
Send Orders for Reprints to reprints@benthamscience.net 

2 Current Genomics, 2019, 20, 2-15  

REVIEW ARTICLE 

 1389-2029/19 $58.00+.00 ©2019 Bentham Science Publishers 

Estimating the k-mer Coverage Frequencies in Genomic Datasets: A Com-
parative Assessment of the State-of-the-art 

Swati C. Manekar* and Shailesh R. Sathe 

Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, India 

	
   Abstract: Background: In bioinformatics, estimation of k-mer abundance histograms or just enumer-
ating the number of unique k-mers and the number of singletons are desirable in many genome se-
quence analysis applications. The applications include predicting genome sizes, data pre-processing 
for de Bruijn graph assembly methods (tune runtime parameters for analysis tools), repeat detection, 
sequencing coverage estimation, measuring sequencing error rates, etc. Different methods for cardi-
nality estimation in sequencing data have been developed in recent years.  
Objective: In this article, we present a comparative assessment of the different k-mer frequency esti-
mation programs (ntCard, KmerGenie, KmerStream and Khmer (abundance-dist-single.py and 
unique-kmers.py) to assess their relative merits and demerits.  
Methods: Principally, the miscounts/error-rates of these tools are analyzed by rigorous experimental 
analysis for a varied range of k. We also present experimental results on runtime, scalability for larger 
datasets, memory, CPU utilization as well as parallelism of k-mer frequency estimation methods.  
Results: The results indicate that ntCard is more accurate in estimating F0, f1 and full k-mer abundance 
histograms compared with other methods. ntCard is the fastest but it has more memory requirements 
compared to KmerGenie.  
Conclusion: The results of this evaluation may serve as a roadmap to potential users and practitioners 
of streaming algorithms for estimating k-mer coverage frequencies, to assist them in identifying an 
appropriate method. Such results analysis also help researchers to discover remaining open research 
questions, effective combinations of existing techniques and possible avenues for future research. 

A R T I C L E  H I S T O R Y 

 
 
Received: July 23, 2018 
Revised: October 05, 2018 
Accepted: October 24, 2018 
 
 
DOI: 
10.2174/1389202919666181026101326 

Keywords: K-mer abundance histogram, High-throughput sequencing, Hashing, Streaming algorithms, Singleton k-mers, Dis-
tinct k-mers. 

1. INTRODUCTION 

 In k-mer counting, the occurrences of fixed length sub-
strings of length k (k-mers) in DNA/RNA sequence or set of 
sequences are counted [1]. k-mer counting is an essential 
preliminary step in many bioinformatics applications. These 
applications include genome assembly [2-7], error correction 
to improve genome assembly [8-12], repeat detection and 
annotation [13-18] and many others. Hence, in recent years, 
a large number of k-mer counting programs have been 
designed, such as Jellyfish [1], KMC3 [19], Gerbil [20], 
DSK [21], etc. Most of the early k-mer counting tools were 
based on the in-memory approach. The new tools make use 
of disk [19-21] or succinct and compact data structures [22] 
in their implementations. Due to such approach and data-
structures, exact k-mer counting tools work efficiently for 
high-throughput sequencing data with billions of reads, on  
 

*Address correspondence to this author at the Department of Computer 
Science and Engineering, Visvesvaraya National Institute of Technology, 
Nagpur - 440010, India; Tel/Fax: (+91-712-) 2222828, 2801294, 2231636, 
2226750; E-mail: swati.manekar@gmail.com 

commodity hardware. The time and memory required have 
been reduced considerably using these improved methods. 
Such exact k-mer counting methods generate output as dis-
tinct k-mers along with frequencies. From such output, a  
k-mer abundance histogram can be easily constructed. 
Generating such histograms require storing the large number 
of k-mers in memory. For the exact k-mer counting, it is 
mandatory to store all the possible k-mer of all input reads in 
memory or disk, where all the k-mer are processed base by 
base. The great demand for rapid and reasonable DNA 
sequencing resulted in the improved sequencing technologies 
that produce enormous amounts of data at ever decreasing 
costs. For sequencing applications, where the sequence data 
are used to infer abundances or other molecular activity, the 
streaming approaches offer significant opportunities to make 
on-the-fly comparisons allowing data to be discarded rapidly 
[23]. Digital normalization (a lossy compression algorithm) 
is implemented as a streaming algorithm for the elimination 
of redundant reads in sequence datasets containing millions 
to billions of short reads based on saturating coverage of a de 
Bruijn graph [24]. With the increase in dataset sizes, stream-



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    3 

ing approaches are potentially more promising to the 
analysis of sequencing data. For tremendous amounts of 
Next-Generation Sequencing (NGS) data, exact k-mer count-
ing approach can be both time and memory consuming. 
Though the efficient disk and in-memory approaches are 
available for k-mer counting, counting all k-mers in this data 
may require tens or even hundreds of gigabytes of memory 
and even some days. Whereas, the approximation of the k-
mer counts histogram by streaming analysis of the data is 
both memory and time efficient [25-30]. Over the last few 
years, many streaming algorithms using probabilistic data 
structures [25-30] have been developed to scale k-mer 
frequencies analysis methods to the rapidly growing amount 
of NGS data.  

 A framework for streaming algorithms was first proposed 
by Alon et al. [31]. The basic fundamental behind giving the 
approximate count is to sample the data in intervals and 
make estimation rather than processing the entire data (pro-
cess each k-mer). Streaming algorithms are useful for solv-
ing data analysis problems normally in a single pass, where 
the data are so huge to easily be stored (or processed) in 
available memory [24]. The k-mer abundance histogram is a 
table of the fi values, where fi is the number of distinct k-mers 
that appear i times in a given sequencing dataset [29]. With 
the frequencies fi of the histogram given, the k-th frequency 
moment, Fk, is defined as follows [29]:   

∑
∞

=

=
1

.
i

i
k

k fiF
 

 The zeroth-frequency moment of the reads refers to the 
number of distinct k-mers that occur in the set of reads and is 
denoted F0 [32]. Flajolet and Martin [33] designed the first 
algorithm for approximating F0 in the data stream model. The 
problem of estimating F0 is also addressed (improvement in 
time/space tradeoffs) by Bar-Yossef et al. [32]. The first-
frequency moment F1 is simply the total number of k-mers in 
the reads and can be simply counted by incrementing a coun-
ter one time for each k-mer [29]. The estimation of second-
frequency moment F2 was first solved by Alon, Matias and 
Szegedy [31]. F2 is the repeat rate and is of particular interest 
because the repeat rate provides useful statistics on the reads. 
Cormode and Muthukrishnan [34] examined F∞ which gives 
the highly frequent k-mers in the input reads [28]. The stream-
ing algorithms for each of the frequency moments can perform 
their estimations within a factor of (1 ± !) with high probabil-
ity utilizing only O(!‒2log(N)) memory, where N indicates the 
number of distinct k-mers [29]. 

 Approximation of the k-mer counts histogram can be an 
order of magnitude faster and uses only a fraction of the 
memory compared with exact disk-based or in-memory k-
mer counting algorithms. Hence, in a recent years, the 
programs estimating the k-mer frequencies of sequencing 
data (i.e., the number of distinct k-mers (F0), the number of 
k-mers that appear exactly once in the set of reads (f1) 
and/or the k-mer coverage frequency histograms), such as, 
ntCard [28], KmerStream [29], KmerGenie [30] and Khmer 
(unique-kmers.py and abundance-dist-single.py) [26] have 
been designed.  

 The estimated k-mer frequencies are useful in many ap-
plications in nucleotide sequence analysis, such as, predict-
ing genome sizes [1], measuring sequencing error rates sam-
pled in the sequencing experiment [29], in genome assembly 
tools based on the de Bruijn graph framework where the best 
possible value of k is estimated using the generated abun-
dance histograms [30]. k-mer abundance analysis is also 
used in sequencing coverage estimation [27], repeat detec-
tion [27] and in estimating heterozygosity of genomes [35]. 
Estimation of k-mer cardinality is also valuable in choosing 
the initial memory allocation for Bloom filters and Count-
Min Sketches [27] like data structures. It has application in 
the estimation of memory requirements for de Bruijn graph 
assemblers [6]. For example, a fast sequence categorization 
tool (BioBloom tools) which utilizes Bloom filters, makes 
use of estimated k-mer frequencies to set the Bloom filter 
size [36].  
 With the different streaming programs available for k-
mer abundance analysis, it becomes difficult for users to 
know which ones to use and when. There is no study that 
solely compares the performances of such tools. Zhang et al. 
[27] and Perez et al. [37] have compared both the exact and 
approximate k-mer counting tools in their study. To have 
reasonable comparisons, we present our study which consid-
ers only those tools estimating the k-mer frequency statistics 
using a streaming algorithm. We perform the analysis of the 
most relevant work in this area to date using several datasets 
of varying size and provide guidelines for their practical use, 
as well as point out areas of improvement for further 
research. The accuracy of estimated output from each tool is 
checked by comparing with the exact results of DSK (an 
exact k-mer counter). Besides, we also evaluate tools on var-
ious other parameters, such as their main approach, parallel-
ism, Runtime, Memory (RAM), Central Processing Unit 
(CPU) utilization, scalability to large values of k and large-
sized datasets. 
 This paper is organized as follows: Section 2 reviews 
different approaches for estimating k-mer coverage frequen-
cies and F0. Section 3 presents the evaluation methodology 
and datasets used. Section 4 is devoted to the benchmarking 
experiment and analysis of results. Conclusions and future 
research directions are given in the last section. 

2. APPROXIMATE K-mer COUNTING APPROACHES 

2.1. KmerStream 

 KmerStream [29], a hashing based approach implements 
a streaming algorithm to estimate F0, F1 and f1 in the set of 
sequencing reads. F1 is simply the number of k-mers in the 
reads and is counted easily by maintaining a single counter 
that is incremented once for each k-mer. To estimate f1 and 
F0, KmerStream uses an approach based on the K-Minimum 
Value algorithm [32], where it samples the data streams at 
different rates and then selects the optimal sampling rate to 
obtain the best results. The approach can be explained briefly 
as follows:  
 A list of arrays (tables) is used where every element in 
the array acts as a k-mer counter (two bits counters to store 
values from 0 to 3). Firstly, reads are broken into k-mers and 
sampled. The hash value for each k-mers is generated. De-



4    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

pending upon the number of trailing zeros in the binary 
equivalent of the hash value, the table level (i.e., table num-
ber) is decided for that k-mer whereas hashing decides its 
position in array (an index into the array) and the counter 
value is incremented. Depending on the following factors, 
the output is then estimated: total levels (i.e., the number of 
arrays in the array list), the size of the array and the probabil-
ity of the counter being zero and one. An accurate estimate 
of f1 is obtained by extending the results of F0. 

2.2. ntCard 

 ntCard [28] uses the hashing approach to estimate the k-
mer frequencies. The workflow of ntCard algorithm for es-
timating the k-mer coverage frequencies and F0 in DNA se-
quence streams can be explained as follows:  
 The algorithm starts by hashing the k-mers in the 
read streams. 64-bit hash value is generated for each k-mer in 
input read streams using ntHash algorithm [38]. The first s 
bits of this 64-bit hash value are used as sampling rate pa-
rameter to obtain the sampled dataset with a cardinality of 
1/2s. Only those k-mers are selected in the sampling step for 
which starting s bits of their hash values are zero. Last r bits 
of this 64-bit hash value are used to construct the array for 
frequencies of count i. This array of size 2r holds the counts 
of all the sampled k-mers. Last r bits of the 64-bit hash value 
of sampled k-mers acts as the index into this array, where r is 
a resolution parameter. The value of r is selected in such a 
way that a trade-off between accuracy and computational 
resources be maintained. The values in the array represent 
approximate counts of sampled k-mers. Relative frequencies 
fi (relative frequency count for all counter values) are then 
estimated statistically using the extension (array folding). 
Now, from this relative frequencies fi (for i ≥ 1) of sampled 
k-mers, estimated multiplicity frequencies of the entire popu-
lation is computed. The histogram and the number of distinct 
k-mers (F0) can be inferred through the statistical model. 
ntCard works efficiently to give accurate count with least 
error rates. 

2.3. Khmer 

 Khmer [26, 27] uses a count-min sketch [34] which is a 
probabilistic data structure and also uses the Bloom filter 
[39] to identify the k-mers that repeat more than once. 
Khmer [27] generates an approximate multiset representation 
of k-mer counts. The brief outline of an algorithm can be 
given as follows:  
 The algorithm starts by creating the number of hash ta-
bles depending on the maximum false positives required. 
Then using bloom filters, the repeating k-mers are ensured. 
In the last, the k-mers are inserted and their counts are 
incremented. Khmer [25] is a toolkit for k-mer-based dataset 
analysis. Khmer [26] is the latest implementation, build on 
the top of the existing infrastructure of the Khmer library 
[40]. Khmer [26] implements the HyperLogLog algorithm 
for k-mers. The HyperLogLog sketch (HLL) [41] estimates 
the cardinality of a set, i.e. a number of distinct elements of a 
set. HyperLogLog algorithm (a probabilistic cardinality es-
timator) approximates the number of distinct elements in a 
multiset and the algorithm works as follows: A multiset of 
uniformly distributed random numbers is obtained by apply-

ing a hash function to each element in the original multiset. 
By calculating the maximum number of leading zeros in the 
binary equivalent of each number in the set, the cardinality 
of this randomly distributed set is then be estimated. For 
example, if the maximum number of leading zeros observed 
is x, the number of distinct elements in the set is estimated as 
2x. In Khmer [26], the k-mers are hashed using Mur-
murHash3 that gives uniform hash value distribution. A Hy-
perloglog sketch consists of an array of size 2p, where p is 
the number representing the first p bits of the hash value of 
k-mer. By varying the size of the array (p), a more accurate 
estimation can be made. The number of the distinct elements 
is estimated by considering the number of leading zeros of 
the binary equivalents of these hash numbers in the multiset. 
The variance factor is attained by dividing multiset into 
many subsets. Finally, for each subset, the value of a maxi-
mum number of leading zeros is calculated and then their 
normalized harmonic mean is taken to approximate the car-
dinality of the entire set. 

2.4. KmerGenie 

 KmerGenie [30] generates histograms for multiple values 
of k in a single run. KmerGenie gives full k-mer abundance 
histograms and is the hashing based approach. The 
proportion of distinct k-mers is sampled based on some 
parameter ε. A state-less 64 bits hash function [42] is used 
for hashing k-mers. In the first step of the algorithm, a hash 
function is used that uniformly distributes all k-mers into a 
number of sets. Afterwards, only those k-mers are counted 
which hashes to zero. Finally, by scaling the number of k-
mers with a given abundance by ε, abundance histogram is 
computed from the k-mer counts.  
 The tools discussed above are sketched in (Table 1), to-
gether with a brief description of their estimated output and 
length of k they support. Detailed description of these meth-
ods, such as, their underlying paradigms, programming lan-
guage/license, etc. is given in Supplementary Table S1. 

3. EVALUATION METHODOLOGY AND DATA SETS 

 The benchmarking experiment aims at contrasting the 
competitive performance of the state of the art algorithms for 
estimating k-mer coverage frequencies and F0. To that end, 
KmerStream, ntCard, Khmer and KmerGenie are selected. 
These are the best-known algorithms and have performed 
best in recent studies. We choose the latest working imple-
mentations of these tools. The accuracy and performance of 
these tools are estimated on publicly available four real da-
tasets of varying size. More specifically, the human genome 
with large coverage, i.e., H. sapiens 1, H. sapiens 2 and hu-
man genome NA19238 are chosen for performance 
estimation. The detailed information regarding the datasets is 
shown in Table 2. All of these datasets have multiple com-
pressed FASTQ files. Usually, the output data from high-
throughput sequencing technologies are divided into multiple 
files. Some tools can efficiently perform parallelization in 
their first phase by reading from individual input files using 
separate threads (the tools can utilize Data Parallelism in 
input level). KmerGenie, KmerStream and ntCard have been 
directly tested on these multiple compressed FASTQ files as 
they support input in multiple compressed files. Whereas for



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    5 

Table 1. Streaming algorithms employed in the comparative experiment along with their estimated output. 

Streaming Algorithms Estimated Output Supported Maximum Length of k 

KmerGenie [30] F0 and full k-mer frequency histogram Arbitrary large length  

KmerStream [29] F0 and f1  Arbitrary large length  

Khmer 2.1.1 
(unique-kmers.py) [26] 

F0  Arbitrary large length  

Khmer 2.1.1 
(abundance-dist single.py) [26] 

Full k-mer frequency histogram ≤ 32 

ntCard [28] F0 and full k-mer frequency histogram Arbitrary large length  

F0: distinct number of k-mers in input read set; f1: the number on singletons in input read set. 
 
Table 2. Sequence datasets. 

S. No. Organism 
Genome 

Length (mega-bases) 
Average Read 
Length (bases) 

Total No. of Bases 
(giga-bases) 

Input FASTQ 
File Size (Gigabytes) 

Number of Reads 

1 F. vesca 214 353 4.5 10.9 12,803,137 

2 Homo sapiens1 2,991 151 123.7 292.1 819,148,264 

3 Homo sapiens 2 2,991 100 135.3 339.5 1,339,740,542 

4 
Human genome for 

the individual 
NA19238 

5,712.43 250 228.5 507.6 913,959,800 

 
Khmer 2.1.1 (unique-kmers.py) and Khmer 2.1.1 (abun-
dance-dist single.py) these files have been first decom-
pressed and concatenated into one file. 

 Not all the tools estimate full k-mer abundance histo-
gram. The comparison based on metrics, e.g., wall clock 
time, memory usage, etc. might not always be comparable 
given the different estimates by the different tools. For those 
techniques estimating full k-mer abundance histogram can-
not necessarily be compared with others tools estimating 
only values of F0 and f1 or tools estimating only F0, because 
they have different use cases. For example, KmerGenie uses 
the generated abundance histograms to find the best value of 
k for assembly; KmerStream estimates the genome size and 
the error rate of the sequencing experiment based on the k-
mer frequency statistics. However, to obtain better insights 
into the strengths and weaknesses of known approaches for 
estimating k-mer coverage frequencies, this study focuses 
mainly comparing them on the accuracy basis. Additionally, 
we also use a common set of well-defined metrics for eval-
uation, i.e., scalability for larger k and larger sized dataset, 
runtime, parallelism, memory and CPU utilization. We com-
pare F0, f1 and the full histograms, estimated by the different 
algorithms with the exact output of DSK. Currently, only 
three tools, namely, ntCard, KmerGenie and Khmer (abun-
dance-dist-single.py) generate the full k-mer abundance his-
togram. Note that, Khmer has two different scripts: i) 
unique-kmers.py estimates the total number of distinct k-
mers (F0) for large k lengths and ii) abundance-dist-single.py 
gives full k-mer abundance histogram and works for k ≤ 32. 

 We ran all programs on the machine with Intel (R) Xeon 
(R) CPU E5-2698 v3 @ 2.30 GHz processor with 64 GB 
RAM, 1 and 4 TB HDDs and 16 CPUs. The machine is run-
ning 64-bit Ubuntu 14.04 OS. All programs have been run 
with the parameters based on guidance provided by the de-
velopers and has been tested in parallel mode. While running 
each tool, the parameters related to the resource usages have 
been set in a way to utilize the maximum capacity on the 
underlying machine. The command lines for all considered 
programs are given in the Supplementary Material. Khmer 
(abundance-dist-single.py) for full abundance histogram has 
been run with a maximum memory of 32 GB for F. vesca, 48 
GB for H. sapiens 1 and 54 GB for H. sapiens 2 and human 
genome NA19238, according to the guidelines. All these 
programs are free for download and can be downloaded from 
the links given in (Supplementary Table S2). We have col-
lected statistics for DSK, ntCard, KmerGenie, KmerStream 
and Khmer on 1TB HDD. DSK was run on 4TB HDD owing 
to its more disk usage for human genome NA19238. 

4. RESULT ANALYSIS 

4.1. Accuracy 

 The estimated values for F0 and f1, for k = 25, 50, 75, 
100 and 125, of ntCard, KmerStream, KmerGenie and 
Khmer (unique-kmers.py) along with error rates on four 
datasets, namely, F. vesca, H. sapiens 1, H. sapiens 2  
and human genome NA19238 are summarized in Tables  
3-6, respectively. H. sapiens 2 has an average read  
length of 100 bases hence the values of F0 and f1 are



6    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

Table 3. Estimated values of F0 and f1 by ntCard, KmerGenie 1.7040 and Khmer 2.1.1 for F. vesca for k = 25, 50, 75, 100 and 125.  

k - DSK 2.2.0 ntCard Error% 
KmerStream 

1.1 
Error% 

KmerGenie 
1.7040 

Error% 
Khmer 2.1.1 

(unique-
kmers.py) 

Error% 

25 
F0 583,137,847 583,676,933 0.09 530,329,548 9.06 601,623,000 3.17 591,556,352 1.42 

f1 323,527,880 323,786,587 0.08 271,301,619 16.14 340,844,130 5.35 - - 

50 
F0 914,031,454 914,604,363 0.06 912,466,570 0.17 950,320,256 3.97 920,025,399 0.65 

f1 602,056,795 602,439,035 0.06 601,435,694 0.10 636,040,064 5.64 - - 

75 
F0 1,098,780,218 1,099,778,393 0.09 1,096,628,468 0.20 1,145,461,053 4.25 1,128,906,482 2.67 

f1 776,776,680 777,519,706 0.10 773,700,917 0.40 821,351,861 5.74 - - 

100 
F0 1,191,576,112 1,192,817,786 0.10 1,190,435,159 0.10 1,244,998,932 4.48 1,239,588,773 3.87 

f1 876,971,790 878,084,632 0.13 876,638,409 0.04 928,811,850 5.91 - - 

125 
F0 1,232,899,836 1,233,719,858 0.07 1,232,868,822 0.00 1,291,769,640 4.77 1,295,874,877 4.86 

f1 933,435,198 934,166,463 0.08 935,890,616 0.26 991,233,936 6.19 - - 

Column ‘Error%’ shows errors in percent. Column ‘DSK 2.2.0’ shows the exact values of F0 and f1. 

Table 4. Estimated values of F0 and f1 by ntCard, KmerGenie 1.7040 and Khmer 2.1.1 for H. sapiens 1 for k = 25, 50, 75, 100 and 
125.  

k - DSK 2.2.0 ntCard Error% 
KmerStream 

1.1 
Error% 

KmerGenie 
1.7040 

Error% 
Khmer 2.1.1 

(unique-
kmers.py) 

Error% 

25 
F0 11,217,637,486 11,216,386,861 0.01 6,751,865,989 39.81 16,165,719,040 30.61 15,836,062,038 557.13 

f1 8,490,459,593 8,485,840,663 0.05 3,714,396,067 56.25 13,017,354,240 34.78 - - 

50 
F0 13,699,865,268 13,695,660,817 0.03 13,564,472,565 0.99 21,248,181,675 35.52 21,159,640,890 294.99 

f1 10,675,454,671 10,673,259,381 0.02 10,575,153,639 0.94 17,847,311,013 40.18 - - 

75 
F0 12,875,754,286 12,857,905,621 0.14 12,817,488,354 0.45 20,643,246,978 37.63 20,592,981,331 206.38 

f1 9,779,384,551 9,757,713,845 0.22 9,702,616,635 0.78 17,212,356,585 43.18 - - 

100 
F0 10,630,623,336 10,611,400,488 0.18 10,606,879,146 0.22 17,214,539,980 38.25 16,959,187,669 151.24 

f1 7,575,718,688 7,554,340,962 0.28 7,577,620,078 0.03 13,906,537,380 45.52 - - 

125 
F0 7,080,173,077 7,071,172,312 0.13 7,066,649,232 0.19 11,641,131,786 39.18 11,712,142,863 88.90 

f1 4,469,409,703 4,460,297,170 0.20 4,454,226,447 0.34 8,873,732,302 49.63 - - 

Column ‘Error%’ shows errors in percent. Column ‘DSK 2.2.0’ shows the exact values of F0 and f1. 

reported for k up to 100 only (not for k = 125). k-mer 
counting results of DSK are used as empirical evidence in 
the evaluation, same as used in ntCard [28], to have fair 
comparisons. The ‘DSK 2.2.0’ column of Tables 3-6 reports 
the exact values of F0 and f1 over all datasets, that 
constitutes ground truth in evaluating accuracy. In Tables  
3-6, more accurate estimates of F0 and f1 are highlighted in 
bold. The results for F0 and f1 may be explained as follows: 

 It is clear that the ntCard estimation of F0 and f1 are 
highly accurate, with the constant error rates over all four 
datasets compared to the other state-of-the-art competitors. 
The error rates of ntCard are less than 0.4% for all four da-
tasets. KmerStream has error rates below 2% in the case of 

all four datasets for all considered values of k except for k = 
25. The numbers in Tables 3-6 reveal an interesting finding: 
Despite overall lower error rates, KmerStream has higher 
error rates (higher for f1 than for F0) for small value of k (k = 
25). Khmer 2.1.1 (unique-kmers.py) has higher error rates 
for H. sapiens 1 which is up to 557%, whereas for F. vesca, 
H. sapiens 2 and human genome NA19238 error rates are 
below 5%, 3% and 1% respectively. KmerGenie also has 
higher error rates for H. sapiens 1 which is up to 50%, 
whereas for F. vesca, H. sapiens 2 and human genome 
NA19238 error rates are low which are below 6.5%, 5% and 
1% respectively. For H. sapiens 1, Khmer (unique-kmers.py) 
and KmerGenie, have higher error rates ( > 30%) than 
ntCard and KmerStream. Khmer 2.1.1 (unique-kmers.py) has



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    7 

Table 5. Estimated values of F0 and f1 by ntCard, KmerGenie 1.7040 and Khmer 2.1.1 for H. sapiens 2 for k = 25, 50, 75, 100 and 
125.  

k - DSK 2.2.0 ntCard Error% KmerStream 
1.1 Error% KmerGenie 

1.7040 Error% 
Khmer 2.1.1 

(unique-
kmers.py) 

Error% 

25 
F0 6,317,577,945 6,321,370,851 0.06 4,440,606,371 29.71 6,493,972,870 2.79 6,447,772,640 2.02 

f1 3,726,921,849 3,728,402,513 0.04 2,124,581,580 42.99 3,900,164,180 4.65 - - 

           
50 

F0 7,576,436,303 7,575,568,030 0.01 7,507,180,258 0.91 7,768,465,452 2.53 7,808,249,016 2.97 

f1 4,610,596,550 4,612,437,322 0.04 4,554,225,163 1.22 4,803,170,055 4.18 - - 

75 
F0 6,645,775,719 6,634,466,410 0.17 6,620,493,247 0.38 6,770,079,405 1.87 6,820,243,427 2.56 

f1 3,601,391,827 3,590,235,204 0.31 3,574,106,736 0.76 3,726,960,545 3.49 - - 

100 
F0 2,055,560,283 2,054,217,987 0.07 2,055,238,955 0.02 2,067,553,684 0.58 2,055,943,971 0.02 

f1 1,668,703,535 1,667,591,992 0.07 1,668,568,360 0.01 1,679,933,472 0.67 - - 

Column ‘Error%’ shows errors in percent. Column ‘DSK 2.2.0’ shows the exact values of F0 and f1. 

Table 6. Estimated values of F0 and f1 by ntCard, KmerGenie 1.7040 and Khmer 2.1.1 for human genome NA19238 for k = 25, 50, 
75, 100 and 125.  

k - DSK 2.2.0 ntCard Error% KmerStream 
1.1 Error% KmerGenie 

1.7040 Error% 
Khmer 2.1.1 

(unique-
kmers.py) 

Error% 

25 
F0 15,695,189,022 15,698,708,120 0.02 7,874,114,589 49.83 15,774,752,125 0.51 15,821,852,733 0.80 

f1 12,590,059,674 12,589,842,091 0.00 4,097,744,520 67.45 12,660,147,875 0.56 - - 

50 
F0 21,386,123,607 21,388,812,027 0.01 21,129,592,460 1.20 21,527,611,504 0.66 21,394,927,325 0.04 

f1 18,003,764,501 18,008,739,129 0.03 17,708,817,546 1.64 18,125,064,461 0.67 - - 

75 
F0 22,940,994,545 22,903,722,006 0.16 22,768,767,319 0.75 23,081,411,904 0.61 23,158,655,606 0.94 

f1 19,455,121,869 19,413,069,020 0.22 19,200,406,066 1.31 19,580,787,984 0.65 - - 

100 
F0 22,825,882,964 22,795,280,303 0.13 22,837,840,964 0.05 22,981,764,792 0.68 22,657,973,838 0.74 

f1 19,311,399,602 19,271,642,379 0.21 19,350,438,432 0.20 19,462,845,864 0.78 -  

125 
F0 21,623,019,167 21,584,850,645 0.18 21,572,310,929 0.23 21,771,418,913 0.69 21,674,560,549 0.24 

f1 18,103,091,932 18,054,837,842 0.27 17,990,743,190 0.62 18,227,641,426 0.69 - - 

Column ‘Error%’ shows errors in percent. Column ‘DSK 2.2.0’ shows the exact values of F0 and f1. 

highest error rate for f1 amongst other tools for most of the 
datasets however, for human genome NA19238 error rates 
are less than 1% for all considered values of k. 
 The full k-mer abundance histograms for k = 25, 50, 75, 
100 and 125 from DSK, ntCard, KmerGenie and Khmer 
(abundance-dist-single.py) on F. vesca, H. sapiens 1, H. sa-
piens 2 (k upto 100) and human genome NA19238 along 
with the error rates (%) are presented in the Supplementary 
Tables S3-S6. k-mer frequency histograms up to frequency 
50 are reported in Supplementary Tables S3-S6 owing to the 
space limitation. Currently, for larger lengths of k, only 
ntCard and KmerGenie give full k-mer abundance histogram. 
Khmer (abundance-dist-single.py) gives full k-mer abun-
dance histogram for k ≤ 32 and hence the entries for k = 50, 
75, 100 and 125 of Khmer (abundance-dist-single.py) are 
missing in the Supplementary Tables S3-S6. Estimation of 
full k-mer abundance histogram of ntCard is more accurate 
than the estimation of KmerGenie and Khmer (abundance-
dist-single.py). 
 In summary, for estimation of F0, f1 and full k-mer abun-
dance histogram, ntCard is more accurate compared with 
other methods irrespective of the length of k. 

4.2. Runtime, Memory and CPU Utilization 

 The runtime, memory and CPU utilization of all  
considered tools, namely, ntCard, Khmer (abundance-dist-
single.py), Khmer (unique-kmers.py), KmerStream and 
KmerGenie are presented in Appendix (Table A1 for F. 
vesca), (Table A2 for H. sapiens 1), (Table A3 for H. sapi-
ens 2 for k up to 100) and (Table A4 for human genome 
NA19238) for k = 25, 50, 75, 100 and 125. The runtime, 
memory and CPU utilization are reported for: (i) ntCard, 
Khmer (abundance-dist-single.py) and KmerGenie for ob-
taining the full k-mer frequency histograms, (ii) for Kmer-
Stream 1.1 are reported for obtaining F0 and f1 and (iii) for 
Khmer (unique-kmers.py) are reported for obtaining F0. For 
each dataset, the best results of different methods are high-
lighted in bold whereas average results are underlined. The 
runtime and memory usages for smaller (F. vesca) to larger 
(human genome NA19238) datasets for k = 25, 50, 75, 100 
and 125 are shown in graphical form in Fig. (1). We will not 
discuss the performance of DSK, as DSK is an exact k-mer 
counter. 



8    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

 
Fig. (1). Computation time versus datasets of varying size on left-hand side and memory usage versus datasets of varying size on right-hand 
side. Three of these datasets are human dataset with large coverage. Runtime is reported in seconds and memory usage in megabytes (MB). 
Note that H. sapiens 2 has average read lengths of 100 bases hence in plot for k =125 the data is missing for H. sapiens 2. Abbreviations: FV 
= F. vesca; HS1 = H. sapiens 1; HS2 = H. sapiens 2; and NA19238 = human genome NA19238. 

 Table 7 summarises the best and average performing 
programs with respect to runtime, memory and CPU utiliza-
tion using results from Appendix (Table A1-A4). The results 
from Appendix (Table A1-A4), Table 7 and Figs. (1-2) may 
be explained as follows:  

 ntCard is the fastest among all the tools, for all k and in 
all four datasets, ntCard took a maximum of 28 minutes 33 
seconds, 11 minutes 53 seconds, 16 minutes 21 seconds and 
22 seconds for human genome NA19238, H. sapiens 2,  
H. sapiens 1 and F. vesca respectively. Whereas Khmer 



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    9 

Table 7. Summary of results from Appendix (Tables A1-A4). 

Dataset k 
Time Memory (RAM) CPU Utilization (%) 

Lowest Highest Lowest Highest Lowest Highest 

F. vesca 

25 ntCard 
1.0.0 

Khmer 2.1.1 
(abundance-dist-

single.py) 

Khmer 2.1.1 
(unique-kmers.py) 

Khmer 2.1.1 
(abundance-dist-

single.py) 

KmerStream 1.1 Khmer 2.1.1 
(unique-kmers.py) 

50 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

75 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1 
 (unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 
 (unique-kmers.py) 

100 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1 
 (unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

125 ntCard 
1.0.0 

KmerGenie 
1.7048 

Khmer 2.1.1 
 (unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 
 (unique-kmers.py) 

H.  
sapiens 1 

25 ntCard 
1.0.0 

Khmer 2.1.1 
(abundance-dist-

single.py) 

Khmer 2.1.1 
 (unique-kmers.py) 

Khmer 2.1.1 
(abundance-dist-

single.py) 

KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

50 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

75 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

100 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1 
 (unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 
 (unique-kmers.py) 

125 ntCard 
1.0.0 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 ntCard 1.0.0 Khmer 2.1.1  
(unique-kmers.py) 

H.  
sapiens 2 

25 ntCard 
1.0.0 

Khmer 2.1.1 
(abundance-dist-

single.py) 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1 
(abundance-dist-

single.py) 

KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

50 ntCard 
1.0.0 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

75 ntCard 
1.0.0 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1  
(unique-kmers.py) 

100 ntCard 
1.0.0 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

human 
genome 

NA19238 

25 ntCard 
1.0.0 

Khmer 2.1.1 
(abundance-dist-

single.py) 

Khmer 2.1.1  
(unique-kmers.py) 

Khmer 2.1.1 
(abundance-dist-

single.py) 

KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

50 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1 
 (unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

75 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

100 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

125 ntCard 
1.0.0 

KmerGenie 1.7048 Khmer 2.1.1  
(unique-kmers.py) 

ntCard 1.0.0 KmerStream 1.1 Khmer 2.1.1 (unique-
kmers.py) 

 



10    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

 
Fig. (2). Speedup and memory usage for various numbers of threads. 

(abundance-dist-single.py) has the most extended runtime in 
estimating the full k-mer multiplicity histogram for k = 25 
when compared to ntCard and KmerGenie. For most of the 
considered tools, the runtime grows with the input size. To 
complete estimation of full k-mer abundance histogram 
Khmer (abundance-dist-single.py) took around 19 minutes 
for F. vesca, around 11 hours 20 minutes for H. sapiens 1, 
around 13 hours for H. sapiens 2 and around 23 hours 25 
minutes for human genome NA19238. KmerGenie for esti-
mating the full k-mer multiplicity histogram has longer 
runtime than ntCard in the case of all four datasets for all 
values of k. KmerGenie took less than 11 minutes for F. 
vesca, at most 4 Hours 37 minutes on H. sapiens 1, maxi-
mum 4 Hours 45 minutes on H. sapiens 2 and for human 
genome NA19238 took at most 8 Hours 54 minutes. It can 
be seen that in the case of all four datasets with growing k 
there is the drop in the runtime of KmerGenie. 
 Memory requirement of ntCard that compute full k-mer 
multiplicity histogram is atmost 558 MB over all four da-
tasets. Khmer (abundance-dist-single.py) has the highest 
memory requirement whereas ntCard has the second highest 
memory requirement. The memory requirement for ntCard is 
mainly for the count table to compute the whole k-mer abun-
dance histogram. ntCard package has a hyperloglog version 
called ‘nthll’ to compute a distinct number of k-mers, F0, 
with the memory requirement of at most 27 MB among all 
four datasets (Supplementary Table S7). Khmer (unique-
kmers.py) requires lower (but not than ntCard) amount of 
memory but only estimates F0 where it requires at most 
30MB of memory over all four datasets. 
 Out of the tools which estimate the full k-mer multiplicity 
histogram, KmerGenie has the lowest memory requirement, 
whereas Khmer (unique-kmers.py) has the highest CPU 
utilization. ntCard often has the highest accuracy, good CPU 
utilization and the lowest time requirement. 

4.3. Multithreaded Analysis 

 We also examine the performances of parallelism of var-
ious tools by recording the computation time for varying 
number of threads on F. vesca for k = 25. Fig. (2) shows the 
speedup and memory usages for a parallel execution of all 
considered tools with 1, 2, 4, 8, 12 and 16 threads. The k-mer 
frequency estimation algorithms have relatively uniform 
memory usages regardless of the number of threads because 
the sampling and estimation process are marginally affected 
by the memory usages. The results from Fig. (2) may be 
explained as follows:  
 The overall speedup for every tool except for Khmer 
2.1.1 (abundance-dist-single.py) and ntCard is in the range 
of 0.5-1.25. KmerStream 1.1 has no gain in a speedup for 
varying number of threads; contrarily with the increasing 
number of threads its performance degrades (its parallel exe-
cution is slower than the serial). The Khmer 2.1.1 (abun-
dance-dist-single.py) shows good speedup and speedup is up 
to ~3.5. The parallelization paradigm in ntCard is based on 
Data Parallelism and it uses OpenMP for parallelization. The 
maximum speedup for ntCard is up to 3.64. ntcard parallel-
izes on the number of files and can, therefore, show good 
speedup on the input having more number of files whereas 
kmerGenie parallelize on the number of k values. 

CONCLUSION 

 In this paper, we report on a large-scale empirical 
comparison of streaming algorithms that estimates F0 (the 
number of distinct k-mers), f1 (the number of k-mers that 
occur exactly once) and/or full k-mer abundance histo-
gram. We use varying size of high-throughput sequencing 
genomics datasets. The streaming approach is aimed at pro-
cessing data in minimum space and uses a significantly low-
er amount of memory than needed to store the total distinct 
elements. Out of the tools considered in the study, ntCard is 



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    11 

more accurate in estimating F0, f1 and full k-mer abundance 
histograms, than other methods irrespective of the size of k. 
ntCard is several folds faster than the state-of-the-art 
approaches but has more memory requirement compared 
to KmerGenie. ntCard and KmerGenie generate full k-mer 
coverage frequency histogram for larger values of k. 
Khmer (abundance-dist-single.py) also generate full k-
mer coverage frequency histogram but supports the 
smaller values of k (k ≤ 32). Khmer (abundance-dist-
single.py) often has the highest error rates and also uses 
comparatively large amount of memory for all runs. Out 
of these three programs, ntCard is the best concerning 
accuracy and runtime. KmerGenie has often the lowest 
memory requirements, but the longer runtime. Concerning 
the ranking of the streaming algorithms for estimation of 
k-mer frequencies, it is clear that there is no single win-
ner. With the advancement of next-generation sequencing 
technologies generating billions of reads per experiment, 
there will always remain scope of improvement of algorithms 

and tools for improving accuracy, runtime and memory 
footprint.  

CONSENT FOR PUBLICATION 

 Not applicable. 

CONFLICT OF INTEREST 

 The authors declare no conflict of interest, financial or 
otherwise. 

ACKNOWLEDGEMENTS 

 Declared none. 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publisher’s 
website along with the published article. 

APPENDIX 

Table A1. F.vesca results of considered tools for k = 25, 50, 75, 100 and 125. 

S. No. Tools (Version) 

k = 25 k = 50 k = 75 k = 100 k = 125 

Time 
(sec) 

Memory  
(MB) / 

Disk (GB) 
Time 
(sec) 

Memory  
(MB) / 

Disk (GB) 
Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 
Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 
Time 
(sec) 

Memory  
(MB) / 

Disk (GB) 

1 DSK 2.2.0 117 20,337 / 
3.7 140 11,627 / 3 217 12,260 / 2 315 11,865 / 34 326 13,269 / 

79 

CPU utilization (%) 
(Comments) 

770.492 (Initial 45% of 
time consistent to 95, 
remaining 55% incon-
sistent in the range of 
1600 – 10) 

690.89  
(Inconsistent) 

607.77 (Initial 20% of 
time consistent to 
1500, remaining 80% 
inconsistent in the 
range of 1600 – 100) 

567.65 (Inconsistent in 
the range of 1600 – 100) 

538.23  
(Inconsistent in range 
of 1600–100) 

2 ntCard 1.0.0 22 534 / – 22 534 / – 21 534 / – 22 534 / – 22 534 / – 

CPU utilization (%) 
(Comments) 

388.46 (In initial 50% 
of time declined from 
1100 to 100, rest 50% 
of time consistent 
with 100) 

399.87 (In initial 
50% of time de-
clined from 1000 to 
100, rest 50% of 
time consistent with 
100) 

408.2 (In initial 60% 
of time declined 
from 900 to 130, 
rest 40% of time 
consistent with 100) 

383.91 (In initial 50% 
of time declined from 
900 to 140, rest 50% of 
time consistent with 
100) 

342.56 (In initial 
50% of time de-
clined from 900 to 
100, rest 50% of 
time consistent with 
100) 

3 KmerStreame 1.1 197 107 / – 187 106 / – 184 106 / – 182 106 / – 176 106 / – 

CPU utilization (%) 
(Comments) 

99.41 (Inconsistent in 
the range of 94 – 100) 

99.53 (Inconsistent 
in the range of 94 – 
106) 

99.77 (Inconsistent 
in the range of 94 – 
106) 

99.57 (Inconsistent in 
the range of 93 – 100) 

99.55 (Inconsistent 
in the range of 94 
– 106)  

4 KmerGenie 1.7048  630 144 / – 610 144 / – 514 144 / – 538 152 / – 447 159 / – 

CPU utilization (%) 
(Comments) 

115.10 (Consistent in 
the range of 94 – 200) 

115.55 (Consistent 
in the range of 94 – 
200) 

118.03 (Consistent 
in the range of 94 – 
200) 

115.11 (Consistent in 
the range of 94 – 200) 

120.01 (Consistent 
in the range of 94 
– 200) 

5 Khmer 2.1.1  
(unique-kmers.py) 229 25 / – 231 26 / – 235 25 / – 227 25 / – 226 26 / – 

CPU utilization (%) 
(Comments) 

3,124.7  
(Consistent) 

3,132.6  
(Consistent) 

3,089.68  
(Consistent) 

3,132.06  
(Consistent) 

3,132.91  
(Consistent) 

6 Khmer 2.1.1 
(abundance-dist-
single.py) 

1,112 29,631 / – 
ERROR: Khmer only supports k-mer sizes ≤ 32. 

CPU utilization (%) 
(Comments) 

1,191.52 
(Consistent) 

Best results are indicated in bold font and average results are underlined. Abbreviations: sec = Seconds, GB = Gigabytes, MB = Megabytes. 



12    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

Table A2. H.sapiens 1 results of considered tools for k = 25, 50, 75, 100 and 125. 

S. No. Tools (Version) 

k = 25 k = 50 k = 75 k = 100 k = 125 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

1 DSK 2.2.0 
5,046 23,106 / 

102.8 5,881 24,240 / 
67.7 7,033 21,731 / 

5.6 5,767 21,678 / 
41.9 4,348 20,511 / 

32.7 

CPU utilization (%) 

(Comments) 
470.34 (Initial 45% of 
time consistent to 800, 
next 55% inconsistent 
in the range of 1600 – 
300) 

499.35 (Initial 40% 
of time consistent to 
800, next 60% in-
consistent in the 
range of 1600–550) 

419.15 (Initial 35% 
of time consistent to 
800, next 65% in-
consistent in the 
range of 1200–700) 

427.96 (Initial 40% of 
time consistent to 780, 
next 65% inconsistent 
in the range of 1300–
650) 

348.97 (Initial 50% of 
time consistent in the 
range 550–10, next 
50% in the range of 
1600–550) 

2 ntCard 1.0.0 981 530 / – 974 528 / –  920 558 / – 950 527 / – 941 528 / – 

CPU utilization (%) 

(Comments) 
144.31 (Inconsistent in 
the range of 70 – 200) 

129.13  
(Inconsistent in the 
range of 80 – 180) 

121.40  
(Inconsistent in the 
range of 80 – 170) 

108.72  
(Inconsistent in the 
range of 50 – 160) 

97.94 (Inconsistent in 
the range of 50–140) 

3 KmerStreame 1.1 5,637 57 / – 5,107 56 / –  4,854 57 / –  4,539 56 / – 4,315 58 / – 

CPU utilization (%) 

(Comments) 
98.85 (Consistent) 98.90 (Consistent in 

the range of 80 – 106) 
98.98 (Consistent in 
the range of 80 – 106) 

98.98 (Consistent in 
the range of 80 – 106) 

98.90 (Consistent in the 
range of 80 – 106) 

4 KmerGenie 1.7048 16,619 223 / – 14,368 277 / – 12,154 196 / – 10,013 248 / – 7,956 173 / – 

CPU utilization (%) 

(Comments) 
115.84 (Consistent in 
the range of 94 – 200) 

118.30 (Consistent 
in the range of 94 – 
200) 

121.90 (Consistent 
in the range of 94 – 
200) 

126.66 (Consistent in 
the range of 94 – 200) 

134.02 (Consistent in 
the range of 100 – 
200) 

5 Khmer 2.1.1  

(unique-kmers.py) 
9,281 26 / – 9,248 25 / – 9,424 25 / – 9,550 25 / – 9,744 26 / – 

CPU utilization (%) 

(Comments) 
3,120.4 

(Consistent) 
3,119.17  

(Consistent) 
3,115.77  

(Consistent) 
3,117.37  

(Consistent) 
3,113.13  

(Consistent) 

6 Khmer 2.1.1 

(abundance-dist-
single.py) 

40,794 44,711 / – 

ERROR: Khmer only supports k-mer sizes ≤ 32. 
CPU utilization (%) 

(Comments) 
1,590.34 

(Consistent) 

Best results are indicated in bold font and average results are underlined. Abbreviations: sec = Seconds, GB = Gigabytes, MB = Megabytes. 
 

Table A3. H.sapiens 2 results of considered tools for k = 25, 50, 75 and 100. 

S. No. Tools (Version) 

k = 25 k = 50 k = 75 k = 100 

Time 
(sec) 

Memory  
(MB) /  

Disk (GB) 

Time 
(sec) 

Memory  
(MB) /  

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

1 DSK 2.2.0 5,065 25,400 / 
113.7 5,049 25,739 / 

69.7 4,778 25,322 / 
49.8 3,168 27,930 / 31.7 

CPU utilization (%) 

(Comments) 
418.559 (Inconsistent) 484.26 (Inconsistent) 

 
 

391.295 (Consistent) 

  
 

247.251 (Initial 60% of 
time consistent, last 40% 
inconsistent (1250 – 10)) 

(Table A3) contd…. 



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    13 

S. No. Tools (Version) 

k = 25 k = 50 k = 75 k = 100 

Time 
(sec) 

Memory  
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory  
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

2 ntCard 1.0.0 710 538 / –  713 558 / – 710 539 / – 708 538 / – 

CPU utilization (%) 

(Comments) 
387.25 (Highly inconsistent in 
the range of 100 – 800) 

341.52 (Highly incon-
sistent in the range of 
90–700) 

283.68 (Highly incon-
sistent in the range of 
50–650) 

202.91  
(Highly inconsistent in the 
range of 70–400) 

3 KmerStreame 1.1 6,677 48 / – 6,282 49 / –  5,877 47 / – 5,422 48 / – 

CPU utilization (%) 

(Comments) 
98.73 (Inconsistent in the 
range of 60 – 106) 

98.73 (Inconsistent in 
the range of 80 – 106) 

98.68 (Inconsistent in 
the range of 60 – 106) 

98.62 (Inconsistent in the 
range of 60 – 106) 

4 KmerGenie 1.7048 17,109 145 / – 13,526 145 / – 9,997 145 / – 6,562 144 / – 

CPU utilization (%) 

(Comments) 
119.03 (Consistent in the 
range of 94 – 200) 

124.12 (Consistent in 
the range of 94 – 200) 

132.73 (Consistent in 
the range of 100 – 200) 

150.38 (Consistent in the 
range of 100 – 200) 

5 Khmer 2.1.1  

(unique-kmers.py) 
14,378 26 / – 14,932 25 / – 15,066 29 / – 14,412 26 / – 

CPU utilization (%) 

(Comments) 
3,110.69  

(Consistent) 
3,110.97  

(Consistent) 
3,112.2  

(Consistent) 
3,114.46  

(Consistent) 

6 Khmer 2.1.1 

(abundance-dist-single.py) 
 

46,861 
 

50,470 / – 

 

 

ERROR: Khmer only supports k-mer sizes ≤ 32. 

CPU utilization (%) 

(Comments) 
1,592.78  

(Consistent) 

Best results are indicated in bold font and average results are underlined. Abbreviations: sec = Seconds, GB = Gigabytes, MB = Megabytes. 

 

Table A4. Human genome NA19238 results of considered tools for k = 25, 50, 75, 100 and 125. 

S. No. Tools 
(Version) 

k = 25 k = 50 k = 75 k = 100 k = 125 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

1 DSK 2.2.0 
11,829 25,991 / 

220 12,254 24,795 / 
155.8 13,933 25,325 / 

136.9 14,516 27,400 / 
122.9 14,215 25,800 / 277 

CPU utilization (%) 

(Comments) 
437.71 (Initial 50% of 
time consistent to 600, 
rest 50% consistent to 
300) 

478.81  
(Initial 50% of time 
consistent to 600, 
rest 50% incon-
sistent in the range 
of 1200 – 400) 

489.37  
(Initial 40% of time 
consistent to 800, 
rest 60% incon-
sistent in the range 
of 1200 – 400) 

515.74 (Initial 40% of 
time consistent to 850, 
rest 60% inconsistent 
in the range of 1200 – 
300) 

479.66 (Initial 40% of 
time consistent to 850, 
rest 60% inconsistent 
in the range of 1200 – 
300) 

2 ntCard 1.0.0 1,711 527 / – 1,707 528 / – 1,713 528 / – 1,698 530 / – 1,680 528 / – 

CPU utilization (%) 

(Comments) 
146.36  
(Initially consistent in 
the range of 110–200, 
for last 10% of time 
suddenly dropped to 
100 then to 50) 

139.33  
(Initially consistent 
in the range of 110 
– 200, for last 10% 
of time suddenly 
dropped to 100 then 
to 50) 

133.68  
(Initially consistent 
in the range of 110 
– 180, for last 10% 
of time suddenly 
dropped to 100 
then to 40) 

127.19  
(Initially consistent in 
the range of 90–170, for 
last 10% of time sud-
denly dropped to 100 
then to 50) 

123.27  
(Initially consistent in 
the range of 90–170, for 
last 10% of time sud-
denly dropped to 100 
then to 50) 

(Table A4) contd…. 



14    Current Genomics, 2019, Vol. 20, No. 1 Manekar and Sathe 

S. No. Tools 
(Version) 

k = 25 k = 50 k = 75 k = 100 k = 125 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

Time 
(sec) 

Memory 
(MB) /  

Disk (GB) 

Time 
(sec) 

Memory 
(MB) / 

Disk (GB) 

3 KmerStreame 1.1 9,138 75 / – 8,822 76 / – 8,599 76 / – 8,278 76 / – 8,013 76 / – 

CPU utilization (%) 

(Comments) 
98.72 (Consistent in 
the range of 90 – 106)  

98.71 (Consistent in 
the range of 90 – 
106) 

98.67 (Consistent 
in the range of 90 – 
106) 

98.68 (Consistent in 
the range of 90 – 106) 

98.62 (Consistent in 
the range of 90 – 106) 

4 KmerGenie 1.7048 32,071 144 / – 27,682 144 / – 24,276 144 / – 23,045 144 / – 19,614 144 / – 

CPU utilization (%) 

(Comments) 
113.09 (Consistent in 
the range of 94 – 200) 

115.26 (Consistent 
in the range of 94 
– 200) 

117.38 (Consistent 
in the range of 94 
– 200) 

118.57 (Consistent in 
the range of 94 – 200) 

121.68 (Consistent in 
the range of 94 – 200) 

5 Khmer 2.1.1  

(unique-kmers.py) 
12,952 26 / – 12,896 30 / – 12,807 25 / – 12,802 27 / – 12,582 25 / – 

CPU utilization (%) 

(Comments) 
3,114.51 

(Consistent) 
3,107.84  

(Consistent) 
3,110.24  

(Consistent) 
3,111.61  

(Consistent) 
3,111.19  

(Consistent) 

6 Khmer 2.1.1 

(abundance-dist-
single.py) 

84,283 51,221 /– 

ERROR: Khmer only supports k-mer sizes ≤ 32. 
CPU utilization (%) 

(Comments) 
1,588.08 

(Consistent) 

Best results are indicated in bold font and average results are underlined. Abbreviations: sec = Seconds, GB = Gigabytes, MB = Megabytes. 

REFERENCES 
[1] Marçais, G.; Kingsford, C. A fast, lock-free approach for efficient 

parallel counting of occurrences of k-mers. Bioinformatics, 2011, 
27(6), 764-770. 

[2] Miller, J.R.; Delcher, A.L.; Koren, S.; Venter, E.; Walenz, B.P.; 
Brownley, A.; Johnson, J.; Li, K.; Mobarry, C.; Sutton, G. Aggres-
sive assembly of pyrosequencing reads with mates. Bioinformatics, 
2003, 24(24), 2818-2824. 

[3] Jaffe, D.B.; Butler, J.; Gnerre, S.; Mauceli, E.; Lindblad-Toh, K.; 
Mesirov, J.P.; Zody, M.C.; Lander, E.S. Whole-genome sequence 
assembly for mammalian genomes: Arachne 2. Genome. Res., 
2003, 13(1), 91-96. 

[4] Miller, J.R.; Koren, S.; Sutton, G. Assembly algorithms for next-
generation sequencing data. Genomics, 2010, 95(6), 315-327. 

[5] Pevzner, P.A.; Tang, H.; Waterman, M.S. An Eulerian path ap-
proach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 
2001, 98(17), 9748-9753. 

[6] Zerbino, D; Birney, E. Velvet: Algorithms for de novo short read 
assembly using de Bruijn graphs. Genome. Res., 2008, 18(5), 821-
829. 

[7] Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.; 
Birol, I. ABySS: A parallel assembler for short read sequence data. 
Genome. Res., 2009, 19(6), 1117-1123. 

[8] Kelley, D.R.; Schatz, M.C.; Salzberg, S.L. Quake: Quality-aware 
detection and correction of sequencing errors. Genome. Biol., 2010, 
11(11), R116. 

[9] Shi, H.; Schmidt, B.; Liu, W.; Müller-Wittig, W. A parallel algo-
rithm for error correction in high-throughput short-read data on 
CUDA-enabled graphics hardware. J. Comput. Biol., 2010, 17(4), 
603-615. 

[10] Liu, Y.; Schröder, J.; Schmidt, B. Musket: A multistage k-mer 
spectrum-based error corrector for Illumina sequence data. Bioin-
formatics, 2012, 29(3), 308-315. 

[11] Medvedev, P.; Scott, E.; Kakaradov, B.; Pevzner, P. Error correc-
tion of high-throughput sequencing datasets with non-uniform cov-
erage. Bioinformatics, 2011, 27(13), 137-141. 

[12] Salmela, L.; Schröder, J. Correcting errors in short reads by multi-
ple alignments. Bioinformatics, 2011, 27(11), 1455-1461. 

[13] Li, R.; Ye, J.; Li, S.; Wang, J.; Han, Y.; Ye, C.; Wang, J.; Yang, 
H.; Yu, J.; Wong, G.K.S.; Wang, J. ReAS: Recovery of ancestral 
sequences for transposable elements from the unassembled reads of 
a whole genome shotgun. PLoS Computat. Biol., 2005, 1(4), e43. 

[14] Price, A.L.; Jones, N.C.; Pevzner, P.A. De novo identification of 
repeat families in large genomes. Bioinformatics, 2005, 21(Suppl 
1), 351-358. 

[15] Campagna, D.; Romualdi, C.; Vitulo, N.; Del Favero, M.; Lexa, 
M.; Cannata, N.; Valle, G. RAP: A new computer program for de 
novo identification of repeated sequences in whole genomes. Bioin-
formatics, 2004, 21(5), 582-588. 

[16] Lefebvre, A.; Lecroq, T.; Dauchel, H.; Alexandre, J. FORRepeats: 
Detects repeats on entire chromosomes and between genomes. Bio-
informatics., 2003, 19(3), S319-S326. 

[17] Healy, J.; Thomas, E.E.; Schwartz, J.T.; Wigler, M. Annotating 
large genomes with exact word matches. Genome. Res., 2003, 
13(10), 2306-2315. 

[18] Kurtz, S.; Narechania, A.; Stein, J.C.; Ware, D. A new method to 
compute K-mer frequencies and its application to annotate large 
repetitive plant genomes. BMC. Genom., 2008, 9(1), 517. 

[19] Kokot, M.; Długosz, M.; Deorowicz, S. KMC 3: Counting and 
manipulating k-mer statistics. Bioinformatics, 2017, 33(17), 2759-
2761. 

[20] Erbert, M.; Rechner, S.; Müller-Hannemann, M. Gerbil: A fast and 
memory-efficient k-mer counter with GPU-support. Algor. Mol. 
Biol., 2017, 12(1), 9. 

[21] Rizk, G.; Lavenier, D; Chikhi, R. DSK: k-mer counting with very 
low memory usage. Bioinformatics, 2013, 29(5), 652-653. 

[22] Conway, T.C.; Bromage, A.J. Succinct data structures for assem-
bling large genomes. Bioinformatics, 2011, 27(4), 479-486. 

[23] Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; 
Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.; Robinson, G.E. Big 
data: Astronomical or genomical? PLoS Biol., 2015, 13(7), 
e1002195. 



Estimating the k-mer Coverage Frequencies in Genomic Datasets Current Genomics, 2019, Vol. 20, No. 1    15 

[24] Brown, T.C.; Howe, A.; Zhang, Q.; Pyrkosz, A.B.; Brom, T.M. A 
reference-free algorithm for computational normalization of shot-
gun sequencing data. arXiv:1203.4802, 2012.  

[25] Pell, J.; Hintze, A.; Canino-Koning, R.; Howe, A.; Tiedje, J.M.; 
Brown, C.T. Scaling metagenome sequence assembly with proba-
bilistic de Bruijn graphs. Proc. Natl. Acad. Sci. USA, 2012, 9(33), 
13272-13277. 

[26] Junior, L.C.I.; Brown, C.T. Efficient cardinality estimation for k-
mers in large DNA sequencing data sets. F1000. Res., 2016, 1-5. 

[27] Zhang, Q.; Pell, J.; Canino-Koning, R.; Howe, A.C.; Brown, C.T. 
These are not the k-mers you are looking for: efficient online k-mer 
counting using a probabilistic data structure. PloS. One, 2014, 9(7), 
e101271. 

[28] Mohamadi, H.; Khan, H.; Birol, I. ntCard: A streaming algorithm 
for cardinality estimation in genomics data. Bioinformatics, 2017, 
33(9), 1324-1330. 

[29] Melsted P.; Halldorsson B.V. KmerStream: Streaming algorithms 
for k-mer abundance estimation. Bioinformatics, 2014, 30(24), 
3541-3547. 

[30] Chikhi R.; Medvedev P. Sequence analysis informed and automat-
ed k-mer size selection for genome assembly. Bioinformatics, 
2014, 30(1), 31-37. 

[31] Alon N.; Matias Y.; Szegedy M. The space complexity of approxi-
mating the frequency moments. Proceedings of the 28th Annual ACM 
Symposium on Theory of Computing (STOC), Philadelphia, Penn-
sylvania, U.S, 1996, pp. 20-29. 

[32] Bar-Yossef, Z.; Jayram, T.S.; Kumar, R.; Sivakumar, D.; Trevisan, 
L. Counting distinct elements in a data stream. In: International 
Workshop on Randomization and Approximation Techniques in 
Computer Science, Springer: Berlin, Heidelberg, Germany, 2002, 
pp. 1-10. 

[33] Flajolet, P.; Martin, G.N. Probabilistic counting algorithms for data 
base applications. J. Computer Syst Sci., 1985, 31(2), 182-209. 

[34] Cormode G.; Muthukrishnan S. An improved data stream sum-
mary: The count-min sketch and its applications. J. Algorithms., 
2005, 55(1), 58-75. 

[35] Simpson, J.T. Exploring genome characteristics and sequence 
quality without a reference. Bioinformatics, 2014, 30(9), 1228-
1235. 

[36] Chu, J.; Sadeghi, S.; Raymond, A.; Jackman, S.D.; Nip, K.M.; Mar, 
R., Mohamadi, H.; Butterfield, Y.S.; Robertson, A.G.; Birol, I. Bi-
oBloom tools: Fast, accurate and memory-efficient host species se-
quence screening using bloom filters. Bioinformatics, 2014, 30(23), 
3402-3404. 

[37] Pérez, N.; Gutierrez, M.; Vera, N. Computational performance 
assessment of k-mer counting algorithms. J. Comput. Biol., 2016, 
23(4), 248-255. 

[38] Mohamadi, H.; Chu, J.; Vandervalk, B.P.; Birol, I. ntHash: Recur-
sive nucleotide hashing. Bioinformatics, 2016, 32(22), 3492-3494. 

[39] Bloom, B.H. Space/time trade-offs in hash coding with allowable 
errors. Commun. ACM., 1970, 13(7), 422-426. 

[40] Crusoe, M.R.; Alameldin, S.; Awad, E.; Boucher, A.; Caldwell, R.; 
Cartwright, A.; Charbonneau, B.; Constantinides, G.; Edvenson, S.; 
Fay, J.; Fenton, T.; Fenzl, J.; Fish, L.; Garcia-Gutierrez, P.; 
Garland, J.; Gluck, I.; González, S.; Guermond, J.; Guo, A.; Gupta, 
J.R.; Herr, A.; Howe, A.; Hyer, A.; Härpfer, L.; Irber, R.; Kidd, D.; 
Lin, J.; Lippi, T.; Mansour, P.; McA’Nulty, E.; McDonald, J.; 
Mizzi, K.D.; Murray, J.R.; Nahum, K.; Nanlohy, A.J.; Nederbragt, 
H.; Ortiz-Zuazaga, J.; Ory, J.; Pell, C.; Pepe-Ranney, Z.N.; Russ, 
E.; Schwarz, C.; Scott, J.; Seaman, S.; Sievert, J.; Simpson, C.T.; 
Skennerton, J.; Spencer, R.; Srinivasan, D.; Standage, J.A.; 
Stapleton, S.R.; Steinman, J.; Stein, B.; Taylor, W.; Trimble, H.L.; 
Wiencko, M.; Wright, B.; Wyss, Q.; Zhang, E.; Zyme; C.T. Brown. 
The khmer software package: Enabling efficient nucleotide se-
quence analysis. F1000 Res., 2015, 4(115), 900. 

[41] Flajolet, P.; Fusy, É.; Gandouet, O.; Meunier, F. Hyperloglog: The 
analysis of a near-optimal cardinality estimation algorithm In: Dis-
cret. Math. Theor. Comput. Sci, 2007, pp. 137-156. 

[42] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. 
Numerical recipes: The Art of Scientific Computing, 3rd ed.; Cam-
bridge University Press: New York, NY, USA, 2007. 

 
 
 


