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Deep learning-based prediction of protein structure usually
begins by constructing a multiple sequence alignment (MSA)
containing homologs of the target protein. The most successful
approaches combine large feature sets derived from MSAs, and
considerable computational effort is spent deriving these input
features. We present a method that greatly reduces the amount
of preprocessing required for a target MSA, while producing
main chain coordinates as a direct output of a deep neural net-
work. The network makes use of just three recurrent networks
and a stack of residual convolutional layers, making the predic-
tor very fast to run, and easy to install and use. Our approach
constructs a directly learned representation of the sequences in
an MSA, starting from a one-hot encoding of the sequences.
When supplemented with an approximate precision matrix, the
learned representation can be used to produce structural models
of comparable or greater accuracy as compared to our original
DMPfold method, while requiring less than a second to produce
a typical model. This level of accuracy and speed allows very
large-scale three-dimensional modeling of proteins on minimal
hardware, and we demonstrate this by producing models for
over 1.3 million uncharacterized regions of proteins extracted
from the BFD sequence clusters. After constructing an initial set
of approximate models, we select a confident subset of over
30,000 models for further refinement and analysis, revealing
putative novel protein folds. We also provide updated models
for over 5,000 Pfam families studied in the original DMPfold
paper.
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Analysis of amino acid residue covariation in deep multiple
sequence alignments (MSAs) has revealed that covarying

residues in proteins are frequently found to be close together in
the tertiary structure. This principle has been successfully
exploited for predicting interresidue contacts by a variety of
methods. Notable among these are the family of methods based
on direct-coupling analysis (DCA) (1–3) and, more recently, a
number of methods based on deep learning. The latter have
produced increasingly precise predictions of interresidue con-
tacts in recent years (4–6) and have also been adapted to
output probabilistic predictions of the distance between the res-
idues in contact, either as a probability distribution (7–10) or as
real values (11–13). These predictions are usually made by
models that operate on precomputed features derived from an
MSA, such as covariance and/or precision matrices, contact
predictions from DCA-based methods, together with other fea-
tures such as predicted secondary structure labels and sequence
profiles. This approach, though effective, requires that these
features be precomputed, which can in some cases be a time-
consuming process and can sometimes take longer than the rest
of the prediction pipeline combined. Additionally, it does not
allow the neural network model to utilize all the information
that might be available in the sequence alignment, as a model

trained on derived features is limited to using the information
available in those handpicked features.

A key difficulty in using MSAs directly as input to a neural
network is the fact that an MSA for a target sequence can have
arbitrarily many sequences in it. To date, only a few published
methods attempt to use an encoding of the MSA itself as the
input to a neural network-based predictor of protein structural
features. In rawMSA (14), the difficulty of embedding MSAs of
arbitrary depth was addressed by training separate convolu-
tional networks using predetermined maximum MSA depths.
Recently, we demonstrated that a system of recurrent neural
network (RNN) layers can be used to process MSAs of arbi-
trary size (15). A handful of subsequent studies have also dem-
onstrated that directly processing MSAs in a neural network
can be effective for predicting structural features such as inter-
residue contacts or distances. In the MSA Transformer (16),
the neural network model exploits the equivalence of aligned
positions in the MSA in order to derive embeddings via a tied
row attention framework. These embeddings are shown to be
useful for producing accurate predictions of interresidue con-
tacts in a number of proteins. The process of end-to-end differ-
entiable coordinate generation for protein structures, where
atomic coordinates are produced as a direct output of a neural
network, was first demonstrated in the Recurrent Geometric
Network (17), which takes as input an amino acid sequence
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and a position-specific substitution matrix (PSSM) for the
sequence family. Another end-to-end method, NEMO (18),
combines a neural network representation of a forcefield with a
coarse-grained Langevin dynamics simulator to derive struc-
tures, starting from a sequence and PSSM. More recently,
RoseTTAFold (31) and AlphaFold2 (26) employed direct
embeddings of an input MSA to directly output atomic coordi-
nates for a protein structure, with the latter producing models
of unprecedented accuracy in many cases.

A number of studies have applied recent advances in protein
structure prediction to model large sets of protein sequences
with unknown structures, such as Pfam families (9, 19–22) or
proteins from a minimal genome (23). These efforts have been
limited, though, by the computational cost of running more
than a few thousand predictions in a reasonable time frame.
This has prevented structural annotations from keeping pace
with the vast increase in sequence data now available as a result
of metagenomic sequencing efforts. These large sequence col-
lections present unique opportunities for discovery of proteins
with potentially novel folds and/or novel functionality, and
therefore, the development of rapid, accurate methods for pre-
dicting protein structures from sequence information alone is
highly desirable.

In this paper, we develop a deep neural network-based
method for predicting protein structures directly from MSAs in
an end-to-end-differentiable fashion, building on methods we
trialed in CASP14 (15). Our method produces coordinates of
backbone atoms as a direct output of the neural network
model, further saving time over model generation approaches
used previously, and also provides a predicted confidence in
the output coordinates. Using this method, we model protein
sequences from the BFD (24, 25), a clustered collection of over
2.2 billion sequences assembled from a number of metage-
nomic sequencing efforts as well as sequences from UniProt.
We have attempted to leverage this collection of sequences to
derive structural annotations for the protein families repre-
sented therein.

We show that despite the relatively simple composition of
the input feature set, we are able to obtain predictions of com-
parable or better accuracy than DMPfold1 (9) while taking
under a second to a few minutes to produce one structure on
readily available hardware. DMPfold2 is thus fast enough to
run at unprecedented scale, and we apply it to over 1.3 million
subsequences without detectable templates extracted from the
BFD, generating over 30,000 confident models, and using these
to explore the structural content of the dark protein space in
the BFD. We show how such an approach can be used to find
otherwise undetectable homologs and aid in function predic-
tion, along with finding a number of novel folds. We also pro-
vide updated models for Pfam families whose structures were
predicted in the original DMPfold1 study (9).

Results
Tertiary Structure Model Accuracy on CASP13 Domains. As an eval-
uation of the effectiveness of the DMPfold2 end-to-end model
building procedure, we built three-dimensional (3D) models of
39 FM and FM/TBM domains from the CASP13 experiment.
Comparison against models generated using DMPfold1 (Fig.
1A and SI Appendix, Table S1) shows that DMPfold2 produces
more accurate structure models for these domains; five exam-
ples are shown in Fig. 1B. DMPfold2 is able to fold 30 domains
to a TM-score of 0.5 or greater, as compared to 26 for
DMPfold1. The mean TM-score is 0.590 for DMPfold2 and 0.
531 for DMPfold1.

We also used the CASP13 domains to assess the impact of
ablating either the MSA embedding or covariance features
input to the DMPfold2 neural network. The results in Fig. 1C

show that both of these features contribute substantially to the
accuracy of the predictions, and that the reduced predictive
accuracy upon ablation of either feature type also results in a
drop in confidence in the predictions. Additionally, predictions
with the baseline network using all input features appear to be
robust to MSAs of varying quality (measured using effective
sequence counts and gap fraction; SI Appendix, Fig. S2).

Pfam Models. We produced updated models for 5,193 Pfam fam-
ilies, using the same MSAs as used in the original DMPfold1
paper (9). A subset of 255 Pfam families have since had repre-
sentative models made available. Using this subset, we found a
strong positive correlation between predicted confidence and
TM-scores to the ground-truth structures (Fig. 1D). We also
determined that a confidence threshold of 0.4 could be used in
a binary classification manner to dichotomize models into those
likely to have a TM-score greater or less than 0.4. The appro-
priate confidence threshold value was determined by selecting
the value at which precision, recall and the F1-score was maxi-
mized and therefore minimizing type I and type II errors (Fig.
1E and SI Appendix, Table S2). Of the remaining 4,938 Pfam
families without representative structures, ∼60% of the models
generated (2,950 models) were at a confidence score of 0.4 or
greater, with the majority of these high-confidence models rep-
resenting targets between 50 and 200 residues in length (SI
Appendix, Fig. S3 A and B). Using a confidence threshold of 0.4
as a binary classifier affords a precision of 0.87, thus we esti-
mate that ∼2,600 of these models will have a true TM-score of
0.4 or greater.

As a benchmarking exercise, we compared the models of a
common subset of 221 Pfam families generated by DMPfold2 to
those generated by DMPfold1 (9), C-I-TASSER (22), and Alpha-
Fold2 (26), calculating the TM-score of each model to a PDB
entry assigned to the equivalent family (Fig. 1F and SI Appendix,
Fig. S4). We additionally subdivided targets based on their
LOMETS classification (22) into trivial, easy, hard, and very hard
categories. A table of mean TM-scores achieved by each method
in each difficulty category can be found in SI Appendix, Table S3.
From our analysis, it can be seen that DMPfold2 outperforms
DMPfold1 in all difficulty classes, in terms of the mean TM-score
achieved for each category (Fig. 1F and SI Appendix, Fig. S4).
DMPfold2 further outperforms C-I-TASSER in the hard and
very hard categories but underperforms in trivial and easy cases.
Examples of six targets belonging to the very hard category are
shown in SI Appendix, Fig. S3C. The lower performance of our
method on easy and trivial targets can be attributed to the fact
that DMPfold2 does not make explicit use of template informa-
tion, whereas C-I-TASSER does. The architecture of DMPfold2
does allow for distance information from templates to be added
as an input to the ResNet section, replacing the distance map
derived from the output coordinates (see Neural Network Model),
though this was not done during the training process. We are cur-
rently investigating methods for explicitly supplying template
information during the prediction process. Finally, it can also be
seen that AlphaFold2 outperforms all other methods for all diffi-
culty classes, with the exception of trivial targets, where it
achieves a similar mean TM-score as C-I-TASSER (Fig. 1F and
SI Appendix, Table S3).

BFD Modeling Experiments. We modeled 1,333,242 subsequences
from the BFD not matching conserved families in the Pfam or
CATH-Gene3D HMM libraries using one iteration of
DMPfold2. Given that around 86% of these subsequences were
fewer than 300 residues in length, most will correspond to sin-
gle domains, and a single pass through the DMPfold2 neural
networks will provide a rough idea of the distribution of folds
present, following which we can select a subset of promising
models for further refinement and analysis. A summary of key
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metrics on the set of 1.3 million models appears in SI Appendix,
Fig. S5. Although the vast majority of the models are predicted
to have a confidence score of less than 0.4, most of these low-
confidence models correspond to target sequences that are
either very short, and/or whose MSAs have very few sequences
(SI Appendix, Fig. S5). Additionally, for some fraction of these
targets, domain boundaries may not have been correctly parsed,
as our subsequence filtering procedures were based only on
sequence profile HMM similarity.

From the initial set of 1,333,242 models, we focused on a
subset of 33,548 models predicted by DMPfold2 to have a con-
fidence score of 0.4 or greater (see Materials and Methods). Our
reasoning for not choosing a stricter cutoff was that it should
be possible to refine some fraction of these models using the
iterative prediction mode of DMPfold2. The majority of these

targets are also predicted to be ordered according to IUPred,
with 79% of sequences having 80% or more residues predicted
as ordered. A comparison of per-residue confidence scores and
IUPred scores shows that residues confidently predicted as
ordered (IUPred score ≤ 0.3) or disordered (IUPred score ≥
0.7) show distinct distributions of confidence scores, with resi-
dues strongly predicted to be disordered showing low
DMPfold2 confidence scores on average (Fig. 2C).

We also assessed this set of models for similarity to existing
CATH families. Overall, we were able to assign 23,495 models
to 2,394 CATH superfamilies on the basis of structural similar-
ity (SI Appendix, Table S5), suggesting that the predictions are
correct at the fold level. Fig. 3 shows the distribution of these
models and their folds. The large fraction of models with a sim-
ilar structure in the PDB despite most sequences with

A
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Fig. 1. Results obtained on CASP13 domains and Pfam families. (A) Comparison of TM-scores obtained by DMPfold2 and DMPfold1 on 39 CASP13 FM
and FM/TBM domains. Detailed model accuracy data for each target can be found in SI Appendix, Table S1. A dashed line of unit slope is drawn, as well
as segments demarcating the TM-score ≥ 0.5 regions of the plot. Overall, DMPfold2 end-to-end achieves comparable or greater model accuracy than
DMPfold1. (B) Five CASP13 domains could be folded correctly (TM-score > 0.5) by the end-to-end procedure but not by DMPfold1. Models and native
structures are shown in orange and blue respectively. (C) Effect of ablating covariance or MSA features on DMPfold2 performance. Results compare
TM-scores and confidence scores on 39 CASP13 domains. Ablating either the covariance features or the MSA embeddings results in a pronounced drop in
predictive accuracy. (D) Scatterplot comparing TM-scores and confidence scores of 255 Pfam models generated by DMPfold2. (E) Precision-recall curve
generated from data shown in D. Values next to data points represent the confidence score threshold used for binary classification. A maximal precision,
recall and F1-score is achieved using a threshold of 0.4 (red datapoint). (F) Comparison of DMPfold1, DMPfold2, C-I-TASSER and AlphaFold2 predictive
accuracy on a subset of 221 targets from the Pfam dataset. Pfam targets were subdivided into four difficulty classes as reported in Ref. 22. The marker at
the center of each boxplot represents the mean TM-score obtained.
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templates being eliminated shows the value of de novo protein
structure prediction for mapping sequences to the existing fold
space and inferring homology. Indeed, most targets in the FM
category at CASP do match a known fold, even though the tem-
plate is not found with sequence-based searching (27). As in
our study of Pfam with DMPfold1, we do find a number of con-
fident models that do not match structures in the PDB and
likely represent novel folds.
Iterative refinement of medium-to-high-confidence models. A
total of 225 targets with medium-to-high confidence models
were chosen and MSAs and models were rebuilt for these tar-
gets by searching against the BFD. We compared the models
built using the original MSAs extracted from the BFD against
those built afresh using the trimmed consensus sequences as a
query, with DMPfold2 running either 1 or 10 iterations. The
results in SI Appendix, Fig. S6 demonstrate that regardless of
the MSA used, the iterative updates to the coordinates output
by DMPfold2 result in improved confidence scores as well as
greater secondary structure content. Concomitantly, a larger
fraction of the models are found to have a hit to the PDB with
a TM-score of 0.5 or greater. These results show the benefit of
iterative structure refinement, but also demonstrate that model
quality can usually be improved by generating a fresh MSA for

the subsequence of interest rather than merely extracting a
region of the original BFD MSA for a longer sequence family.
A number of targets were identified as potentially having a
novel fold, based on comparison to the PDB with TM-align.
Three of these models are shown in Fig. 2A.
Template detection and function prediction using modeled struc-
tures. An additional experiment was run to assess whether the
DMPfold2 models can be used for detection of distantly related
proteins that may otherwise be missed by state of the art
HMM-HMM comparison tools such as HHsearch. We used the
BFD sub-MSAs for the 33,548 modeled sequences as queries
to search the PDB70 database using HHsearch. Thirty-one per-
cent have at least one hit in the PDB70 database at an E-value
threshold of 1.0. At an E-value threshold of 0.001, only 12% of
the queries retrieve significant hits despite 83% having a model
that matches a structure in the PDB. This illustrates the value
of tertiary structure models in retrieving structural templates:
assuming that the DMPfold2 models are correct at the fold
level, the TM-align search against the PDB reveals that these
models are structurally similar to existing PDB entries, whereas
an HMM-HMM comparison would miss these templates. Of
course, this principle has been well understood for some time
and is the basis of protein threading (28, 29), but the ease and

A

B

C

Fig. 2. Examples of BFD models generated by DMPfold2. (A) Potential novel folds identified from 225 remodeled BFD targets. Structures shown are
high-confidence models with a SSAP score (57, 58) of less than 70 to the most similar structure in the PDB representative set. Models are generated from
recomputed BFD alignments using the 10-iteration end-to-end procedure. Helices and sheets are colored in blue and orange respectively. (B) Examples of
BFD proteins matched to CATH topology classes with a single homologous superfamily. In these cases it is likely that the target protein shares function
with other members of the superfamily. Models and native structures are shown in orange and blue respectively. For target b-ii), the value in parentheses
represents the SSAP score if aligned to only half of the template. (C) Confidence distributions for residues with low (blue) or high (red) disorder. Residue
disorder was predicted for a sample of 33,000 BFD models using IUPred. Residues with low or high disorder were classified using a IUPred-predicted disor-
der score of 0.3 or lower, or 0.7 or higher, respectively. Dashed lines indicate the mean of the distribution at 0.504 for low disorder residues, and 0.327
for high disorder residues.
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Fig. 3. Distribution of BFD models assigned to CATH superfamilies. Data represent the number of models assigned to each class and superfamily from
CATH. The values under each superfamily name represents the number of models assigned to that superfamily and as a percentage of total models
assigned to that class. Superfamilies with fewer than 10 models assigned for class 1 to 3 were omitted for clarity (211/945, 54/451, and 154/962 shown,
respectively).
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speed with which a rough candidate model can be generated
for a query sequence has the potential to accelerate and
improve the sensitivity of structural template searches.

In some cases it is possible to speculate about the function
of modeled sequences by matching the model to structures of
known function (30). Three examples are shown in Fig. 2B of
models that match CATH superfamilies that are the only
superfamily in the respective CATH topology type. In these
cases it is likely that the sequences share a function with other
members of the matched superfamily. This approach to assign-
ing function will become more applicable as protein structure
prediction methods improve and more experimental structure
data becomes available.

Discussion
Recent successes in applying deep learning to protein structure
prediction have mostly relied on the use of large, precomputed
feature sets as inputs to the deep learning model. Here, we
show that it is possible to directly process a MSA into a learned
representation that is effective for predicting structural features
in proteins. Structural models built using DMPfold2 are more
accurate on average than those from DMPfold1. It is expected
that allowing the network to access all the information in a raw
MSA, rather than just pairwise frequency information, for
example, enables it to extract richer information that can be
used for more accurate prediction of structural features.
Although the best performance is obtained when using the
learned MSA representation alongside an on-the-fly computed
precision matrix, the work in this study opens up the possibility
of using just the MSA representation itself as the sole input to
the ResNet for predicting protein structure, though that will
probably require using methods with better ability to deal with
very long-range dependencies (see paragraph 5 of this section),
as some groups have recently done (16, 26, 31). It also enables
lines of work that were prohibitive with large feature sets (such
as those used in DMPfold1) due to the time and storage
requirements of using those features.

The idea of end-to-end de novo prediction (17, 18) has cer-
tainly been tantalizing, in that a 3D model can be produced in
a fraction of a second compared to the hours or days needed
previously. So far, however, most published end-to-end meth-
ods have not been able to produce models comparable to the
state of the art in de novo prediction, mainly because they have
not effectively exploited covariation data as inputs. DMPfold2
is able to produce main chain coordinates of comparable or
greater accuracy as compared to DMPfold1, while taking very
little time to produce each model. This allows quick validation
of de novo predictions before full modeling is carried out or
could be combined with a refinement method to almost
completely replace the whole 3D modeling pipeline. We show-
cased this approach by applying DMPfold2 to sequence families
from the BFD, and even using a relatively coarse-grained
approach, we were able to predict structures with plausible
topologies for tens of thousands of uncharacterized protein
domains, including some with potentially novel folds. We also
showed that the modeling process can be used to identify fold-
level similarity to existing PDB entries, where such similarity
would otherwise have been missed by a purely sequence-based
comparison.

During the preparation of our manuscript, two papers describ-
ing successful protein structure prediction using MSA embed-
dings were published. The RoseTTAFold method employs direct
embeddings of MSAs to produce distance restraints, as well as to
produce coordinates directly (31). This method employs a three-
track attention-based neural network model inspired by Deep-
Mind’s AlphaFold2 system, which produced excellent results in
CASP14. AlphaFold2 (26) employs a number of novel neural

network modules that are specialized for producing representa-
tions of MSAs and protein structures, beginning from a direct
embedding of the input MSA and target sequence. In comparison
to these methods, DMPfold2 produces models in much less
time (SI Appendix, Fig. S7), making it suitable for use at a very
large scale. Although DMPfold2’s models are not as accurate,
they are still of sufficient accuracy to allow for easy identifica-
tion of potentially interesting targets from very large datasets
that can then be modeled using slower and more accurate
modeling tools.

There are many interesting potential applications for nearly
instant tertiary structure modeling methods based on direct
embedding of MSAs. One example would be to visualize changes
to the final 3D model as the input sequences in the MSA are
changed, essentially in real time. Assuming that the confidence
scores predicted by the neural network are an accurate indication
of accuracy of the predicted structure, one could envision opti-
mizing the MSA in a way that maximizes the neural network’s
confidence in the structure, for example by removing sequences
that disrupt covariation or other signals that the neural network
uses to make its prediction. Changes in predicted model confi-
dence could also be used in iterated HMM-HMM searches or
clustering procedures to identify profile drift, which would in
theory manifest as a drop in predicted model confidence upon
incorporating additional sequence hits in the MSA. Predicted
structures could also be used as enhancements to existing HMM
libraries, similar to the manner in which secondary structure pre-
dictions have been used in the past (32). They could also be used
to predict domain boundaries in large sequence libraries.

We are continuing to develop neural network architectures
for end-to-end structure prediction. In DMPfold2, the use of
two gated recurrent networks to embed the input MSA is clearly
effective but was something of a design compromise in that
RNNs are relatively fast to train, but have known limitations in
terms of the limits of modeling long-range dependencies in
sequences. In theory, gated RNNs are able to avoid the prob-
lems of vanishing gradients when modeling long sequences, but
in practice, dependencies beyond a window of a few hundred
sequence positions are poorly modeled. For this reason we used
two GRU networks, one to embed in the vertical (sequence
number) and one in the horizontal (residue number) direction
so that the number of time steps that each GRU would need to
model would be limited by either the lengths of typical protein
domains or the depths of typical MSAs. For MSAs with longer
sequences or with many more homologous sequences, even
gated RNNs will start to become ineffective. We are currently
investigating alternative means of embedding MSAs, such as the
use of models based on new efficient Transformer architectures
(33), which are far more memory-efficient than the original
Transformer (34) due to avoiding the calculation of large self-
attention matrices over the length of the sequences. Standard
Transformer models have already been used to embed unaligned
protein sequences (35–37), but the most efficient Transformer
models released in the last year are now capable of handling
sequence lengths even in the millions, and so this suggests that a
single deep Transformer model with a compressed self-attention
mechanism could, in principle, embed a whole MSA in one go
by essentially treating it as a single sequence. Current experi-
ments along these lines are promising.

Overall, we have demonstrated that the idea of embedding
whole MSAs into a linear representation using standard lan-
guage modeling approaches can enable the efficient generation
of 3D structures directly from sequence data. This approach
enables structural models to be built on a far larger scale than
was previously possible. In methodological terms, being able to
directly link individual amino acids in an MSA to the outputs of
the network, many structural bioinformatics applications could
be made easier, e.g., modeling variant effects or protein design.
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At the very least, these direct MSA embedding methods make
de novo protein structure prediction methods far more efficient
and easier to use.

Materials and Methods
Datasets for Training and Evaluation. Training was conducted on a mixture of
both chains and domains, comprising 31,159 domains from the V4.2 CATH
(38) s35 representative set of domains and 6,742 full length chains from the
original DMPfold1 training set. A set of 300 chains were held out from train-
ing to use as a validation set to monitor convergence. MSAs for each training

example in the CATH s35 set were created using 3 iterations of HHblits v3.0b3
(39) using the UniClust30 (October 2017) database, with an E-value threshold
of 0.001 andminimum coverage of 50%.

We tested the effectiveness of our method on a set of 39 domains from
the CASP13 experiment, categorized as either FM or FM/TBM by the CASP13
assessors. MSAs were built using HHblits (39) by first searching the UniRef30
database (2020_06 release), then using the MSA thus obtained as a query for
a further HHblits search against the BFD.

Neural Network Model. A schematic representation of the DMPfold2 architec-
ture is shown in Fig. 4A, and the MSA embedding procedure is shown in Fig.

A

B

Fig. 4. Schematic representation of the DMPfold2 neural net. (A) The input multiple sequence alignment (MSA) is processed into a learned embedding, as
shown in detail in B. This embedding is combined with a precision matrix calculated from the MSA and fed to a convolutional Maxout layer to reduce its dimen-
sionality, before being fed to a series of 16 residual neural net (ResNet) blocks. Each block is composed of a convolutional Maxout layer and a Squeeze-excitation
layer. The outputs from the network are collected as the outputs of a 2D convolutional layer with 1 × 1 filter, and are a combination of different structural fea-
tures, represented in the right-hand column. All outputs from the network are predicted jointly. (B) Details of the MSA embedding section. The MSA is repre-
sented by a one-hot encoding of 22 residue types (including gaps and unknown residues). First, the residues in a single column of the MSA are treated as time-
steps and fed as input to a stack of two Gated Recurrent Unit (GRU) network layers. The final hidden state of the second GRU, obtained after processing the
whole column of the MSA, is used as an embedding of the information in that column. The process is then repeated for the remaining columns in the MSA, pro-
ducing a separate embedding for each MSA column. Finally, these per-column embeddings are used as inputs to a stack of 2 bidirectional GRU layers that produ-
ces an embedding of all sequences and columns in the MSA. The dimensions of the input tensor and embeddings are shown in parentheses.
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4B. We used a system of gated recurrent unit (GRU) layers to process and
embed the input MSA and output a feature map with 256 × L values, where L
is the length of the target sequence. Starting from a 22-dimensional one-hot
encoding of each residue in each sequence in the MSA, a stack of 2 GRU layers
scans individual columns in the MSA in the vertical direction. The hidden state
of these layers is a vector of fixed size (512 in our case), and the hidden state
at the end of the vertical scan is used as a fixed-length representation of the
information in each column of the MSA. The per-column representations are
then passed to another stack of 2 bidirectional GRU layers with 256 hidden
units, producing final embeddings for each column of 2 × 256 values. These
embeddings are striped vertically and horizontally [similar to the manner in
which per-residue features are prepared for use by 2D convolutional layers (4,
5)], and combined with a fast approximation of a precision matrix, calculated
using the “fast_dca” algorithm from trRosetta (10). These features are then
used as input to a convolutional Maxout layer to reduce the number of chan-
nels to 128, followed by a series of 16 residual blocks, each composed of one
Maxout layer (40) and one squeeze-excitation layer (41) each.

As we first showed with DMPfold1 (9), iteration of the prediction process,
where the final model is fed back in as an input to the network, can result in
significant improvements in model quality. We note that a similar strategy
also proved effective in AlphaFold2. DMPfold2 also allows iterations, where
the output coordinate set can be used as a seed for second and subsequent
passes through the network. To allow this, the ResNet incorporates an extra
input feature channel carrying pairwise Cα distances from an existing 3D struc-
ture, which can all be set to a constant of�1 to indicate no distances are to be
considered, i.e., during the first pass. Such a setup also allows for this distance
information to be provided from other sources such as templates, though we
did not train the network in this way and no explicit template information
was used for any of the predictions made in this work.

The final stages of the network implement end-to-end prediction of coor-
dinates from the output embeddings of the ResNet as shown in Fig. 4A. A
two-channel 1 × 1 convolutional layer is used to project the ResNet embed-
dings into two channels, one for the output Cα-Cα distance map, the other to
represent confidence estimates for each pair distance. The distance outputs
from this layer are converted to a real-value distance matrix D by first averag-
ing the upper and lower triangles of the matrix and taking absolute values to
ensure that the distance matrix is positive-definite and symmetric. This matrix
is projected to 3D Cα coordinates using classical multidimensional scaling
(MDS) (42). In MDS, the following (Gram) matrix is defined for the predicted
distancematrixD:

Mij ¼ D2
1j þD2

i1 �D2
ij

2
The eigendecomposition M¼ USUT is then calculated, where X ¼ U

ffiffiffi
S

p
gives

the coordinates of the points. Note that if a distance map can be fully embed-
ded in 3D space there will only be 3 nonzero eigenvalues ofM , but this is not
necessarily the case for the real-valued distance matrix predicted by the net-
work. Coordinates corresponding to the largest 8 eigenvalues were therefore
calculated and the rest discarded. Potential problems with MDS are that there
are no learnable elements, and the procedure can arbitrarily produce mirror
images of the coordinate set, and so there is no way for the network to learn
to modify the coordinates, for example to correct chirality issues. Therefore, a
“learnable MDS” module was implemented simply by feeding the
8-dimensional output from the MDS step, concatenated with the original
biGRU embedding of the MSA, through a final 2-layer bidirectional GRU
recurrent network (256 weights per hidden layer), with 520 input channels
and a final fully connected layer with 512 inputs and 3 outputs (representing
the final Cα coordinates). During training with a rigid body coordinate loss, as
opposed to a distance-based loss, this final network is able to learn to auto-
matically transform the output coordinates for any structures mirrored by the
multidimensional scaling process, without manual intervention.

After the network predicts Cα coordinates, a simple coordinate refinement
module attempts to correct “obvious” issues with the model. Cα atoms adja-
cent in sequence are moved to a target distance of 3.78 Å and all Cα-Cα distan-
ces are moved to a minimum of 3.0 Å according to a harmonic potential for
100 steps. Backbone N, C, and O atoms and Cβ atoms are then added using a
geometric procedure based on the “catomain” routine from the DRAGON
method (43). Suppose that v21 is the vector from a Cα to the previous Cα in
the sequence, v+1 is the vector from a Cα to the next Cα in the sequence, m21

is the midpoint between a Cα and the previous Cα in the sequence, and xα is
the normalized vector cross product of v21 and v+1. The coordinates CN of N,
CC of the previous residue C and CO of the previous residue O are then given
by the following:

CN ¼ m�1 � v�1=8 þ xα=4

CC ¼ m�1 þ v�1=8 � xα=2

CO ¼ m�1 � 1:8 � xα

If vN is the vector from N to Cα in a residue, vC is the vector from C to Cα in a
residue, vβ is the normalized sum of vN and vC, xβ is the normalized vector
cross product of vN and vC, and Cα is the coordinates of Cα, then the coordi-
nates Cβ of Cβ are given by the following:

θ ¼ π=2 � sin�1 1=
ffiffiffi
3

p� �

Cβ ¼ Cα þ 1:5 � cos θð Þ�vβ þ 1:5 � sin θð Þ�xβ

Special considerations are required for the terminal residues, with details
available in the source code. No further atom-level optimization or refine-
ment of the structure was attempted in any of the results shown, though it
would be easy to add side chains to these models and refine the models fur-
ther, at the expense of losing the end-to-end characteristics of the method.

In its iterative mode, the DMPfold2 network allows a recurrent processing
of the final model. In this mode, predicted Cα coordinates are used to calcu-
late a distance matrix and this matrix is fed back to the ResNet layer as an
additional input channel (Fig. 4). Together with the dynamic computational
graph construction used by PyTorch, this enables us to train the network with
the iterations included. During training, the number of allowed iterations was
varied between 0 and 5 due to the accumulated gradients and GPU memory
limitations (see next section), but during inference any number of iterations
can be requested as no gradient information is needed. The final model
returned after iteration is the model which has the highest overall confidence
as judged by one output channel of the ResNet.

Training Procedures. The DMPfold2 neural network was implemented using
PyTorch (44) and trained using the Adam optimizer (45). An initial learning
rate of 0.0003 was used, a dropout probability of 0.1 was used for the recur-
rent network layers, and dropout 0.2 used in the convolutional layers. For
data augmentation, at each epoch each alignment in the training set is sub-
sampled as follows:

a) Random rows from the alignment are selected, up to a maximum of 1,000,
though always including the target sequence in the first row.

b) Alignments with >350 columns (residues) are randomly cropped to that
maximum length to fit within available GPU memory, and the target coor-
dinates are similarly cropped tomatch.

As a loss function, we opted for TM-score (46) rather than RMSD. This
choice of loss function reduced the effects of bad model outliers and kept
both the model loss and confidence scores to be normalized to the range
[0,1]. Confidence values are output per residue, which allows confidently
modeled segments of the model to be distinguished from less confidently
modeled segments.

To reduce the memory footprint of the model and to include the iterative
portion of the prediction pipeline during training, we made use of automatic
mixed-precision training and gradient checkpointing. The number of itera-
tions included was initially varied between a minimum of 0 (single forward
pass with no iteration) and amaximum of 3 iterations. This limit was increased
to 5 during further fine-tuning training runs.

Effects of Ablations and MSA Quality on Predictive Accuracy. In order to bet-
ter understand the contribution of the MSA embedding and covariance-based
features on predictive accuracy, we carried out ablation experiments by
removing each of these features as described as follows. In addition, we evalu-
ated the performance of the baseline DMPfold2 model, using all features, on
MSAs of varying effective sequence count (Neff) and gap fraction.We used the
same CASP13 domain MSAs obtained in Datasets for Training and Evaluation
for these experiments, as these had an informative range of Neff and gap frac-
tion values.

Ablation of MSA embedding. This variant of the DMPfold2 network has
access to the covariance features of the MSA when these can be calculated,
but is only allowed to embed the target sequence using the MSA embedding
network (Fig. 4B andNeural NetworkModel).

Ablation of covariance features. In this variant, the network has access to the
completeMSA embedding, but the covariance features are all set to zero.

Effect of MSA quality. We assessed the TM-scores and confidence values
obtained by DMPfold2 on MSAs with a range of Neff and gap fractions. Effec-
tive sequence counts were calculated as the number of sequence clusters
returned by CD-HIT (47) using a sequence identity threshold of 62% (48). Gap
fraction was calculated as the number of gaps in the alignment divided by the
number of positions (number of residues multiplied by number of sequences).

8 of 10 j PNAS Kandathil et al.
https://doi.org/10.1073/pnas.2113348119 Ultrafast end-to-end protein structure prediction enables high-throughput

exploration of uncharacterized proteins



Modeling Pfam Families. In the original DMPfold1 publication (9), we gener-
ated models for a set of 5,214 Pfam families for which no structural annota-
tion was available. Models were generated for 5,193 of these families, using
DMPfold2 and the same alignments as those used for DMPfold1. Some target
sequences contained nonstandard amino acids andwere excluded.

Experimental structures have since been made available for 255 of these
families. To assess the accuracy of our models, we calculated the TM-score
between the 255 Pfam families annotated in this study and their respective
PDB representatives. We additionally compared the accuracy of our models
with those produced by DMPfold1 (9), C-I-TASSER (22), and AlphaFold2 (26). In
this comparison, 221 Pfam models generated by each of the four methods
were compared to the same reference PDB chain via TM-align (normalized by
the length of themodeled protein). 34 targets were excluded from this analysis
due to either not having been modeled in the original DMPfold1 publication
(24 targets), or because they overlapped with the AlphaFold2 training set (12
targets). Targets were additionally subdivided according to their predicted dif-
ficulties reported in the C-I-TASSER (22). It is also important to note that the
representative PDBs of the 255 families did not overlap with the DMPfold2
training set. These results were also used to evaluate the confidence scores pre-
dicted by DMPfold2, and to choose a threshold value of the confidence mea-
sure that maximizes the F1 score for binary classification. This threshold value
was found to be 0.4 (Fig. 1E and SI Appendix, Table S2), and was used to iden-
tify promisingmodels in the BFDmodeling experiments.

Modeling Protein Domains from the BFD.
Extraction of subalignments from the BFD. The consensus sequences from
each MSA in the BFD were extracted and scanned against the Pfam (49) and
CATH-Gene3D (38, 50) HMM libraries using hmmscan (51) in order to filter out
regions corresponding to well-characterized protein families. Unmatched
subsequences at least 30 residues long were then used to extract the corre-
sponding (sub)MSAs from the BFD alignments, discarding rows in the resulting
subalignment comprising only gap characters. The resulting set of 1,333,242
MSAs were used as the inputs for themodeling runs.
Generation and evaluation of end-to-end-predicted models. We ran
DMPfold2 using one iteration in order to obtain a first set of models. Because
the BFD subalignments vary greatly in terms of quality and coverage, we
opted to use a quick modeling sweep of the MSAs in order to identify promis-
ing candidates thatmight benefit from several iterations of the modeling pro-
cedure. In total, we generated 1,333,242 models from the BFD alignments by
running one iteration of DMPfold2. From each model, we recorded model
descriptors including: the number of target residues (nres), alignment depth,
predicted confidence, radius of gyration (Rg) and 8-class secondary structure
assignments via DSSP (52). Given that reasonable runtimes could be obtained
even without the use of GPUs, all structure models were generated on a CPU
cluster using∼200 to 400 CPU cores over the course of approximately 3 weeks.

Of the 1,333,242models, 48,625models (3.65%) corresponded to single- or
double-helix structures. We identified these models using the criteria that

suchmodels must consist of only one or two helices (composed of at least 50%
of residues) and have a Rg/nres ratio of greater than 0.28 or 0.18, respectively.
These criteria were manually calibrated from a sample of generated models.
The Rg/nres ratio describes the average contribution of each residue toward
the model Rg, and can be helpful for identifying single/double helices with
partially malformed secondary structure.

Next, from the remaining 1,284,617 models, 33,548 (2.61%) were found to
have a network-predicted confidence score of 0.4 or greater. These targets
were scanned for disorder using IUPred (53, 54). To assess the similarity of
these models to known folds, we compared each model to a representative
set of PDB chains formed by clustering all protein chains in the PDB with 30+
residues at 30% sequence identity. The closest match by TM-score calculated
using TM-align (55) normalized over the length of the modeled protein was
recorded, meaning that models could register a match to part of a larger
domain. To assign CATH superfamilies, any CATH domains present in the clos-
est matched PDB chains were extracted using BioStructures.jl (56), and the
TM-score was calculated with TM-align between the modeled protein and the
CATH domain. The model was assigned to the superfamily if the largest
TM-score was greater than 0.5. A visual summary of the entire model filtering
workflow can be found in SI Appendix, Fig. S1.

Iterative refinement of medium-to-high-confidence models. A total of 225
models with a variety of predicted confidence scores were taken from the ini-
tial set of 1.3M models. We rebuilt MSAs for this set using HHblits searching
against the BFD and modeled them using either 1 or 10 iterations of
DMPfold2 modeling. For a baseline, we also used the same MSAs used in the
first modeling sweep with either 1 or 10 iterations of DMPfold2 to evaluate
the effect of rebuilding MSAs and including more iterations during modeling.
We assessed the refined models in terms of their predicted confidence scores,
secondary structure content, and similarity to PDB entries. Secondary structure
content was assessed as the fraction of residues having a DSSP-assigned code
corresponding to secondary structures. Models were compared to a represen-
tative set of PDB chains as described previously and potential novel folds were
identified as thosewith a largest TM-score of less than 0.5.

Data Availability. The DMPfold2 source code and trained neural network
weights are available at https://www.github.com/psipred/DMPfold2 under the
terms of the GPLv3 free software license. Protein structures predicted from
the BFD and Pfam are available via the UCL Research Data Repository (https://
doi.org/10.5522/04/14979990) (59). Training scripts and data are also available
via these repositories.
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