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ABSTRACT Single mutations frequently alter several aspects of cell behavior but
rarely reveal whether a particular statistically significant change is biologically signifi-
cant. To determine which behavioral changes are most important for multicellular
self-organization, we devised a new methodology using Myxococcus xanthus as a
model system. During development, myxobacteria coordinate their movement to ag-
gregate into spore-filled fruiting bodies. We investigate how aggregation is restored
in two mutants, csgA and pilC, that cannot aggregate unless mixed with wild-type
(WT) cells. To this end, we use cell tracking to follow the movement of fluorescently
labeled cells in combination with data-driven agent-based modeling. The results in-
dicate that just like WT cells, both mutants bias their movement toward aggregates
and reduce motility inside aggregates. However, several aspects of mutant behavior
remain uncorrected by WT, demonstrating that perfect recreation of WT behavior is
unnecessary. In fact, synergies between errant behaviors can make aggregation ro-
bust.

IMPORTANCE Self-organization into spatial patterns is evident in many multicellular
phenomena. Even for the best-studied systems, our ability to dissect the mecha-
nisms driving coordinated cell movement is limited. While genetic approaches can
identify mutations perturbing multicellular patterns, the diverse nature of the signal-
ing cues coupled to significant heterogeneity of individual cell behavior impedes our
ability to mechanistically connect genes with phenotype. Small differences in the be-
haviors of mutant strains could be irrelevant or could sometimes lead to large differ-
ences in the emergent patterns. Here, we investigate rescue of multicellular aggre-
gation in two mutant strains of Myxococcus xanthus mixed with wild-type cells. The
results demonstrate how careful quantification of cell behavior coupled to data-
driven modeling can identify specific motility features responsible for cell aggrega-
tion and thereby reveal important synergies and compensatory mechanisms. Nota-
bly, mutant cells do not need to precisely recreate wild-type behaviors to achieve
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determine whether a statistically significant trend in cell behavior results in a biolog-
ically significant alteration of the multicellular program. We demonstrate this approach
by focusing on the full or partial rescue of the mutants during the multicellular
development of Myxococcus xanthus biofilms.

Myxococcus xanthus is a rod-shaped member of the Deltaproteobacteria with a life
cycle centered around surface motility of cells in a biofilm. M. xanthus has evolved
multiple social mechanisms such as S-motility (2) and C-signaling (3-5) to achieve
coordinated group behaviors such as predation (6), rippling (7-9), and development (7,
10, 43). Upon amino acid limitation, M. xanthus cells move into three-dimensional
aggregates called fruiting bodies where they sporulate (11-13). Recent studies based
on cell tracking have provided unprecedented detail of cell movement during devel-
opment (14). In combination with mathematical modeling, these data sets unambig-
uously identified individual cell behaviors that are essential for aggregation (14, 15).
These behaviors include reduced movement inside the aggregate and bias in the
directed movement toward the aggregation centers, likely via chemotaxis (15). This
methodology provides an unprecedented window into developmental behavior that is
presently difficult to realize in larger organisms with thicker tissues or longer cell
migration routes, such as the vertebrate neural crest, or in disease states such as tumor
metastases.

In this work, we examined reciprocal interactions between wild-type (WT) cells
mixed with nondeveloping mutants. More so than other bacteria, M. xanthus cell
growth and development depend on neighboring cells, diffusing molecules, and the
surrounding biotic and abiotic environment. To determine the factors that contribute
to developmental robustness, we employed conditional mutants that were unable to
develop on their own but will develop when mixed with WT cells. It is expected that the
mutants respond to at least some of the conditions established by WT cells in the field
of developing cells. The extent of the response is expected to reveal signaling and
sensory transduction pathways that are essential for WT development and are defective
in the mutants.

The extent of WT rescue of two mutants is examined in this work. The first of these
contains a mutation in the pilC gene. PilC is an inner membrane protein located at the
base of the pilus where it interacts with PilB and PilM to mediate pilus assembly (16, 17).
This mutation interrupts pilus production (18) and consequently S-motility, one of the
two motility systems in M. xanthus (19, 20). Aggregation can occur with the help of the
A-motility system, which uses a novel molecular motor and focal adhesion complexes
(21, 22). However, most S-system mutants fail to develop because they cannot produce
an extracellular matrix (ECM) that is both essential for S-motility and vital for develop-
ment. The ECM is required for some types of chemotaxis (23, 24) as well as for cell
cohesion, which could inhibit motility inside the aggregate (25, 26). As shown in this
work, pilC mutants cannot aggregate on their own but marginally improve when mixed
with wild-type cells. The second mutation is a deletion of the csgA gene, which inhibits
the production of one or more intercellular signals that are required for aggregation
and sporulation (27). While CsgA signaling exerts control over most of development,
the precise nature of the signals and their sensory pathways is only beginning to be
revealed (28). csgA cells do not form fruiting bodies on their own (7) and respond much
more completely to a WT cell developmental field than pilC (29). Although much is
known about M. xanthus aggregation (7, 29-31), few quantitative data sets describe
mutant cell movement during aggregation and the mechanism of their rescue (32).

To identify motility behaviors affecting mutant cell aggregation, we extended our
previously developed approach that combines individual cell tracking with simulations
driven by the accumulated cell behavior data (14). Directly applying experimental cell
data to simulations allowed us to fully investigate the effect of each change in the
mutant motility behavior on their aggregation. The results demonstrate that the WT
developmental field is robust enough to nearly completely restore csgA development.
By comparison, the pilC mutant has two striking sensory deficits that diminish its ability
to accumulate inside the fruiting bodies. By exchanging particular aspects of cell
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FIG 1 Cell distribution at the final frame of the experimental movies. Cells are segmented and shown as blue circles at the centroids of labeled cells. Red
ellipsoids indicate the boundaries of aggregates segmented from the image after cells were filtered. (A) pilC cells alone. (B) csgA cells alone. (C) pilC mixed with

WT cells. (D) csgA cells mixed with WT cells.

behavior between WT and mutant cells, our agent-based modeling was able to
pinpoint specific differences in cell behavior that are most biologically significant.

RESULTS

Quantifying aggregation dynamics in mixtures of wild-type and mutant
strains. Fluorescence microscopy was used to quantify the behavior of mutant cells at
both single-cell and population levels. A small fraction of cells expressing the fluores-
cent protein tdTomato were mixed with cells expressing eYFP. Each cell expressing
tdTomato is bright enough to be segmented and tracked, allowing quantification of
their behaviors, whereas the weaker eYFP signal was used to quantify cell density
during aggregate growth (14).

When either pilC or csgA cells are mixed with differentially labeled cells of their
genotype, no aggregates are observed and the distribution of cells is nearly uniform at
the final time point, i.e, at T= 5 h (Fig. 1A and B). Application of the 2-D Kolmogorov-
Smirnov test (33) to cell positions shows that the null hypothesis of the uniform
distribution of labeled cells cannot be rejected (P value > 0.95). Conversely, when
tdTomato-labeled csgA cells are mixed with eYFP-labeled wild-type (WT) cells, csgA cells
are overrepresented in the aggregates (Fig. 1D). The distribution of the cells is clearly
nonuniform (P value < 0.05). For pilC cells mixed with WT cells, the rescue is less
pronounced (Fig. 1C) and there is not sufficient evidence to reject the null hypothesis
of uniform distribution of labeled cells (P value = 0.64). Below we describe a more
sensitive metric to quantify aggregation rescue of mutant cells. As a comparison, Fig. S1
in the supplemental material shows the aggregation result of WT cells.

To quantify aggregate positions, densities, and sizes, we filtered out the tdTomato
signal and then used the eYFP intensity to estimate cell density. These data were used
to segment the aggregates and detect their boundaries and positions. For segmenta-
tion of the images in which aggregation was observed (mutant strains mixed with a
majority of WT cells), we determined a threshold intensity that separates aggregates
from the background using K-means clustering on the light intensity of each pixel in
the final frame of the experimental movies. Dividing the light intensity of pixels into
two clusters gives the threshold of light intensity for aggregates. Applying the same
threshold throughout the sequence of time-lapse imaging, we can compare aggregate
growth for different experiments. To compare the aggregation rate across different sets
of experiments, we use the average aggregate size fraction, F,,(1), i.e., the total area of
aggregates in each frame corresponding to time (t) divided by the field of view area.
The results (Fig. 2A) indicate that aggregation of WT mixed with pilC cells is slightly
slower than WT aggregation (data set from reference 14). On the other hand, WT cells
mixed with csgA show faster aggregation. However, at the final time point, data sets
lead to approximately the same area covered by aggregates, F,,,(ts,,). Given that WT
cells represent the overwhelming majority (>99.9%) of the cells, it is unlikely the
observed differences are directly attributable to the presence of mutant cells. Instead,
these differences are likely due to a slight variation of experimental conditions. Indeed,
different biological repeats of the mixture experiments show differences in the aggre-
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FIG 2 Aggregation variation between experiments: (A) WT cell aggregation rates vary between exper-
iments. y axis is the aggregate area divided by the total area of the field of view. The red line is the
average aggregation rate in experiments mixing ¢sgA with WT cells. The blue line is the average
aggregation rate of WT cells only (14). The black line is the average aggregation rate in experiments
mixing pilC with WT cells. (B and C) Aggregate numbers (B) and each aggregate area (C) in experiments.
Red is csgA, blue is WT, and black is pilC. Horizontal lines inside the boxes indicate the distribution
median. Tops and bottoms of each box indicate 75th (q3) and 25th (q1) percentiles, respectively. Dots
in panel B are aggregate number in each experiment, and dots in panel C are each aggregate area in
experiments.

gation dynamics (Fig. 2B and C). Therefore, previously used metrics to characterize
aggregation such as the fraction of cells within the current area of aggregates could be
overly sensitive to this variability.

To quantify the distribution of the tracked cells relative to the aggregates in a way
that is robust to the variability of aggregation rate, we decided to focus on the fraction
of cells accumulated inside the final-frame boundaries of the aggregates. If the tracked
cells were uniformly distributed, we would expect that fraction to be equal to the
fraction of area covered by aggregates, i.e., F,q4(ts.q). Therefore, to see if labeled cells
are overrepresented, we focus on

Ni(1)
Ntot

P(t) = - Fugg(tﬁnal) (1)

Here, N,, is the number of tracked cells inside the final aggregate area and N,,, is the
total number of tracked cells over the total field of view area. We do this calculation for
each frame (at time t) and use it to quantify the aggregation rate of labeled cells.

The results for P(t) quantification for aggregation of csgA mixed with WT (red) and
pilC mixed with WT (black) cells are shown in Fig. 3A. To compare it with WT-only
aggregation, we use a data set from reference 14 to compute the same quantity
(Fig. 3A, blue line). The result shows that csgA has a similar aggregation rate to WT
cells. In the final frame, cells inside aggregates are overrepresented by 50% of the
total cell number, P(t;,,) ~ 0.5. In contrast, pilC cells show much weaker aggrega-
tion, P(ts,.) ~ 0.1. To test if overrepresentation of pilC mutants inside the aggregate
is statistically significant, we performed a z-test. The null hypothesis is that the pilC
cells are randomly distributed, and therefore the mean of P(t;,.) is 0. The P value
for accepting the null hypothesis is 0.002, indicating that the pilC mutant is partially
rescued by WT cells.

Aggregation rate, P(1)
Aggregation rate, P(t)

2
Time (hr) Time (hr)
FIG 3 Comparison of aggregation rates (equation 1) between experiment (A) and simulation (B). Solid
line is the average value, and shaded area is a standard deviation for each time point. Red, blue, and
black colors correspond to WT, csgA mixed with WT, and pilC mixed with WT, respectively.
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FIG 4 Experimental results of pilC and csgA cell behavior when mixed with WT cells compared with data
from WT cells alone. Error bars represent bootstrapped 95% confidence interval of the means. (A)
Persistent state speed of cells inside and outside aggregates. (B) Persistent state duration of cells inside
and outside aggregates. (C) Bias ratio as defined in equation 2 shows the tendency of cells to extend their
runs when approaching the aggregates. (D) Nonpersistent duration of cells inside and outside aggre-
gates. (E) Probability of transitioning into a nonpersistent state after a persistent run for cells inside and
outside aggregates.

Motility behaviors of rescued pilC and csgA cells differ from WT cells. To
quantify single-cell behaviors, the cell trajectories were discretized into segments using
the same method as in reference 14. The resulting segmented trajectories were then
quantified as either persistent or nonpersistent run vectors. Persistent runs are inter-
preted as cells moving along their major axis using one or both motility systems
whereas nonpersistent runs correspond to “stops” (or pauses) in progressive move-
ments, during which cells can perhaps be pushed around by other cells. A run vector
begins at a change of state (persistent to either nonpersistent or reversal) and ends at
the next change of state. The properties of the resulting run vectors, such as duration
(time between state changes) and speed (Euclidean distance over time), were used to
quantify single-cell behavior during aggregation. The run vectors were also labeled
with the distance to the nearest aggregate boundary and moving direction relative to
the nearest aggregate center. Previous work has shown that WT cells have longer run
durations when running toward an aggregate (bias effect), and cells decrease their
motility inside aggregates (“traffic jam” effect) (14, 34). These effects have been shown
to be important for aggregation (14, 15, 30). To quantify traffic jam and bias effects, we
focus on the relationship between run vector properties and their distance and
direction relative to aggregates.

To study the relationship between the run vector properties and the distance to
aggregates, we divided the run vectors into 2 groups: those inside aggregates and
those outside. Then we calculated the mean duration and speed for the persistent and
nonpersistent state in each group (Fig. 4). We find that both WT and mutant cells mixed
with WT cells display a traffic jam effect since they all have shorter persistent run
durations and longer nonpersistent run durations inside aggregates (Fig. 4B and D). To
quantify the bias in run duration, we divided the run vectors into 2 groups: those
running toward aggregates and those running away. Then we define the bias ratio by

dy,—d

~ Yaway
— (2)
dull

where d,, is the average run duration of cells going toward aggregates, d,,., is the

B=
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average run duration of cells going away from aggregates, and d,, is the average run
duration of all cells. Figure 4C shows that each mutant mixed with WT cells has a bias
ratio greater than 0, though both are less than WT.

To compare the traffic jam effect of pilC cells mixed with WT cells, we compared the
speed and state durations of pilC and WT cells. In general, pilC cells exhibit longer stop
durations, more frequent stops, and slower speeds, suggesting that loss of S-motility
has compromised their overall mobility. Unlike WT cells, pilC cells show less than a 5%
speed reduction inside aggregates during the persistent state (Fig. 4A) and show only
7% shorter persistent run durations (Fig. 4B). Furthermore, pilC cells show less bias in
their run duration (Fig. 4C). Compared with WT and c¢sgA, smaller differences between
cell behaviors inside and outside aggregates may reduce the traffic jam effect, thereby
impeding aggregation of pilC cells. On the other hand, pilC cells show a longer
nonpersistent duration and a higher probability of transitioning to the nonpersistent
state. However, the difference in the transitioning probability between inside and
outside aggregates is smaller (Fig. 4D and E).

Similarly, we compared the traffic jam and bias effects of a csgA-WT mixture with WT
cells. While csgA speed is ~20% faster than WT cells inside aggregates, csgA cells show
proportional speed reduction inside aggregates (Fig. 4A). Similar to WT cells, csgA cells
also have shorter persistent durations inside aggregates (Fig. 4B), and longer nonper-
sistent durations (Fig. 4D). Moreover, csgA cells increase their probability of transition-
ing to the nonpersistent state when inside the aggregates. However, the difference of
this probability between inside and outside the aggregates of csgA cells is smaller than
that of WT cells (Fig. 4E). All of the above behaviors reduce the motility of csgA cells
inside the aggregates, likely creating a WT-like traffic jam effect.

In comparison with pilC cells, csgA cells likely have a stronger traffic jam effect due
to a more pronounced reduction in speed (Fig. 4A) and persistent run duration (Fig. 4B)
inside the aggregates. On the other hand, their traffic jam effect is expected to be
weaker than WT due to reduced differences in nonpersistent duration (Fig. 4D) and
probability between inside and outside (Fig. 4E). The csgA cells also have a weaker bias
than WT cells (Fig. 4C). It remains to be seen why, despite a somewhat weaker bias and
traffic jam effect, about the same proportion of csgA cells accumulate in the aggregate
as WT cells (Fig. 3).

Data-driven models can match the aggregation dynamics of pilC and csgA cells
based on the quantified motility parameters and their correlations. To more
stringently test the effect of cell behaviors on aggregation, we extended the data-
driven model approach used in our previous work (14) to model experiments with
mixtures of two strains. To this end, we introduce a population of two agents corre-
sponding to WT and mutant (either pilC or csgA) cells. Agent behaviors are chosen from
the experimental data using K-nearest neighbor (KNN) sampling based on simulation
time and the agents’ distance and moving direction relative to the nearest aggregate.
Given that the overwhelming majority of cells in the experiments are WT, we use only
WT agent density to detect aggregates. This way, WT agents affect the behavior of
mutant agents but not vice versa. At each time step, the WT density profile is estimated
from the WT agent positions by kernel density estimation (KDE) (35), and the aggre-
gates are then detected from the density profile. Thereafter, we pick agent behaviors
and move agents accordingly. Each simulation was run for 5 h, after which we calcu-
lated the aggregation rate P(t) as we did for the experiment. Simulations containing
csgA agents mixed with WT agents display an aggregation rate similar to that of WT
agents, whereas simulations with pilC agents exhibit much weaker aggregation
(Fig. 3B). Comparing the results of these simulations to the experimental measurements
(Fig. 3A), we concluded that the model can reproduce the aggregation dynamics for WT
and each mutant cell mixture with WT. In other words, dependencies (correlations)
included in the sampling of agent behavior contain sufficient information to recapture
observed aggregation dynamics.

As a control for the previous simulations, we performed simulations where we
removed all dependencies such that agent behavior was randomly chosen from the

July/August 2020 Volume 5 Issue 4 e00518-20

mSystems’

msystems.asm.org 6


https://msystems.asm.org

Cell Behaviors Controlling Myxobacterial Aggregation

3

6 x10 15 __
C <
2 =
84 ,’ \’ 1 g

Y P
[} 2]
c ,'\\"",n ,’\,»// 2
kel v‘\ oy ©
92 Vi () 0.54%
E ’Pn [ I~ Ly \.l o
0 oY L 0

02 3 a5 0 T 3 E 2 3 4 5

Time (hr) Time (hr) Time (hr)

FIG 5 Analysis of agents moving in and out of aggregates at each time step for csgA (A), WT (B), and
pilC (C). Red lines are the 10-min moving average of the fraction of agents moving into all aggregates
at a given time. The fraction is calculated as a ratio of agents moving into the aggregate and the total
number of agents simulated. Similarly, black lines are the 10-min moving average of the fraction of
agents moving out of the aggregates. The shaded areas are 95% confidence interval of the moving mean.
The right vertical axis and dashed green line show the ratio of number of agents moving out of
aggregates divided by the number of agents moving in the aggregates.

whole data set. As expected, we did not see any aggregation for mutant mixtures or WT
agents (Fig. S2A to C). This result shows that some combination of cell behavior
dependence on time, distance, and direction to nearest aggregate is essential for
aggregation. Since there are many cell behavior dependencies in this model, our next
step is to find which dependencies are more important for aggregation.

Previous work on WT aggregation has shown that cell behaviors are different at
different times during development, and this time dependence of cell behaviors affects
aggregation dynamics (14). To determine whether time dependence is important for
mutant cell aggregation, we performed simulations where agent behavior does not
depend on time. Removing time dependence for WT aggregation causes P(t,,) to
drop from ~0.45 to ~0.35 (Fig. S2F), which confirms our previous result (14) that time
dependence helps WT aggregation. However, removing time dependence for mutant
agents (while keeping it for WT agents) does not affect aggregation dynamics for either
pilC (Fig. S2D) or csgA (Fig. S2E). This shows that behavior dependence on time is not
important for mutant cell aggregation.

To further illuminate differences between WT, cgsA, and pilC strains, we used our
simulations to quantify the fraction of cells that enter and exit aggregates as a function
of time (Fig. 5). The results indicate notable differences. Comparing WT and cgsA, we
can see that, although more cgsA cells reach the aggregates (red line in Fig. 5A versus
Fig. 5B), a larger fraction of these cells leave (green line in Fig. 5A versus Fig. 5B).
Therefore, we can hypothesize that reduced traffic jamming of cgsA cells is compen-
sated by increase in motility. On the other hand, for pilC cells, the motility defects make
them less likely to reach aggregates and slightly less likely to stay, leading to only weak
aggregation. In what follows, we aim to test these hypotheses and relate these
observations with the trends in cell behaviors quantified in Fig. 4.

Transitioning to and staying in the nonpersistent state in aggregates does not
help pilC and csgA aggregation. Given that the increase of nonpersistent state
duration increases the time that cells spend inside aggregates, we hypothesized that
this effect is an essential component of the traffic jam effect and aids the aggregation
of mutant cells. To test this hypothesis, we performed simulations where the nonper-
sistent state duration for agents is not conditional on their position relative to the
aggregate. Surprisingly, removing this dependence does not have an obvious effect on
pilC (Fig. 6A) or csgA (Fig. 6B) and leads to only a modest decrease in WT aggregation
[~0.05 or ~10% drop in P(tg,.); Fig. 6C]. This result shows that longer “stops” inside
aggregates are not the main reason for successful aggregation.

To assess the effects of a higher probability of “stops” (i.e., nonpersistent runs) inside
the aggregates, we performed simulations where the probability of transitioning to a
nonpersistent state is independent of the agents’ position (i.e., sampled from the same
distribution inside and outside an aggregate). We discovered that removing this
dependence does not affect aggregation for pilC (Fig. 6D) or csgA (Fig. 6E) and leads to
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FIG 6 Comparison of the aggregation rates [quantified as P(t), equation 1] (on y axis) from simulations
of pilC (A and D) and csgA (B and E) cells mixed with WT cells and WT (C and F) cells alone. Blue line and
shaded area are the simulation result under conditions where agent behavior is chosen from experi-
mental data. Black lines represent simulations where nonpersistent behavior does not depend on
distance to aggregates (A to C) or in which probability to nonpersistent state does not depend on
distance to aggregates (D to F). Shaded areas show standard deviations.

only an ~0.07 (~15%) drop in P(tg,.) for WT (Fig. 6F). It appears that longer nonper-
sistent state durations and a higher probability of transitioning to the nonpersistent
state are not the main reasons for cell accumulation in aggregates. In summary, the
difference in stopping probability and duration between inside and outside the aggre-
gates is not critical for the traffic jam effect or can be compensated by other mecha-
nisms.

Behaviors in the persistent state are critical for the aggregation. To test which
persistent state behaviors are important for aggregation, we first removed the bias
toward aggregates, which is the dependence of run duration on the angle between the
moving cell and the closest aggregate. This leads to an ~0.03 drop in P(ts,,,) for pilC
(Fig. 7A). For csgA (Fig. 7B) and WT (Fig. 7C), P(t;,,) drops to the 0.15 to 0.2 range. This
result shows that bias in run duration is essential, more so for csgA and WT aggregation
than pilC aggregation. This also agrees with Fig. 4C where we showed that csgA and WT
cells have larger bias ratios than pilC cells. However, given the overall poor aggregation
of pilC, the decrease associated with lack of bias is still important and in relative terms
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FIG 7 Comparison of the aggregation rates [quantified as P(t), equation 1] (on y axis) of simulation of
pilC (A and D) and csgA (B and E) cells mixed with WT cells and WT (C and F) cells alone. The blue lines
and shaded area are simulation results under normal conditions. The black lines represent simulations
where persistent behavior does not depend on run direction, i.e., without bias (A to C), or in which run
duration does not depend on the distance to aggregates, i.e., without traffic jam (D to F). Shaded areas
show standard deviations.
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sufficiently different from wild-type to affect the aggregation rate [quantified as P(t), equation 1] (on the
y axis). Blue lines are simulation results of agents using pilC cell data. Red lines are simulation results of
agents using WT cell data. Green lines are simulations of agents using pilC data with partial WT cell data.
Black lines are simulations of agents using WT data with partial pilC cell data. (A) Green is agents using
WT cell probability to nonpersistent state and other pilC data. Black is agents using pilC probability to
nonpersistent state and other WT data. (B) Green show agents using WT cell nonpersistent state duration
and other pilC data. Black is agents using pilC cell nonpersistent state duration and other WT data. (C)
Green is agents using WT cell persistent state duration and other pilC data. Black is agents using pilC cell
persistent state duration and other WT data. (D) Green is agents using WT cell persistent state speed and
other pilC data. Black is agents using pilC cell persistent state speed and other WT data. Only mean values
are plotted for clarity.

is just slightly weaker than that of the other strains [30% reduction of final P(t,,,) for
pilC versus 40% for csgA and 45% for WT].

Next, we attempt to make the cells behave the same way inside and outside the
aggregate to remove the traffic jam effect but maintain the bias. First, we removed
persistent state speed and duration dependence on the agents’ distance to the nearest
aggregate while keeping the dependence of run duration on the angle between the
moving cell and the closest aggregate. The results show that removing the distance
dependence decreases aggregation for all types of cells: P(t,,) drops ~0.03 for pilC
(Fig. 7D) and drops ~0.25 for csgA (Fig. 7E) and WT (Fig. 7F) cells. Therefore, the
reduction of speed and duration inside aggregates is important for aggregation.
Interestingly, the reduction of speed and duration can also be considered a traffic jam
effect. Comparing the traffic jam effects in the nonpersistent state, i.e., longer duration
and higher probability of nonpersistent state inside aggregates, traffic jam effects in the
persistent state appear to be more important. Notably, removing persistent speed and
duration dependence on distance decreases aggregation more in csgA and WT cells
than in pilC cells. Even considering the poor aggregation of pilC, the relative decrease
in aggregation is still weaker for pilC [30% reduction of final P(t,,.,) for pilC versus 55%
for csgA and 55% for WT]. This shows that csgA and WT cells have a stronger traffic jam
effect than pilC, in agreement with Fig. 4A and B.

Different motility behaviors of pilC and csgA cells explain the partial rescue of
pilC and full rescue of csgA. The results thus far match the observed behaviors of
mutant cells with their observed aggregation dynamics. Next, we try to determine
which mutant cell behaviors are responsible for the different aggregation rates com-
pared with WT. To this end, we introduce a new “hybrid” simulation technique in which
certain aspects of mutant and WT agent behaviors are swapped with one another or
scaled to match the mean of another. For example, the experimental data show that
pilC mutants switch to the nonpersistent state more frequently and stay in the
nonpersistent state longer (Fig. 4D and E). To determine whether these behaviors
contribute to weaker aggregation, we performed simulations where we swap some of
the pilC motility behaviors with WT behaviors (Fig. 8). When agents use the pilC
probability of transitioning to the nonpersistent state and WT data for other behaviors,
aggregation drops [P(t;,,,) drops ~0.2] (Fig. 8A). On the other hand, agents’ use of WT
probability of transitioning to the nonpersistent state with pilC data for other behaviors
does not improve pilC aggregation (Fig. 8B). To further confirm that the decrease in
aggregation is due to longer stops or a higher stopping frequency rather than some
other feature of the pilC data, we performed simulations of WT cells where we increased
only the nonpersistent duration or nonpersistent probability to match the average data
of pilC cells (Fig. S3). The aggregation rate is decreased compared to WT aggregation,
suggesting that frequent stops are one of the major impediments to pilC aggregation.

July/August 2020 Volume 5 Issue 4 e00518-20

mSystems’

msystems.asm.org 9


https://msystems.asm.org

Zhang et al.

2 3 4 50 1 2 3 450 12 3 450 12
Time (hr) Time (hr) Time (hr) Tim

FIG 9 Simulations swapping WT data and csgA cell data demonstrate which mutant cell behaviors are
sufficiently different from wild type to affect the aggregation rate [quantified as P(t), equation 1] (on y
axis). Blue lines are simulation results of agents using csgA cell data. Red lines are simulation results of
agents using WT cell data. Green lines are simulations of agents using csgA data with partial WT cell data.
Black lines are simulations of agents using WT data with partial csgA cell data. (A) Green is agents using
WT cell probability to nonpersistent state and other csgA data. Black is agents using csgA probability to
nonpersistent state and other WT data. (B) Green is agents using WT cell nonpersistent state duration and
other csgA data. Black is agents using csgA cell nonpersistent state duration and other WT data. (C) Green
is agents using WT cell persistent state duration and other csgA data. Black is agents using csgA cell
persistent state duration and other WT data. (D) Green is agents using WT cell persistent state speed and
other c¢sgA data. Black is agents using csgA cell persistent state speed and other WT data. Only mean
values are plotted for clarity.

To learn how pilC persistent behaviors affect aggregation, we performed simulations
where agents use the WT persistent duration data combined with other pilC cell data
and vice versa (Fig. 8C). Agents using pilC persistent duration combined with other WT
data have reduced aggregation compared with WT [P(t,,,) drops ~0.25]. Agents using
WT persistent duration combined with other pilC data show improved aggregation over
pilC [P(ts,,.,) increases ~0.02]. This is not surprising since WT cells have a much stronger
persistent duration bias, and stronger bias leads to more complete aggregation. Finally,
agents using pilC persistent speed combined with other WT data have reduced
aggregation compared with WT [P(t;,.) drops ~0.2] whereas WT persistent speed
combined with other pilC data improves pilC aggregation [P(tg,,) increases ~0.02]
(Fig. 8D). This is because pilC cells have similar speeds inside and outside aggregates
whereas WT cells have slower speeds inside aggregates and this slowdown improves
aggregation. Overall, our results show that weak aggregation of pilC is due to slow
speed, longer nonpersistent durations, and a higher probability of transitioning to the
nonpersistent state.

For csgA mutants, Fig. 4E shows that the difference for stopping probabilities and
durations inside and outside aggregates is less pronounced than WT. To test whether
these behaviors decrease aggregation, we performed a simulation where agents use
WT data for probability of transitioning into the nonpersistent state and csgA data for
other behaviors. This simulation does not improve csgA aggregation (Fig. 9A). But
agents using csgA probability to transition to the nonpersistent state and WT data for
other behaviors cause P(tg,,,) to drop ~0.05 compared with WT aggregation. Moreover,
in Fig. 9B, agents using csgA nonpersistent duration and WT data for other behaviors
show a slight decrease in aggregation compared with WT aggregation [P(t;,,) drops
~0.05]. On the other hand, agents using WT nonpersistent duration and csgA data for
other behaviors show a slight increase in aggregation compared with csgA aggregation
[P(ts,q) increases ~0.02]. These results show that the differences in nonpersistent state
switching and duration between WT and c¢sgA do not affect aggregation much.

To learn how csgA persistent behaviors affect aggregation, we performed a simu-
lation where agents use persistent duration of WT cells and other behaviors of csgA
cells (Fig. 9C). This leads to a slightly better aggregation compared with csgA cells
[P(ts,a) increases ~0.05]. Agents using csgA persistent duration and other WT cell
behavior show a slightly lower aggregation compared with WT cells [P(tg,,) drops
~0.07]. Note that WT persistent duration has a bigger bias but shorter duration. To
learn whether a shorter duration will decrease csgA aggregation, we performed a
simulation where agents use csgA data but scale the persistent duration to match the
average duration of WT cells. This led to a lower aggregation (Fig. S4). These results
show that the csgA weaker bias is partially compensated by the longer persistent
duration.
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Finally, to find whether the faster speed of csgA cells in the persistent state helps
aggregation, we performed simulations where agents use csgA persistent speed and
other WT behaviors (Fig. 9D). This leads to faster aggregation, but P(t;,.) remains the
same compared with WT. Moreover, agents using WT persistent speed and other csgA
behaviors have a slightly lower aggregation rate compared with csgA. This result shows
that csgA cells’ faster speed compensates for the weaker (compared with WT cells) bias
in persistent duration and explains why csgA and WT cells show similar aggregation
rates. Therefore, the rescue of collective behaviors can occur even without the com-
plete rescue of the underlying single-cell behaviors.

DISCUSSION

In this work, we developed a novel methodology to assess which aspects of
individual cell behavior are responsible for observed trends in collective self-
organization. We show that this approach is both robust and versatile by examining
how aggregation is restored when csgA and pilC mutants are mixed with wild-type (WT)
cells. The csgA rescue is quantitatively complete based on the percentage of cells in the
aggregate whereas pilC rescue is marginal. As with our previous analysis of wild-type
aggregation dynamics, we conclude that three features of cell behavior contribute to
efficient accumulation in aggregates. First, the cells follow aligned paths that precede
the appearance of aggregates such that their orientations are correlated with one
another and with the direction to the nearest aggregate likely to appear along their
path. That essentially reduces the search for aggregates to one dimension (1D). Second,
due to the bias in persistent run durations, cells move longer when approaching an
aggregate than when moving in the opposite direction. This biased random walk
results in an increase in cell flux toward the aggregates and accelerates the aggregation
dynamics. The biased walk appears to be due to chemotaxis (15), and several lipids are
known to be chemoattractants (24, 44). Finally, once in aggregates, the cells are less
likely to leave. Notably, all three strains displayed these three features, but their
contributions are roughly proportional to the extent of aggregation, with pilC being the
worst.

Our approach enables a detailed examination of motility parameters that mediate a
particular aggregation feature. For example, we extended the data-driven modeling
approach for hybrid populations of agents that correspond to wild-type and mutant
behaviors by using swapped-data set sampling (Table 1) to pinpoint cell movement
features that are responsible for trapping cells in an aggregate. When cells enter an
aggregate, their speed decreases, the time spent in a persistent state decreases, their
probability to transition to a nonpersistent state increases, and the time spent in the
nonpersistent state increases. By swapping each of these features between WT and
mutant in agent-based models, we discovered that longer nonpersistent state duration
and a higher probability of transitioning to the nonpersistent state are not the main
reasons cells accumulate in aggregates. Rather, reduction in speed and run duration are
the most critical features that trap cells in aggregates. It is possible that this result will
inform those now searching for the enigmatic chemical signal that traps cells in an
aggregate.

Our approach also revealed that csgA achieved complete rescue despite differing in
most WT motility parameters. Most notably, csgA cells show longer persistent run
distances resulting from faster speeds and longer durations in the persistent state and
compensate for a reduced biased random walk to produce similar aggregation to WT
cells. Genetic studies have shown that csgA cells possess both motility systems. The
mutant fails to develop specifically because it fails to produce one or more essential
developmental signals that mediate aggregation in addition to a signal that induces
sporulation. While the mutant clearly responds to the wild-type signal(s), it would
appear that the csgA mutation causes a slight downstream effect in perception or
motility regulation that reduces the bias. The chemical nature of the aggregation
signal(s) remains unknown, but it seems to be a development-specific lipid-like mole-
cule (5). The signal is unlikely to be the exopolysaccharide (EPS) used in S-motility as
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TABLE 1 Summary of performed simulation and effect of mutant behaviors on aggregation

Observation

Simulation performed

Effect on aggregation

pilC mutants switch to nonpersistent
state more frequently.

pilC mutants stay in nonpersistent
state longer.

Run duration for pilC mutants shows
lesser dependence on cell density
and smaller bias.

pilC mutants do not show speed
reduction inside the aggregates.

Stopping probability inside and
outside aggregates is less
pronounced for csgA mutants.

Stop duration inside and outside
aggregates is less pronounced
for csgA mutants.

¢sgA mutants have a weaker bias

pilC agents use WT data for the
probability of transitioning to the
nonpersistent state and vice versa.

pilC agents use WT data for the duration
and speed of the nonpersistent state
and vice versa.

pilC agents use WT data for persistent
duration and vice versa.

pilC agents use persistent speed scaled to
match WT data and vice versa.

¢sgA agents use WT data for the
probability of transitioning to the
nonpersistent state and vice versa.

csgA agents use WT data for the duration
and speed of the nonpersistent state
and vice versa.

csgA agents use WT data for the duration

Frequent stops slow down aggregation (Fig. 8A),

but the final aggregation result is similar
after a longer simulation time (Fig. S3).

Longer stops slow down aggregation (Fig. 8B),

but the final aggregation result is similar
after a longer simulation time (Fig. S3).

Smaller bias and difference between inside and

outside aggregates for run durations
impede aggregation (Fig. 8C).

Lack of speed reduction inside the
aggregates impedes aggregation (Fig. 8D).

The density dependence of stopping probability
does not have a major effect on aggregation (Fig. 9A).

Density dependence of stopping
slightly impedes aggregation (Fig. 9B).

While longer persistent duration helps csgA

but longer duration in the
persistent state than WT.

of the persistent state.
Scaled the persistent duration of csgA
agents to match mean values of WT.

aggregation (Fig. S4), the weaker bias has an opposite and
stronger effect. Overall, compared with other behaviors,
csgA persistent duration

impedes aggregation more (Fig. 9C).

csgA mutants have faster Faster speed speeds up aggregation (Fig. 9D).

speed in persistent state.

¢sgA agents use WT data for the
persistent speed and vice versa.

csgA produces normal levels of EPS, shows normal agglutination, and possesses
S-motility.

Finally, we attempted to learn why pilC rescue is so poor. pilC cells are significantly
attenuated for all behaviors that are important for wild-type aggregation. The swapped
data set sampling approach revealed that the failure of pilC cannot be attributed to one
or two specific changes. pilC cells lack pili and EPS. S-motile cells use the pilus to attach
to EPS on adjacent cells, and retraction of a motor at the base of the pilus pulls the cell
forward. pilC cells have significantly decreased bias which our results suggest is due to
reduced speed, reduced run durations, and increased frequency of transiting to the
nonpersistent state. As the WT cells would be expected to provide normal levels of EPS
and other required signals, pilC cells clearly lack the appropriate response. This is a
striking finding in view of the observation that neither pili nor S-motility is required for
aggregation. Some S mutants, like pilA (which encodes the pilus structural protein) and
pilT (which encodes the pilus retraction motor), can aggregate using only the A-motility
system (36, 37). The results point to a downstream defect, perhaps related to the
perception of lipid chemoattractants, which has been noted in certain S mutants but
not examined specifically in pilC. The pilC mutant also has a diminished traffic jam
effect. pilC cells frequently leave aggregates and ultimately are about 4-fold less
abundant than csgA or WT cells. Again, the as-yet-unknown signal(s) used to hold cells
in aggregates should be in sufficient concentration, leading one to suspect that the
problem is more specifically due to pilC response to the signal.

There is also a striking difference in the rescue of the two mutants for sporulation
by WT cells. As a benchmark, WT cells form 0.14 spores per input cell with the
remaining cells undergoing alternate developmental fates such as programmed cell
death and formation of peripheral rods. WT cells efficiently rescue the sporulation of
csgA mutants. csgA cells alone form 2 X 107> spores per input cell, which increases to
0.15 spores per input cell in the presence of WT cells. In contrast, WT cells do not rescue
pilC sporulation. pilC cells alone form 3 X 103 spores per input cell, which increases
minimally to 4 X 1073 spores per input cell in the presence of WT cells. Sporulation is
thought to have little bearing on aggregation since it occurs after aggregation is
complete. Nevertheless, these results clearly support the ideas developed in this work
for aggregation that csgA cells are proficient in responding to signals, unlike pilC.
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Data-driven modeling approaches can identify important correlations that drive
self-organization as a first step to understand the mechanisms. For example, in our
previous work we have combined data-driven and mechanistic agent-based modeling
to show that steric alignment and slime-trail following are sufficient to explain how
cells align during aggregation (15). Moreover, we also showed that chemotaxis rather
than contact-based signaling is responsible for bias in reversal times for cells moving
toward versus away from the aggregates (15). However, the exact molecular pathway(s)
responsible for chemotaxis has yet to be determined. Furthermore, molecular mecha-
nisms for the interactions that decrease the residence time of cells inside the aggre-
gates (traffic jam effects) are not clear. Another interesting observation is that both
mutant strains considered here displayed differences from wild-type behavior in all the
behaviors driving aggregation. That fact can indicate complex or possibly pleiotropic
interactions between the pathways controlling cell behavior. Perhaps application of the
developed methodology to mutant strains with more subtle phenotypes can shed light
into these challenges in future work.

Multicellular self-organization is prevalent in biological systems but has proven
challenging to study. There are complex feedback and compensatory mechanisms at
the population level as well as pleiotropic effects of single mutations. Given significant
heterogeneity of individual cell behaviors, small trends in behaviors between mutant
strains could dissipate over time or in contrast could accumulate, leading to differences
in the emergent patterns. Our results demonstrate how careful quantification of cell
behavior coupled to data-driven modeling approaches can predict these effects and
pinpoint important synergies and compensatory mechanisms.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. All M. xanthus strains were grown in CYE broth
(1% Bacto Casitone [Difco], 0.5% yeast extract [Difco], 10 MM 4-morpholinepropanesulfonic acid [MOPS]
[pH 7.6], and 0.1% MgSO,), and development was induced on thin (10 mlin 100-mm petri dish) TPM agar
[10 mM Tris-HCl (pH 7.6), T mM KH(H,)PO, (pH 7.6), 10 mM MgSO,, 1.5% agar (Difco)] plates containing
1 mM isopropyl-B-p-1-thiogalactopyranoside (IPTG) and 100 uM vanillate as described in reference 14.
Strain LS3910 was constructed by electroporation (38) of pLJS145 (14) into LS2442 (39) Transformants
were selected using CYE 1.5% agar plates containing 15 ug ml—" oxytetracycline. pilC mutant LS3011 was
constructed by Magellan mutagenesis of DK1622 as described in reference 40. Strain LS4223 was
constructed by electroporating the tdTomato plasmid pLJS145 into LS3011 with selection on CYE agar
containing 15 ug ml~—" oxytetracycline.

Fluorescence time-lapse microscopy. Time-lapse image capture was performed as described in
reference 14. As in reference 14, the beginning of aggregation varied between replicates by up to 1 h.
To avoid possible bias in movie alignment caused by differences in the aggregation rate of WT and
mutant cells, the approach of using the fraction of tdTomato cells within the aggregates used in
reference 14 was replaced with a technique that relied on YFP fluorescence. To quantify aggregation
progress using YFP fluorescence, the 2-D Fourier transform coefficient magnitudes for wavelengths
between 50 and 100 um were summed for each frame. Aggregation start was then detected as the point
at which the summed magnitude in the movie frames crossed 20% of the maximum value reached in
that movie. Movies were then cropped to align the detected beginning of aggregation and equalize their
lengths as described in reference 14.

Developmental assays. The developmental assays were performed by mixing the tdTomato fluo-
rescent strain LS4223 or LS3909 with the YFP fluorescent wild-type strain LS3630 in a 1:10,000 ratio.
tdTomato fluorescence indicated positions of the individual cells for strains LS4223 and LS3909, while the
YFP fluorescence revealed the territories of the LS3630 cell aggregates. Specifically, 100 liters of the
tdTomato-expressing strains and 1 ml of the YFP or nonfluorescent strains in the exponential phase were
collected by centrifugation at 17,000 X g for 1 to 2 min and washed with 100 liters of ddH.,O, respec-
tively. The tdTomato strains were further diluted to 5 X 106 cells mI~", while the YFP or nonfluorescent
strains were concentrated to 5 X 108 cells ml~" in ddH,0. The diluted tdTomato strains were then mixed
with the YFP or nonfluorescent strains in a 1:100 ratio, resulting in a final ratio of 1:10,000 between the
tdTomato and the YFP or nonfluorescent cells. Thirty-five liters of the cell mixtures in 4 to 6 replicates was
spotted onto a TPM plate and dried out in a 32°C incubator for 30 to 45 min. The plate was sealed with
Parafilm and incubated in a 28°C dark room. With strains or mixtures that developed, development
usually started between 7 and 10 h postincubation and produced stable aggregates in another 5 to 8 h.
For time-lapse movies, images were captured at 30-s intervals beginning about 1 h before the initiation
of aggregation and lasting until the formation of stable aggregates.

Viable spore data were obtained as noted previously (41).

Cell tracking, cell state detection, run vector extraction, and aggregate tracking. Cell tracking,
cell state detection, and run vector extraction were performed as described in reference (14). Time-lapse
images were band-pass filtered to filter out the background fluorescent signal. Thereafter, the MATLAB
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function ‘regionprops’ was used to identify the centroid and orientation of every fluorescently labeled
cell. Image-to-image linking of detected cell positions into trajectories is achieved using the method
introduced in reference 42. To detect movement characteristics of the cell, an extended Kalman filter
(EKF) was developed to estimate the most likely movement state of the cell at a certain time step. Here,
we assume cells will be in one of three different states: persistent forward, persistent backward, and
nonpersistent state. The EKF uses the anticipated cell position and detected cell position to calculate the
probability of every state. The state with the maximum likelihood was then assigned as the movement
state between the two images. Cell trajectories were then divided into run vectors, which start at the start
of one contiguous movement state and end with the following change of state. The average speed,
duration, distance, angle to the closest aggregate centroid, and distance to the closest aggregate
boundary were calculated for every run vector. The detection of aggregate is based on the light intensity
of pixels. The threshold of the aggregate light intensity is calculated using K-means clustering on the
pixels in the final frames of experiments. Areas with light intensity higher than the threshold are
considered aggregates. For simulations in Fig. S6 in the supplemental material, this threshold is increased
by 20%.

Data-driven agent-based model. The agent-based model used here is adapted from our previous
work (14). Given that simulations with the experimental mutant-to-WT ratio will lead to an unfeasible
number of agents to simulate, we instead chose to implement the wide excess of WT cells via asymmetry
in their interactions. We sample behaviors of both WT and mutant cells conditional only on the WT
population distributions (see below). Each simulation consists of 10,000 WT agents and 8,000 mutant
agents on a rectangular domain of 986 um X 740 um, equal to the microscope field of view, with
periodic boundary conditions along each side. Each agent represents a single cell sampled from a biofilm
of the same average density as in experiments (1.1 cells/um?), similar to sampling cell behaviors in the
biofilm using a small number of fluorescently labeled cells. Similar to our previous model (14), each
agent’s behaviors such as run speed, run duration, and run angle are drawn from the experiment data
based on the time since the beginning of the experiment, the angle between the cell orientation and the
average bearing angle of neighboring runs, and distance and angle to nearest aggregate. Note that
unlike our previous model (14), here we did not use local cell density extracted from the time-lapse
microscopy to choose our agent behaviors since the light intensity in the experiment varies too much
for reliable density estimates outside the aggregates. We use the same method as in reference 14 to
select run behavior for agents. Varying the number of mutant agents simulated does not significantly
alter the results (e.g., Fig. S5).

Since in the experiments the ratio of WT to mutant cells is over 10,000:1, it is fair to assume that WT
cell behavior is not affected by the mutant cells. Therefore, in the simulation, we usually chose the agent
behavior based solely on the population distribution of WT agents. Moreover, the density estimation in
simulation uses only WT agents so that mutant agents will not affect WT agent behavior. However, in
simulations where we swap some WT data with mutant data, e.g., in Fig. 8 and 9, we do this by replacing
some mutant data with WT data or vice versa and feed the combined data to mutant agents. WT agents
will always use WT data to provide background information such as neighbor cell alignment and density
profile, etc.

For simulations where agents use both mutant data and WT data (Fig. 8 and 9), the simulation
process is slightly different from the original (14). In particular, simulations where agents use WT data for
nonpersistent probability or nonpersistent state behavior and mutant data for other behaviors, agents
will choose their behaviors from WT data or mutant data accordingly using nearest-neighbor methods.
A similar procedure is applied for simulations where agents use mutant data for nonpersistent proba-
bility or nonpersistent state behavior and WT data for other behaviors. For simulations where agents use
WT data for persistent state speed or duration and mutant data for other behaviors, agents will choose
their behaviors from mutant data only and then scale the persistent state speed or duration to match the
mean of the WT data. This way, we can keep the correlation between the speed and duration in the
mutant data. Moreover, to keep the bias in WT data, we split WT data into 2 branches: data of cells
moving toward the aggregate and data of cells moving away from the aggregates. To keep the traffic
jam effect in WT data, we further split the 2 data branches into smaller branches based on the distance
to aggregate: each branch now contains data of cells with distance to aggregate within a 1-um window
and moving in the same direction. Then we calculate the mean speed or duration of each branch of data.
We perform a similar calculation for mutant data and use the means to scale the agent behavior to match
the WT data using the following equation:

B, (dir, dis)

B(dir, dis) = WBWT(W» dis) (3)

where B is the final scaled behavior (speed or duration) for the agent, dir is the moving direction (moving
toward or away from aggregate) of the agent and dis is the distance to aggregate, B, is the selected
behavior from mutant data, B,,, is the mean of the mutant data calculated as above, and B, is the mean
of WT data calculated as above. For simulations where agents use mutant data for persistent state speed
or duration and WT data for other behaviors, we apply a similar procedure, and the equation to scale the
agent behavior becomes:

B, (dir, dis)

B(dir, dis) = mBmu(dlr, dis) (4)

where B, here is the selected behavior from WT data.
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Data and code availability. The original TIFF images recorded in the experiments and used for the
analysis are available at datadryad.org (https://doi.org/10.5061/dryad.1rn8pk0qc). All simulation and
visualization codes are written in Matlab. The codes and resulting data for each figure are available at
GitHub (https://github.com/zzyustcrice/csgA-pilC-wt-matlab).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.5 MB.
FIG S2, PDF file, 0.3 MB.
FIG S3, PDF file, 0.7 MB.
FIG S4, PDF file, 0.5 MB.
FIG S5, PDF file, 0.5 MB.
FIG S6, PDF file, 0.9 MB.
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