gastrointestinal symptoms, dizziness, 
vertigo, fatigue, insomnia, hallucinations, bradycardia, syncope, and muscle cramps.15 
Donepezil is a reversible non-competitive acetylcholinesterase inhibitor shown to affect 
cognitive function, activities of daily living, and global clinical status. Benefits for the 10 mg 
dose appear marginally larger than for the 5 mg dose. A larger 23-mg dose form is available, 
with disputed clinical advantages.20 
Rivastigmine is a pseudo-irreversible inhibitor of acetylcholinesterase and butyrylcholinesterase 
and acts by binding to two active sites of acetylcholinesterase. It is called pseudo-irreversible 
because it dissociates slower than acetylcholinesterase.20 Adverse effects of the oral preparation 
are significant, but the transdermal form is more tolerable for many patients, although it can 
cause dermatologic reactions.22,23 



Galantamine is a reversible competitive acetylcholinesterase inhibitor and modulator of nicotinic 
acetylcholine receptors.15 Theoretically, this agent will have greater effect in areas of the brain 
with low levels of acetylcholine.24 Its effects are similar to those of the other cholinesterase 
inhibitors.24 

NMDA Receptor Antagonist 
Overstimulation of glutamatergic activity in the brain results in an excitotoxic overload of 
calcium flux into neurons through N-methyl-D-aspartate (NMDA) receptor ion channels.25,26 
Excitotoxicity leads to a gradual loss of synaptic function and eventual neurodegeneration, 
correlating with the progressive decline in cognition and the pathological anatomy seen in AD.27 
The NMDA receptor plays a critical role in glutamate synaptic transmission and in synaptic 
plasticity, thought to underlie learning and memory.28 Memantine, a low-affinity NMDA 
receptor antagonist, modulates NMDA receptors to reduce glutamate-induced excitotoxicity and 
is thought to palliate cognitive decline associated with AD in this way.27,28 Memantine is FDA-
indicated for moderate to severe AD.29 It has been shown to improve activities of daily living 
scores, global function assessment scores, and stage of dementia assessment scores.30,31 It has 
also been suggested that it can be efficacious in reducing delusions, agitation/aggression, 
disinhibition, and diurnal rhythm disturbances.32 Although benefit is clear, its magnitude is 
modest.31 It is available as immediate and extended-release formulations, and as part of a 
combination pill with donepezil.15 The combination of a cholinesterase inhibitor with memantine 
appears to have synergistic benefits so it is a standard practice in the treatment of moderate to 
severe AD.33 

Emerging Treatments 
The search for disease-modifying AD therapies has led to the development of medications which 
target the pathologic forms of amyloid beta (Aβ) protein and tau protein associated with this 
disease.34 The amyloid cascade hypothesis proposes that toxic forms of Aβ protein leads to 
neuronal death and synaptic dysfunction. Aβ pathology is an early finding in the disease.34,35 The 
tau pathology has been shown to correlate more specifically with the progression of cognitive 
impairment.36,37 

Targeting Amyloid Pathology 
The neurodegenerative effects of AD are attributed in part to the effects of beta amyloid and 
hyperphosphorylated tau, though newer theories raise additional possibilities. Amyloid plaques 
and tau-containing neurofibrillary tangles remain necessary for a pathological diagnosis of AD.38 
Several familial forms of AD have been linked to genetic mutations which alter the production of 
amyloid. CSF biomarker studies have also shown that Aβ42 peptides decline one to two decades 
prior to onset of symptoms in AD.39 Although insoluble aggregates and soluble dimers of 
amyloid have been demonstrated to cause synaptic toxicity, the soluble aggregates are 
considered to correlate better with symptoms of AD and disease severity.40 
Therapeutic agents have been developed to reduce different forms of pathologic Aβ, interrupt Aβ 
aggregation, or increase Aβ clearance from the CNS. Many tested agents, however, have failed 
to demonstrate efficacy and some have even caused worsening of cognitive or physical 
symptoms, raising questions about the amyloid hypothesis.41 Newer research techniques seek to 



improve drug evaluation by assuring that adequate measures are used and appropriate subjects 
enrolled in clinical trials.42 

Passive Immunotherapeutics 
Following the early failure of a vaccine intended to develop a beneficial immune response in 
persons with AD, researchers developed passive immunotherapeutic agents: monoclonal 
antibody solutions created in biological systems for infusion into human subjects.43 The 
objective is to reduce peripheral and central effects of Aβ42.44 Several passive 
immunotherapeutic agents have failed clinical trials, but others remain in testing. 
Aducanumab (BIIB037) is a human anti-Aβ monoclonal antibody that selectively targets 
aggregated forms of Aβ, including soluble oligomers and insoluble fibrils. Given as an infusion, 
aducanumab enters the central nervous system and decreases Aβ in prodromal or mild AD with 
Aβ PET-confirmed pathology, in a time and dose-dependent manner. Significant plaque 
reduction has been demonstrated. The main safety finding has been dose-related amyloid-related 
imaging abnormalities – edema/effusion (ARIA-E) which are more common among Apo-E4 
carriers. In subjects who received the highest dose of 10 mg/kg, researchers reported a significant 
decline in the progression of cognitive impairment (on the CDR-Sum of Boxes).45 In June of 
2021, aducanumab was approved by the FDA for treatment of AD with the stipulation that a 
phase IV trial carefully assess its efficacy and safety. Subsequently, amidst some controversy 
about the accelerated approval process which occurred despite limited evidence of treatment 
benefit, the FDA revised the medication’s indication to target its use toward AD-related mild 
cognitive impairment or mild dementia. 
Lecanemab (BAN2401) is a humanized IgG1 version of a mouse monoclonal antibody which 
selectively binds to large soluble Aβ protofibrils. Lecanemab has been shown to slow cognitive 
decline, increase CSF levels of Aβ (which drop in AD), and reduce total tau levels46 but further 
validation of current findings is needed to address concerns about the methodology of the initial 
studies. Three clinical trials are currently in progress, looking at efficacy and safety among early 
AD subjects (NCT03887455); efficacy and safety among early preclinical and preclinical AD 
subjects with early and intermediate amyloid (NCT04468659); and safety, efficacy, and 
tolerability of different dose levels among early AD patients (NCT01767311). 
Donanemab (LY3002813) is an immunoglobulin directed towards a molecular target present 
only in brain amyloid plaques. In a phase II trial among early AD subjects, there was some 
improvement in composite cognition scores and ability to do activities of daily living (ADLs), 
but secondary outcomes did not show a significant difference. ARIA-E were observed but were 
noted to be asymptomatic.47 A dose escalation study of single and multiple doses explored safety 
and tolerability and showed 40-50% amyloid reduction and 90% of subjects developed drug 
antibodies at three months after a single dose.48 
Gantenerumab, an additional monoclonal antibody in testing, has a 20-fold higher affinity for Aβ 
oligomers than monomers.49 The earlier phase II trial was terminated for futility but there were 
dose-dependent effects observed indicating that higher doses may be necessary for efficacy.50 An 
analysis of a PET sub-study suggests that at higher doses, there is a robust reduction of amyloid 
at two years.51 There are currently ongoing trials evaluating pharmacodynamics of subcutaneous 
administration (NCT04592341); safety and tolerability of long-term administration 
(NCT04339413); safety and efficacy among early AD subjects (NCT03443973, NCT03444870); 



and safety, tolerability, biomarker, and cognitive efficacy among genetic early onset AD 
(NCT01760005). 
Crenezumab is a monoclonal antibody which binds to monomers and aggregated forms of Aβ 
with a 10-fold higher affinity for oligomers.52 Earlier clinical trials did not meet clinical 
endpoints but there was note of a reduction in clinical decline in the higher dose group, as with 
gantenerumab.53 Ongoing trials currently are evaluating crenezumab and its effect on tau burden 
among presenelin mutation carriers and noncarriers (NCT03977584) and efficacy among 
preclinical AD (NCT01998841). 

BACE Inhibitors 
β-site amyloid precursor protein cleaving enzyme (BACE) is an enzyme which performs the 
initial step in Aβ formation.41 Several agents have been developed to block BACE activity in 
order to reduce Aβ accumulation. 
Clinical failures of BACE inhibitors among persons with mild to moderate AD and prodromal 
AD have occurred with lanabecestat (AZD3293, LY3314814), atabecestat (JNJ-54861911), and 
verbecestat (MK8931). Elenbecestat (CNP520) was the last remaining BACE inhibitor evaluated 
to potentially slow down the onset and progression of clinical symptoms associated with AD 
(NCT02565511). The trial was discontinued for safety concerns.54 
BACE inhibitors are successful in inhibiting Aβ formation but they have not been shown to 
produce cognitive, clinical, or functional benefit in large randomized controlled trials (RCT). 
Indeed, several BACE inhibitors were found to be poorly tolerated and some of them failed also 
in patients with prodromal AD. To some investigators, the failure of BACE inhibitors casts doubt 
on the value of blocking the formation of toxic Aβ in persons with AD.55 

Anti-Aggregation Agents 
Another approach to interfering with the amyloid cascade is to block the aggregation of Aβ into 
oligomers and fibrils into amyloid plaques which may trigger the synaptic dysfunction and 
neuronal loss in AD. The soluble oligomers are considered the pathogenic form of Aβ associated 
with neurodegeneration.56 
Scyllo-Inositol (ELND005) has been shown to neutralize toxic effects of Aβ oligomers, including 
amelioration of oligomer-induced synaptic loss.57 It is also thought to directly affect both Aβ 
clearance and myo-inositol regulation to improve cognitive function.58 Its efficacy outcomes in 
mild to moderate AD, however, have not been found to be significant.59 No ongoing trials are 
addressing its effect on earlier AD stages. 
ALZ-801 is an improved prodrug of tramiprosate thought to inhibit the formation of amyloid 
oligomers without plaque interaction.60,61 It selectively blocks the formation of Aβ oligomers 
with some clinical efficacy among high risk APOE carriers at a high dose and a dose dependent 
preservation of hippocampal volume. This is an oral agent which has been shown to have 
adequate CNS penetration.60,62 Ongoing trials are looking into the effect of ALZ-801 on 
biomarkers (NCT04693520) and efficacy and safety (NCT04770220), both in APOE carriers. 



Tau Directed Therapies 
The lack of clear efficacy of amyloid-based therapeutics has led investigators to explore other 
upstream pathologic processes involving other targets.46 Tau, a microtubule binding protein 
which forms neurofibrillary tangles (NFTs), is another histopathologic hallmark which 
characterizes AD. The accumulation of tau has been found to correlate more closely with 
severity of dementia than does amyloid load. There is evidence that Aβ accumulation can 
exacerbate tau pathology and vice versa.63 Tau protein has also been found to at least partially 
mediate some of the toxic effects of Aβ leading to synapse loss, dendritic simplification, and 
eventual cell death in AD.34 Initial approaches for tau-based therapies have focused on inhibition 
of kinases or tau aggregation or stabilization of microtubules. Most of these studies have been 
discontinued due to toxicity or lack of efficacy.64 Current trials are focused on tau 
immunotherapies. Post-translational modifications and consequent loss of microtubule binding 
and tau misfolding lead to elevated levels of tau in the cytosol, making these processes viable 
targets.34,64 Other significant targets include cytoskeletal disruption and impairments in protein 
degradation mechanisms.64 

Inhibition of Tau Aggregation 
Methylene blue (MB) is a long established medication with broad utility in many conditions due 
to its role in promoting mitochondrial activity as well as mitigating neuroinflammation.65 In 
animal models, MB has been shown to reduce Aβ levels and improved learning and memory 
thought to be mediated by an increase in Aβ clearance.66 It has been found to reverse tau 
aggregation67 and to promote clearance of tau filaments by inducing autophagy.64 Although some 
efficacy was noted in improving cognition and reducing tau pathology in animal studies, it has 
not demonstrated significant benefits in human trials. This has been attributed to MB reducing 
the number of tau fibrils but increasing the number of granular tau oligomers, which are thought 
to be essential for neuronal death.68 
Curcumin is a natural plant product derived from turmeric root, with antioxidant and anti-
inflammatory properties. It directly binds to β-pleated sheets of proteins and prevents 
aggregation.69 Like MB, it has also been shown in animal studies to reduce tau and Aβ pathology 
and ameliorate cognitive deficits.64 Previous trials have not shown any significant cognitive 
effects.70 A recent trial involving a small population showed only modest results 
(NCT01383161). The clinical development of curcumin as a therapeutic agent has been hindered 
by concern about bioavailability, poor water solubility at neutral or acidic pH, instability at basic 
pH, and rapid intestinal and first pass glucuronidation.69 

Post Translational Modifications 
Protein phosphatase 2A (PP2A) is a protein that regulates signaling pathways. Sodium selenate is 
an antitumor agent which has been found to be a potent PP2A activator and reduces 
phosphoprylation of tau in animal studies in TBI71 and AD.72 In a phase IIa trial,73 it was found 
to be safe and well-tolerated but there were no subsequent efficacy trials. A recent trial utilized 
sodium selenate as an oral supplement to potentially slow down neurodegeneration, based on the 
hypothesis that insufficient selenium supply to antioxidant enzymes may contribute to AD 
pathophysiology.74 



CDK5 inhibitors (flavopiridol and roscovitin) were developed primarily in oncology to prevent 
cell death. They compete with ATP for binding with CDK5, resulting in reduced activation of 
this kinase.75 They have not been tested for neurodegenerative diseases although it has been 
thought that cell cycle progression and/or mitosis may be valid targets for AD.76 
Glycogen synthase kinase (GSK) 3β is highly expressed in the brain and has been implicated in 
tau phosphorylation. It is considered an important drug target due to its high specificity as a 
substrate.77 Tideglusib is an irreversible GSK3β that does not compete with ATP. A phase II trial 
on mild AD subjects, however, showed tideglusib to have no clinical benefit.78 An additional 
phase II trial showed no benefit to subjects with progressive supranuclear palsy (PSP). Lithium is 
another inhibitor of GSK3. Studies among patients with MCI and AD have been limited, but a 
reduction in phospho-tau levels were noted and one study showed stabilization of cognitive 
symptoms. In a meta-analysis of 5 RCTs on GSK 3 inhibitors, however (two trials on Tideglusib 
and three trials on lithium), GSK3 inhibitors were deemed ineffective in treating MCI and AD as 
the studies were found to be too small.79 

Microtubule Stabilization 
Compounds that stabilize microtubules may have therapeutic potential as the disruption of 
microtubule-based transport mechanisms contributes to synaptic degeneration.80 
Epithilone D (BMS-241027) is a small molecule able to penetrate the blood brain barrier. It was 
found to increase microtubule numbers and reduce the number of axons in animal studies.34 
There was also note of improved cognition and reduced tau pathology in mouse models but the 
phase I clinical trial was discontinued in 2013 (NT 01492374). 
TPI 287 (Abeotaxane) is another microtubule stabilizing compound which was initially found to 
reduce hyperphosphorylated tau in the brain and to improve performance in animal models. It 
was subsequently trialed in patients with AD, progressive supranuclear palsy, and corticobasal 
syndrome. Severe hypersensitivity reactions, however, were observed in AD patients and clinical 
worsening and biomarker changes were seen in PSP and corticobasal syndrome.81 
Davenutide (NAPVSIPQ) is an 8-amino acid peptide derived from activity-dependent 
neuroprotective protein (ADNP). ADNP deficiency is thought to lead to tauopathies.34 In animal 
models, davenutide was found to play a positive role in attenuating Aβ1-42-induced impairments 
in spatial memory and synaptic plasticity.82 It is thought to stabilize microtubules and reduce 
hyperphosphorylated tau levels.83 In a phase I trial, it was found to be well tolerated given 
intranasally among patients with MCI. Although there was note of potential efficacy in two tests 
of memory and attention, the study failed to detect a statistically significant difference on 
composite cognitive memory scores.84 

Tau Immunization Approaches 
Active and passive immunization against phospho-tau peptides have the potential to modulate 
tau pathology. Antibodies pass through the blood brain barrier and enter the brain.34 
One candidate active vaccine is AADvac1 which targets nonphsophorylated tau. In its phase I 
trial, patients were given 3 doses of the vaccine. Almost all developed an IgG immune response. 
The most common adverse effect was injection site reactions. There were no cases of 
meningoencephalitis or vasogenic edema after administration.85 A follow-up study was done on 
the same population and given three more doses plus two boosters with the primary objective 



being the determination of long-term safety. The most common adverse event was again local 
injection site reaction. Again, no cases of meningoencephalitis or vasogenic edema were 
observed. New micro-hemorrhages were observed in one Apo E4 homozygote. IgG titers did 
regress over time indicating the need for more frequent boosters. A tendency towards slower 
atrophy on MRI was observed and there seems to be a slower decline on cognitive assessment in 
those with higher titers.86 
ACI-35 is another active vaccine that targets phosphorylated tau.87 In animal studies, there was 
note of reduction in soluble and insoluble tau. The vaccine also did not induce marked CNS 
inflammation despite the multiple epitopes.75,88 A phase Ib-IIa trial is currently ongoing to 
determine safety, tolerability, and immunogenicity. It is expected to complete by 2023 
(NCT04445831). 

Passive Immunization 
Passive immunization potentially provides a possible solution to concerns about immunologic 
side effects with active immunization. There is greater specificity for the target epitope and the 
effects of immunization are likely to be transient.75 Anti-tau antibodies have been shown to enter 
neurons and bind to a cytosolic receptor which eventually leads to proteosomal degradation of 
the complex and inhibition of intracellular tau aggregation.89–91 
RG7345 (RO6926496) is an antibody that recognizes tau phosphorylated at Ser422. Tau 
phosphorylated at this site is considered pathological.92 It has been shown to enter neurons and 
reduce tau pathology, but this trial was discontinued by Roche likely due to some 
pharmacokinetic issues (NCT02281786). No apparent safety or efficacy concerns.75 
Gosuranemab (BIIB092) is an IgG4 monoclonal that recognizes a site in the N-terminal region. 
It was found safe and well-tolerated with no adverse effects in the low and moderate dosage 
arms. Unbound N-terminal tau in the CSF was reduced but AD biomarkers were not reduced.93,94 
There is currently a phase II trial for those with MCI and mild AD assessing safety and 
tolerability plus immunogenicity and efficacy of multiple doses in slowing cognitive and 
functional impairment (NTC 03352557). Expected completion of the study is in 2024. 
Tilavonemab (ABBV-8E12, C2N-8E12) is an IgG4 antibody intended to work extracellularly. In 
vitro, this blocks uptake and inhibits seeded tau aggregation.63 No adverse reactions were 
reported among PSP patients in phase I. Phase II trials included both PSP patients and AD 
patients. The trials for PSP were discontinued. The trials for AD patients, however, are still 
ongoing with the extension study expected to conclude July 2021 (NCT02880956, 
NCT03712787). 
Zagotenemab (LY3303560) is a humanized version of the IgG1 antibody MC-1 with its primary 
epitope located in the N-terminal region.63 The initial phase I trial evaluated safety, tolerability, 
and pharmacokinetics in healthy individuals (NCT02754830) and among those with mild to 
moderate AD (NCT 03019536). A phase II trial is underway evaluating efficacy among early 
symptomatic AD patients (NCT03518073). Study completion is estimated to be in October 2021. 
Semorinemab (RO7105705, MTAU9937A) is an antibody designed to bind and intercept tau in 
the extracellular brain, blocking cell-to-cell spread.63 Initial phase I results showed no dose-
limiting toxicities and no serious adverse effects. The antibody was also detected in CSF.95,96 The 
phase II trial on prodromal to mild AD was completed January 2021 and primary endpoints were 



safety measures and CDR-Sum of Boxes (NCT3289143). The phase II trial on moderate AD is 
still ongoing at this time (NCT03828747). 
BIIB076 (NI-105, 6C5 hulgG1/I) is a human IgG1 recombinant monoclonal antibody. 
Intravenous and subcutaneous forms were assessed up to 26 times highest predicted dose. Drug 
levels were measured in the serum and tau levels were measured in the CSF. No adverse effects 
noted.92 The phase I trial on ascending doses given to healthy volunteers and AD patients 
monitored adverse events as well as pharmacokinetics (NCT03056729). This study was 
completed in March 2020 but no results have been posted or published. 
JNJ-63733657 is an IgG1 antibody with affinity for the paired helical filament.63 It recognizes an 
epitope in the mid region of tau. The phase I trial of ascending doses in healthy participants 
found this antibody to be generally safe and well-tolerated (NCT03689153). A second phase I 
ascending dose study was completed in December 2019 (NCT03375697) with no results posted 
yet. A phase II trial on efficacy and safety in early AD is currently ongoing and expected to 
complete by March 2025 (NCT04619420). 
Bepranemab (UCB0107) is likely an IgG4 (Alzforum.org 2019b). It also binds to the mid-region 
of tau, like JNJ-63733657.92 Two phase I clinical trials were completed in 2018 and 2019 
(NCT03464227, NCT 03605082). There are two other phase I trials involving safety and 
tolerability in PSP patients. The phase II study involving AD patients is not yet recruiting at this 
time (NCT04867616). 

Treatment of Noncognitive Symptoms of Dementia 
Noncognitive symptoms of dementia (NCSD) are symptoms that contribute significantly to 
functional decline, caregiver burden, and eventually, the decision for institutionalization.97 Early 
treatment, therefore, is essential. These symptoms present intermittently or persistently. The 
most prevalent and stable is apathy. Other symptoms include depression, anxiety, irritability, and 
psychosis. The four key symptoms of wandering, aggression/agitation, delusions, and irritability 
have been found to be associated with more severe illness.98 Nonpharmacologic approaches are 
designated as the first line approach for treatment. Pharmacological interventions have been 
prescribed as well and are often seen as more expedient, though with variable benefit. Their use 
is complicated by adverse effects, dose-dependent increased mortality, and limited supporting 
evidence.99–101 The concern for risks associated particularly with antipsychotic use has resulted 
in boxed warnings by the FDA for atypical and conventional antipsychotics.99 Furthermore, none 
of these pharmacologic agents have been indicated for this use by the FDA so their use is off-
label. The American Psychiatric Association’s (APA) guideline on antipsychotic use to treat 
agitation or psychosis in dementia recommends that antipsychotics be used when symptoms of 
agitation or psychosis are severe, dangerous, or cause significant distress to the patient, titrating 
doses only to the minimum effective dose, and to taper and withdraw once an adequate response 
is achieved.102 Ultimately, among the antipsychotics, there is no single agent that is able to 
provide both efficacy and safety emphasizing the need to individualize treatment based on a 
careful balance of benefits and adverse effects.103 
Serotonergic antidepressants offer a more promising pharmacologic approach to the treatment of 
NCSD. Citalopram, a selective serotonin reuptake inhibitor (SSRI), has been shown to have 
some efficacy for agitation in dementia.104 In a placebo controlled, double blind RCT, citalopram 
was found to meaningfully reduce agitation and caregiver distress. Some associated cognitive 



decline and cardiac side effects (QTc prolongation), however, hamper its long-term use.105,106 
Results suggest that citalopram needs to be given at least nine weeks to allow enough time for a 
full response.107 The evidence for its use for this indication, nevertheless, remains compelling, 
and potentially could be a class effect for all SSRIs.108,109 
Some additional novel and/or repositioned agents are being studied as treatments for agitation in 
dementia.99 Four will be discussed here. 
Dextromethorphan is a sigma-1 receptor agonist which has some mood-modulating properties.110 
It is also a low affinity NMDA antagonist, a serotonin and norepinephrine reuptake inhibitor, a 
histamine H1 receptor agonist, and a neuronal nicotinic alpha-3 beta-4 receptor antagonist.99,111 
Quinidine and deuteration appear to prolong dextromethorphan's plasma half-life, reduce first 
pass metabolism, and facilitate brain penetration.112 Deuterated (d6)-dextromethorphan/quinidine 
(AVP-786) is currently being evaluated as a treatment for agitation in people with AD.113 Two 
phase III trials evaluating efficacy, safety, and tolerability have been completed, NCT02442765 
(February 2020) and NCT02442778 (August 2020). The two trials reportedly showed mixed 
findings and failed to confirm the anti-agitation effect, probably due to differences in study 
design.113,114 Four ongoing trials are currently recruiting subjects (NCT04464564, 
NCT04408755, NCT03393520, NCT02446132). 
Cannabinoids like tetrahydrocannabinol (THC) are agonists at cannabinoid receptors 1 and 2. 
Cannabinoid receptor activity has behavioral effects and modulates of neuroinflammation and 
oxidative stress, so these receptors are a potential drug target.115 Nabilone, a synthetic oral THC 
which is a partial agonist at CB1/2 receptors, is thought to potentially have some efficacy for 
agitation in moderate to severe AD.116 In a recent RCT evaluating nabilone efficacy and safety, it 
was found to be effective for agitation, although with some dose-related sedation. Observational 
studies have also shown promising results, particularly in cases with refractory symptoms.117 
Two of three recent meta-analyses were unable to show conclusive results for cannabinoid 
efficacy in the treatment of agitation or aggression.118,119 The most recent meta-analysis, 
however, was able to show significant improvement in different NPS instruments and efficacy 
was associated with baseline dementia severity and dose.120 
Brexpiprazole is a partial receptor agonist (D3, D2, 5-HT1A) and receptor antagonist (5HT2A, 
alpha1B/2C) which has been shown in phase II trials to be effective for agitation in patients with 
AD with improved safety profile compared with other second generation antipsychotics.121,122 Of 
note, brexpiprazole on a slow titration schedule, had higher efficacy and tolerability. There are 
several ongoing phase III trials (NCT03594123, NCT03724942, NCT03548584, NCT03620981) 
to evaluate long term use, safety, efficacy. 
Prazosin is a centrally acting alpha 1 receptor antagonist indicated for hypertension and 
symptoms of benign prostatic hypertrophy. It readily crosses the blood brain barrier and in a 
small double-blind trial, it has shown efficacy for agitation among patients with moderate AD 
using a flexible dosing titration up to a maximum of 6 mg TDD. It was also well tolerated.123 A 
completed but unpublished second trial looked into the efficacy of a fixed dose of 4 mg twice 
daily given for a longer period of study (NCT01126099). A phase III trial is ongoing to evaluate 
efficacy and dose titration (NCT03710642). 
Mirtazapine (NCT03031184, completed 06/2020) and lithium (NCT02129348, completed 
01/2020) have also been evaluated for agitation in AD but results have yet to be published. 
Escitalopram is being reevaluated for agitation as well (NCT03108846, ongoing recruitment).99 



Public Health Implications 
We may be standing at the brink of a new era of AD diagnosis and treatment, a development 
which will have significant public health implications. If early detection becomes a reality, the 
detected individuals will burden an already stressed system by new care needs. Resources may 
need to be directed at increasing public awareness of the health implications of dementia. 
Dissemination of information about the effectiveness of treatments will be needed as well as 
work to remove the stigma associated with mental health disorders and the stigma of being 
treated for them. Furthermore, overall access to mental health services needs to be 
improved.124,125 
The current advances should inspire hope, however, that many cases of dementia can be delayed 
or prevented as a result of earlier detection, lifestyle modifications, and new treatment 
approaches. We are on the verge of a paradigm shift in the way we approach AD. 
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