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Abstract

Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields,
from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more
protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of
binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse
docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it
seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate
approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions.
We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal
Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-
ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight
correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information
with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of
clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives
high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its
expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket
profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for
binding to a given pocket, and conversely, some key pocket properties for ligand binding.
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Copyright: � 2013 Pérot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been partially promoted by the French IA BipBip project. SP had a grant from the Ministère de la Recherche. The authors thank the
French Institute of Health and Medical Research (Inserm) and the University Paris Diderot for support. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anne.camproux@univ-paris-diderot.fr

. These authors contributed equally to this work.

Introduction

Being able to predict if small organic compounds could bind to

one or more protein targets or if a protein could bind to some

given ligands would be very valuable to drug discovery and

chemical biology projects alike. Among the in silico approaches that

have been developed to assist such investigation, one can

distinguish ligand-based and structure-based methods [1]. These

prediction methods are in part based on two principles that are

only partially true: similar chemical structures tend to present

similar biological activity and similar receptors are supposed to

bind similar ligands [2,3].

Several concepts and algorithms are being used to explore such

questions and include among other chemogenomic approaches

that attempt to fully match target and ligand space, through

methods in which targets are classified, not according to sequence

or fold, but according to the similarity of ligands or via reverse

docking where ligands are positioned in a library of pockets [4–8].

Pharmacophore models based on the 3D structures of protein-

ligand complexes can also be used [9] as well as hybrid 2D/3D

target prediction methods such as ReverseScreen3D [10].

Comparison of binding pockets can be carried out with the aim

of exploring the relationship with the corresponding ligands

requiring or not the 3D structures of the targets [11–14]. To date,

most of the research has been performed separately either from the

viewpoint of ligands or targets. However, whenever possible, it

would be valuable to use information from both ligands and target

binding cavities. Proteochemometric modeling has been developed

along this line and can be defined as a tool to extrapolate from the

activities of known ligands for known target to novel targets and

conversely to virtually screen for selective compounds that are

solely active on a single member of a subfamily of targets

[15,16,17]. By contrast to traditional QSAR approaches usually

based only on the ligand space, proteochemometric modeling is

based on the similarity of a group of ligands and a group of targets,

such as to investigate the so-called ligand-target interaction space
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[18]. The advantage of merging ligand and target information is

illustrated in the study of Weill and Rognan [19] where they

propose a model with a homogeneous cavity description applied to

a unique family of targets (GPCR). They conclude unambiguously

that protein-ligand fingerprints outperform the corresponding

ligand fingerprint in predicting either putative ligands for a known

target or putative targets for a known ligand. Similarly, Yamanishi

et al. [14], develop a novel method to extract sets of drug chemical

substructures and protein domains that govern drug-target

interactions on a genome-wide scale. Their method is based only

on protein domain information, i.e. without considering the 3D

structure of the target, and could help to eliminate molecules with

too many potential off-target interactions or with specific off-

targets expected to lead to severe side effects. Meslamani et al. [20]

have recently suggested that taking into account true 3D cavity

descriptors rather than simple sequence-based target slightly

enhances the accuracy of their models to discriminate true

target-ligand complexes from false pairs. However, much work is

still needed to perform polypharmacology profiling or to predict

off-target interactions [5]. There are several proteochemometric

modeling difficulties such as introduction of a large number of

parameters to model both molecule and binding site spaces, which

may reduce model performance, or ensuring that both compound

and protein descriptors are compatible and interpretable [21–22].

Taken together, the concepts and studies mentioned above

demonstrated that considering ligand and pocket descriptors

together is of major importance and prompt us to propose a new

description of the protein-ligand interface by merging, optimizing

and combining descriptors of the protein-ligand pair space. We

want to investigate the development of a method that relates

ligand characteristics with protein pocket characteristics at first

within the framework of known ligand-protein interactions. In this

paper, we propose an original method to model and explore what

we call the pocket-ligand pair space. For this purpose, we used a

dataset of co-crystallized pockets and ligands and computed

descriptors on both pockets and ligands. We then developed a

classification engine proceeding on this pocket-ligand pair space

obtained through a Principal Component Analysis (PCA), which

helps the exploration and optimization of the pocket-ligand pair

space. The structural and physico-chemical similarities between

the pocket-ligand pairs are then visualized in a clustering tree that

reveals five main clusters of pocket-ligand pairs sharing specific

and similar topological and physico-chemical characteristics.

These pocket-ligand pair clusters are meaningful and capture

similarity in terms of recognition characteristics that can be

relevant information with respect to protein-ligand interaction

properties. Our classification can provide information about the

profile of a putative ligand for a given pocket and conversely.

Taken these five main clusters as reference classes, we then

propose a cluster prediction method. The method enables first to

assign a new pocket-ligand pair to one cluster and then to propose

potential partner characteristic profile by assigning a ligand or a

pocket to one of the clusters.

Results and Discussion

Determination of Pocket-ligand Pair Space Characteristics
A multivariate analysis on pocket-ligand pair space was used to

take into account the interaction between a target and a ligand.

This was performed by combining both the physico-chemical and

geometric properties of pocket and ligand descriptors extracted

from a large training set of 483 complexes from the PDBbind and

Astex datasets.

The first step consisted to remove most redundant descriptors

amongst the 24 considered pocket descriptors and amongst the 20

considered ligand descriptors but keeping the most informative

pocket-ligand properties involved in the interaction using corre-

lation parameter (see Materials and Methods). Typically, when

several pocket descriptors are strongly correlated, the one being

also relevant on ligands is chosen to favor correspondences

between pocket and ligand spaces. Similarly, if several ligand

descriptors are strongly correlated, the one that can be computed

on pockets is kept. For instance, sphericity descriptor exhibits a

strong negative correlation with volume (20.77, see Figure S1.A),

thus only the volume descriptor, easily calculated and interpretable

for both pockets and ligands, is considered for the analysis.

Conversely roughness descriptor exhibits weak correlation with

volume one (20.28, see Figure S1.B) and could give complemen-

tary information to volume data and is therefore kept.

At the end of this descriptor selection protocol, there are 24

descriptors left with 8 computed on both pockets and ligands:

volume, polarity, moments of inertia one and three (lambda0,

lambda2), charge, hydrogen bond donor counts and proportions

(respectively, HBD and hbd%), hydrogen bond acceptor counts

(HBA), 4 descriptors to describe more precisely the pocket

topology: roughness, planarity, narrowness, hydrogen bond

acceptor proportions (hba%) and 4 descriptors to describe the

ligand: rotatable bond counts and proportions (RBond, rbond%)

and which 2 describing the ligand polarity (polar surface area

(PSA), LogP. The average value and standard deviation of these 24

descriptors are given in Figure 1 (first column). These average

values are in agreement with several typical features already

observed in previous studies. For instance, our average pocket

volume (943 Å3) is close to the one observed by Nayal et al. [23]

(930 Å3), despite the fact that binding site description is depending

both on datasets and methods used to compute pocket volume.

Another important feature taken into account is polarity since

polar interactions play a crucial role in the binding. We observe

here similar polarity values on average for pockets and ligands

(respectively, 0.3560.1 for pockets and 0.3060.1 for ligands) in

agreement with the pocket polarity ratio estimated in the study of

Eyrisch et al. [24], which lies between 0.25 and 0.45. The observed

average pocket roughness in our study, 3.1560.29, is in agreement

with Pettit et al. [25] who reported an average value of 3.2860.10.

Concerning pocket-ligand descriptors, there is a significant

positive correlation (0.69) between their respective volume: the

pocket volume is more than three times larger than the ligand

volume (see Figure S1.C) in agreement with Liang et al. [26] and

with the gap between ligands and pockets explained by the

existence of a ‘‘buffer zone’’ or region of free space between

ligands and pockets as also mentioned by Kahraman et al. [27].

Pocket and ligand volume correlation is fuzzier for larger pockets,

which bind both large and medium size ligands. Pocket and ligand

polarities are positively correlated (0.53): small polar ligands are

associated to small polar pockets but more polar ligands are

possibly associated to more or less polar pockets (see Figure S1.D).

Some further analysis about the role of water molecules in binding

pocket would be required when discrepancy is observed but is

beyond the scope of the present study. Finally, a multivariate

analysis is performed to propose interpretable analysis combining

all these pocket and ligand descriptors in a more complex and

informative way.

Description of the Pocket-ligand Pair Space
PCA performed on the 24 pocket and ligand descriptors enables

an in-depth study of the properties shared by similar pairs by

providing a suitable representation of our pocket-ligand pairs. The

Original Pocket-Ligand Pair Classification
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four main components are illustrated in Figure 2.A, B. The first

two components (PC1 and PC2) capture more than 36% of the

data variability and the first four ones around 60%, and as such

capture a large part of the variability of the data. As indicated by

the projection of the variables close to the PCA correlation circle,

different selected pocket and ligand descriptors contribute to the

variability of the data and are relevant for the study. Figure 2.A

summarizes the correlations between descriptors and the first

principal plane (PC1+PC2). Pocket and ligand polarities are

strongly negatively correlated related to PC1 whereas the pocket

and ligand volumes are strongly positively correlated related to

PC1.Pocket and ligand pairs having high values for PC1 tend to be

larger and slightly polar while they tend to be smaller and more

polar for small values of PC1. For instance, pocket-ligand pairs

with a PC1 value higher than 3 correspond to pockets with an

average volume and polarity of 1451 Å3 (6337) and 0.30 (60.06),

respectively. Whereas pocket-ligand pairs with a PC1 value smaller

than 24 correspond to pockets with an average volume and

polarity of 505 Å3 (6193) and 0.5 (60.09), respectively.

Interestingly, other descriptors also contribute to these main

components. Large volume and weak polarity values of pockets

and ligands are associated to high LogP, rbond% and weak hbd%

ligand values. PC2 is explained by other ligand descriptors such as

PSA, HBD and HBA (proportions and counts). From top to

bottom of the PC2, ligand PSA, HBD and HBA values tend to

decrease while pocket roughness values tend to increase. This

suggests that pockets with high roughness values tend to bind

ligands with weak PSA, HBA and HBD values, and therefore a

lower polarity. The third principal component (PC3), which

captures 11.4% of the variability, is mainly explained by shape

pocket descriptors such as moments of inertia, planarity and

narrowness whereas the fourth principal component (PC4), which

captures 10.7% of the variability, is mainly explained by pocket

HBA and HBD values, as illustrated in Figure 2.B.

This PCA analysis defining the pocket-ligand pair space is in

agreement with results obtained on the pocket space [28] or on the

ligand space [29,30]. Concerning the pocket space, we observe

that small pockets tend to be more polar and to bind small and

polar ligands, as previously observed [25,27,31–33]. These

descriptors are in agreement with a PCA model developed in

[28], which indicates that size and shape descriptors are the most

important properties followed by polarity and charge. Moreover,

Figure 2.C shows that drug-like molecules (corresponding to Astex

dataset is well sampled on the PCA first plane. These results are in

agreement with Oprea et al. [29] who characterized the chemical

space of drug-like ligands using PCA model and showed that size

and shape are the most significant properties followed by

lipophilicity then the flexibility and polarity of ligands.

Hence, one can observe that neither pocket descriptors nor

ligand descriptors gather the whole information since the

components are explained by both pocket and ligand descriptors

combined in a complex way, validating the fact that it is more

informative to take into account the pocket space and the ligand

space together than independently whenever possible. Classical

descriptors such as volume, shape and polarity are complementary

for both pockets and ligands. Moreover, our analysis also

Figure 1. Averages and standard deviations of main pocket and ligand descriptors for the five clusters a, b, c, d and e. For the five
clusters, if the corresponding analysis of variance and the Tukey’s HSD test are significant, a vertical line between two clusters is drawn. No vertical
line means that the test is not significant i.e. the p-value is more than 0.05. One, two or three vertical lines mean that the test is significant and that:
0.01#p-value#0.05 for one vertical line, 0.001#p-value#0.01 for two vertical line or p-value#0.001 for three vertical lines.
doi:10.1371/journal.pone.0063730.g001

Original Pocket-Ligand Pair Classification

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e63730



highlights some specific properties of ligands, such as PSA, HBA,

HBD, RBond, polarity corresponding to specific geometrical

properties of pockets such as roughness, planarity and narrowness.

All subsequent analyses will be performed on the optimal pocket-

ligand space defined by the principal components accounting for

95% of the global variability, capturing on both pocket and ligand

descriptors that is to say the first fourteen principal components.

Clustering of Pocket-ligand Pairs
To map and group together pocket-ligand pairs with similar

properties, we built a hierarchical clustering tree (see Material and

Methods) on the optimal pocket-ligand space obtained on our set of

483 complexes.

Concerning the structure of the tree (Figure 3.A), pocket-ligand

pairs were first split into two clusters described by average values

of 12 pocket and 12 ligand descriptors on two grey star-plots, see

Figure 3.B. These grey star-plots illustrate the main classical

correspondences between pocket and ligand descriptors: small

Figure 2. Principal Component Analysis (PCA) of pocket-ligand pair space. Ligand and pocket descriptors are indicated by respectively red
and blue arrows in (A) and (B). Closer are the descriptors to the correlation circle, more they contribute to explain the variability captured by the
corresponding principal components. (A) corresponds to the first principal component (PC1) that captures 22.3% of the variability versus second
principal component PC2 (14.6%). (B) corresponds to the plot of the third principal component PC3 (11.4%) versus the fourth one PC4 (10.7%). These
two planes capture a total of 59% of the variability of the data. (C) PCA of pocket-ligand pairs from the training set are depicted in black points with
Astex dataset indicated by ‘‘+’’. This illustrates Astex dataset is well sampled on the first plane with no specific characteristic in terms of the 24
considered descriptors.
doi:10.1371/journal.pone.0063730.g002
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pockets are also polar and bind small and polar ligands, in

agreement with previous observations. We note that the smaller

pockets grouping in one pocket-ligand pair cluster tends to be

rougher in agreement with Pettit and Bowie [25] and more polar

as suggested by Eyrisch et al. [24] than larger pockets of other

clusters.

Then, pocket-ligand pairs were split into five clusters named a,

b, c, d and e (Figure 3.A) grouping similar pocket-ligand pairs in

terms of the 24 selected descriptors, with reasonable occurrence

(more than 75 pairs in each cluster). Figure 1 presents a detailed

description of these five clusters a, b, c, d and e in terms of

average and standard deviation of pocket and ligand descriptors. It

also presents the results of the analysis of variance and the Tukey’s

HSD post-hoc tests indicating significant differences between

clusters. These five clusters are described by 12 pocket and 12

ligand descriptor average values on five star-plots, see Figure 3.C,

allowing a useful comparison between the five clusters and the

main trends are summarized in Figure 3.D.

Small pocket-ligand pair clusters a and b are close in terms of

pocket and ligand volume but differ in terms of pocket and ligand

polarity and pocket narrowness, as detailed in Figure 1. More

precisely, clusters a and b share equivalent smallest volumes for

both pockets and ligands (respectively 696 Å and 646 Å for

pockets; 190 Å and 196 Å for ligands) and equivalent pocket

moments of inertia, pocket hbd%, roughness, planarity and ligand

rbond%. However clusters a and b differ in terms of pocket

polarity and ligand polarity (respectively 0.42 versus 0.33, for

pockets a and b and 0.45 versus 0.25, for ligands a and b), pocket

hba%, narrowness and ligand PSA, LogP and hbd%, see Figure 1.

This highlights that different polarity values of small pockets lead

into different ligand profiles: more polar pockets with high HBA%

tend to bind highly polar ligands associated to weak LogP values,

high PSA, HBA% and HBD% values (cluster a) while pockets with

weak narrowness values tend to bind less polar ligands (cluster b).

Large pocket-ligand pair clusters d and e exhibit also some

correspondences between geometrical and physico-chemical

pocket and ligand properties. It appears that different shapes of

large pockets result in different ligand polarity and geometry.

Large pockets share equivalent volume, polaritie, hbd% and hba%

values but can differ in shape: moments of inertia, planarity,

narrowness and roughness. Interestingly, different shapes of large

pockets correspond to different ligand properties such as polarity

PSA, LogP but also in terms of moments of inertia and rbond%.

Large pockets of cluster e are planar, narrow and rough and tend

to bind small polar ligands with low rbond% values. So in addition

to the observation of Pettit and Bowie [25] mentioning that

roughness is necessary for binding in small functional sites (because

the required contacts need to be squeezed into a small volume),

our classification suggests that large, planar and narrow pockets

also need some roughness to be able to bind less polar ligands.

Cluster c is distinguishable from the four other clusters as it

presents significant descriptors on average with the other clusters

but it has no particular trend for both pocket and ligand

properties: all descriptor values are in the middle of the scale,

that is closed from the overall values, see Figure 1. In the first PCA

plane (see Figure 4.A) cluster c is in the center of the plot

corresponding to medium values of descriptors, see Figure 1.

Then, in the next step of clustering, this cluster c is split into two

sub-clusters of similar size with one corresponding to more planar

and narrow pockets with low hba% binding larger ligands with

higher rbond%. The split of cluster e results in two subsets of large

pockets and ligands, which the smaller one corresponds to larger

pockets binding larger and more polar ligands. Finally, the cluster

b is splitted in two clusters, which one groups few polar pockets

and ligands.

In this work, we want to define different clusters of protein-

ligand pairs, which would be useful for a better understanding of

protein and ligand matching. There were two constraints: (i) define

clusters with specific properties providing interesting knowledge

going beyond obviousness and (ii) obtain representative clusters

with sufficient members allowing the extraction of information

profile. Hence, we considered five clusters, as illustrated on

Figure 3.B to catch some general tendencies and to keep sufficient

pairs in each cluster. Indeed, the tree cutting leading to five

clusters corresponds to a visually clear distance between clusters

and the obtained clusters contain from 75 to 118 complexes (see

Figure 1), which we consider to be reasonable in terms of

occurrence. Figure 4 presents the projection of the five clusters on

the first PCA plane and a representation of the average complex of

each cluster. We observe that the five clusters are well illustrated

on the PCA plane.

From now on and for the subsequent analyses, we consider

those five clusters as our reference to test if it is possible to extract

useful knowledge for pocket-ligand pair study.

Characteristics of Pocket-ligand Pair Clusters
First, to check the robustness of these five clusters, it has been

compared to the robustness of clusters obtained by random

permutations. To do that, we performed a comparison between

the robustness of the repartition of pocket-ligand pairs in the five

clusters of the classification obtained using 90% of the data versus

the stability of the five clusters obtained by random permutations

using 90% of the data, see section Material & Methods. We obtain

an average stability of 74.4% for the five clusters versus an average

stability of 30.5% for the five clusters obtained by random

permutation. Hence, this result highlights the robustness of the

classification, which is significantly higher than what would be

expected on not meaningful classifications.

Secondly, we assessed the diversity of proteins and ligands

within clusters, in order to ensure that clusters represent a

meaningful classification of the pocket-ligand space without an

over-representation of some complexes, proteins or ligands. To

investigate the relationship between pocket-ligand pair, protein

and ligand similarity, we generated a matrix that crosses the

similarity of proteins, quantified by the protein pairwise percent-

age of sequence identity with similarity of associated ligands,

quantified by Tanimoto coefficient, and ordered related to the

pocket-ligand pair clusters, see Figure 5. Protein redundancy and

ligand similarity are low, as shown by the similarity indices

distribution provided in Figure S2.I, II. This low protein

Figure 3. Characterization of pocket-ligand pair clusters. One color is dedicated to each cluster for all the pictures. (A) The hierarchical
classification tree of pocket-ligand pairs on the optimal pocket-ligand space (first 14 principal components of PCA model) presented five clusters: a, b,
c, d and e. (B) The tree is first divided into two clusters whose main pocket (top stars) and ligand (bottom stars) properties are shown by grey star-
plots. The solid surface of a star-plot is limited by the average value of the considered descriptors and the black lines correspond to the standard
deviations of the considered descriptors. (C) The main pocket (top stars) and ligand (bottom stars) properties of each cluster are shown by colored
star-plots. Pocket descriptors correspond to the first five star-plots and ligand descriptors correspond to the last five star-plots. (D) The main pocket-
ligand pair cluster properties are summarized.
doi:10.1371/journal.pone.0063730.g003
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redundancy is confirmed within each cluster, as illustrated in

Figure 5, resulting in an average of 21% of proteins pairwise

identity percentage for each cluster. Similarly, the ligand similarity

is low in each cluster with an average Tanimoto coefficient of 0.4

between ligand pairs. These results confirm that different pocket-

ligand pair clusters are not globally explained by high ligand or

protein redundancy and that pocket-ligand pair proximity can be

provided from recognition pocket and ligand characteristics.

Interestingly, this classification is able to group similar pocket-

ligand pairs corresponding to different proteins and ligands. For

instance, beta-glucosidase A (pdb code 1B8O) and purine

nucleoside phosphorylase (pdb code 2J7D) present only 15.3%

of sequence identity and bind relatively different ligands

(Tanimoto coefficient of 0.22). However, pockets of these two

different proteins belong to cluster a, corresponding to small

highly polar pockets and ligands. Figure 6.A represents the average

pocket and ligand profiles of cluster a and the pocket and ligand

properties of proteins 1B8O and 2J7D. We observe that the

pockets of 1B8O and 2J7D are small (a volume of 681 Å and

668 Å, respectively), polar (a polarity of 0.40 for both) and bind

small and polar ligands (ligand volume of 216 Å and 205 Å, and

polarity ligand of 0.42 and 0.44, respectively) that corresponds to

the highlighted properties of pockets and ligands of cluster a. This

example highlights than two different proteins can have pocket-

ligand pairs with several close pocket and ligand properties,

resulting in their belonging to the same cluster.

Moreover our classification is able to take into account the fact

that the profile of a pocket can change according to the ligand

type. This is illustrated using the 7 cAMP-dependent protein

kinases present in our dataset: 4 bovin kinases (pdb codes: 1Q8W,

1XH9, 1YDR and 1YDS, UniProt Id: P00517) and 3 mouse

kinases (pdb codes: 1RE8, 1REJ and 2ERZ, UniProt Id: P05132).

Figure 7.A presents a superimposition of these 7 proteins (a global

RMSd of 0.41 Å with more than 98% of sequence identity

between the 7 kinases). In our classification these 7 pocket-ligand

pairs are assigned into two clusters c and e. This is explained by

the fact that ligands of cluster e are larger than ones of cluster c,

affecting thus the pocket estimation and properties, see Figure 7.

Figure 6.B, C illustrate the average pocket and ligand profiles of

two clusters c and e and the pocket and ligand properties

associated to the 7 kinases. These kinase pockets are close in terms

of polarity values (around 0.38) but differ in terms of volume values

(1347.0 Å for cluster e versus 863.7 Å for cluster c). They bind

different ligands in terms of volume and polarity: larger and more

Figure 4. PCA and representatives of five pocket-ligand pair illustrations. Five pocket-ligand pair clusters are illustrated by showing the pair
closest from the pocket and ligand average values of each pair. Each pair is coloured according to the clustering of Figure 3.
doi:10.1371/journal.pone.0063730.g004

Original Pocket-Ligand Pair Classification
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polar for cluster e than for cluster c (volume of 374.7 Å versus

242.0 Å and polarity of 0.24 versus 0.29, respectively). These results

highlight that the different ligand profiles of clusters c and e
correspond to different pocket profiles of protein kinases,

suggesting different binding modes of protein kinases according

the ligand types.

Overall, this analysis highlights strong correspondences between

the two interacting partners. Moreover, taking into account a large

Figure 5. Pairwise percentage of sequence identity computed between all protein chains and Tanimoto coefficient similarity
between all ligands. Proteins and ligands are ordered according to order of the five pocket-ligand clusters. The average protein pairwise
percentage of sequence identity (values horizontally written) and the average Tanimoto coefficient similarity are also indicated (values vertically
written) for the five pocket-ligand pair clusters.
doi:10.1371/journal.pone.0063730.g005

Figure 6. Representation of pocket and ligand properties for 9 pocket-ligand pairs seen in 3 different clusters. (A) Average pocket and
ligand profiles of cluster a are represented on star plot. Dashed lines represent pocket and ligand properties of complexes beta-glucosidase bound to
IMH ligand (pdb code 1B8O, magenta dashed line) and purine nucleoside phosphorylase bound to GI1 ligand (pdb code 2J7D, blue dashed line). (B)
Average pocket and ligand profiles of cluster c are represented on star plot. Dashed lines represent the pocket and ligand properties of 4 cAMP-
dependent protein kinases bound to M77 ligand (pdb code 1Q8W, blue dashed line), to 1QP ligand (pdb code 1YDR, dark green dashed line), to 1QS
ligand (pdb code 1YDS, green dashed line) and to HFS ligand (pdb code 2ERZ, orange dashed line). (C) Average pocket and ligand profiles of cluster e
are represented on star plot. Dashed lines represent the pocket and ligand properties of 3 cAMP-dependent protein kinases bound to BD2 ligand
(pdb code 1RE8, magenta dashed line), to B1L ligand (pdb code 1REJ, orange dashed line) and to R69 ligand (pdb code 1XH9, blue dashed line).
doi:10.1371/journal.pone.0063730.g006

Original Pocket-Ligand Pair Classification
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number of descriptors allows the identification of five pocket-

ligand pairs clusters, for which a particular pocket and ligand

descriptor profiles can be defined. For instance, large and polar

pockets with different shape bind different ligand profile. Thus, in

addition to classical trends concerning pocket and ligand volume

and polarity, this investigation reveals that combining more

information such as pocket shape or roughness can help to

determine a preferential profile for ligands. Finally, this classifi-

cation procedure allows the characterization of 5 clusters grouping

pocket-ligand pairs with similar physico-chemical and geometrical

profiles. Examples illustrate that pocket-ligand pair clusters can

group different protein families and one family can be distributed

on different clusters, suggesting that this join complex classification

enlarges the notion of protein family.

Prediction of Pocket-ligand Pair Clusters
We have shown that our classification allows a definition of

different pocket-ligand pair profiles. Next, we focus on the

possibility of predicting some pocket-ligand pair characteristics

for a new partner (either complex or pocket or ligand) through its

cluster prediction. Our approach is based on the idea that if a

pocket-ligand pair is assigned to one cluster, information about the

potential partner profile can be derived from the average

characteristics of the pockets and ligands belonging to the assigned

cluster.

As the hierarchical classification does not allow assigning a new

individual to the obtained clusters, a statistical model has been

developed by using proximities between learning pocket-ligand

pairs through k-nearest neighbor. In order to evaluate the global

feasibility of this method, we tested it on both pocket and ligand

pair information before more interestingly, applying it to pocket

only or ligand only information.

Cluster prediction using pocket-ligand pair model. In a

first step, we developed a method to predict the pocket-ligand pair

cluster for a given pocket-ligand pair. Our model is based on (i) the

projection of the pocket-ligand pair to be predicted, named new

pair, in the ‘‘optimal pocket-ligand space’’, (i.e. 14 principal components

computed using both pocket and ligand descriptors), and on (ii) a

k-nearest neighbors method that determines the majority cluster

assignment within the closest pocket-ligand pairs of the new pair.

Here, neighbor pocket-ligand pairs refer to the pocket-ligand pairs

with the smallest Euclidean distances with the new pair (computed

on the optimal pocket-ligand space).

We firstly had to determine the number of neighbors k used in

the k-nearest neighbors by running 100 simulations of a 10-fold

cross-validation (see Methods). Table 1 presents the repartition of

the obtained optimal number of neighbor k during these 100

simulations. For pocket-ligand pair model, we chose a number of

neighbors of k= 3 as it is the optimal in half of the cases. The

resulting k-nearest neighbors model are summarized in Table 2.

We observe that the well-predicted rates are excellent: 90.3% of

good prediction on average. In fact, the values range from 88.2%

for the less specific cluster c to 91.1% for cluster e. Using a double

cross-validation (see Methods), 78% of simulations have an

optimal k of 3, (results not shown), and we obtained a global

well-predicted rates of 89.6%, range from 86.3% for cluster c to

91.6% for cluster e, close to results obtained using a simple cross-

validation, see Table 2.

Hence, the high well-predicted rates for pocket-ligand pair model

suggest that our method could provide relevant results when

predicting the cluster of a new pocket-ligand pair. But it is more

interesting to provide knowledge about profile of potential

interacting partner when only ligand or pocket is known. This is

what is proposed in the following section.

Cluster prediction using pocket-only and ligand-only

model. In a second step, we extrapolated the cluster prediction

when only one partner (pocket or ligand) is known. In the pocket-

only model, only pocket descriptors are known and used to predict

pocket-ligand pair cluster. ‘‘Preferred’’ ligand profile is then

deduced from the predicted cluster. In this case, the global average

properties of the unknown partner are computed using the

learning dataset to project the known partner in the optimal pocket-

ligand space (see Methods). First, the optimal number of neighbors k

is 3, as determined using 100 simulations of a 10-fold cross-

validation, see Table 1. The results of the overall well-predicted

rates using the pocket-only model are presented in Table 2. They are

Figure 7. Pocket-ligand pairs extracted from 7 cAMP-depen-
dent protein kinase complexes assigned into two clusters c
and e. (A) Superimposition of the 7 cAMP-dependent protein kinase
structures using PyMol software. 4 kinases (pdb code: 1Q8W, 1YDR,
1YDS, 2ERZ), with pocket-ligand pairs assigned to cluster c are
represented in different magenta. 3 kinases (pdb code: 1RE8, 1REJ,
1XH9) with pocket-ligand pairs assigned to cluster e are represented in
different green. Proteins and ligands are represented in cartoon and
stick mode, respectively. (B) Superimposition of pockets extracted from
the pocket-ligand pairs of pdb files 1Q8W (in magenta) and 1RE8 (in
green) are coloured according the cluster that they belong. Pockets are
represented in surface. (C) Illustration of the superimposed pocket-
ligand pairs extracted from the pdb files 1Q8W (in magenta) and 1RE8
(in green), coloured according the cluster that they belong. Pockets and
ligands are represented in surface and stick mode, respectively. Pictures
are obtained by PyMol software.
doi:10.1371/journal.pone.0063730.g007
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quite good: 63.7% on average with a range of 52.6% for cluster a
to 69.0% for cluster d. The optimal k and the rates are confirmed

using a double cross-validation, see Table 1.

In the case of ligand-only model, the choice of the optimal k is less

clear, see Table 1. Indeed, the most frequent value (k= 7)

represents only 20% of the 100 simulations but this optimal is

confirmed using a double cross-validation. So the ligand-only model

is performed using k-nearest neighbors with k= 7. It results in an

average well-predicted rate of 74.8% with a minimum of 63.7%

for cluster c and a maximum of 82.3% for cluster d. The results

obtained using a double cross-validation are similar, see Table 1.

In pocket-only or ligand-only models, the data are artificially

projected onto the original optimal pocket-ligand space by adding

virtual missing partner properties. But, as those properties are the

same whatever the new ligand or pocket, the real dimension of the

space is strongly reduced. Hence, it is not possible to assume that

the cluster separateness observed on the optimal pocket-ligand space

will be conserved by reducing the space dimension only to pocket

or ligand space. However, the satisfying results obtained for both

pocket-only and ligand-only models confirm that despite this

information loss, clusters are obviously a little less but still

separable.

In the case of pocket-only and ligand-only models, only half of the

information (pocket or ligand descriptors, respectively) is used for

the prediction whereas the classification is obtained on pocket-

ligand pair descriptors. In 75% of cases, a ligand is classified in the

good cluster grouping ligands with similar profile binding pockets

with similar profile. Conversely, in 64% of case a pocket is

classified in the good cluster grouping pockets with similar profile

binding ligands with similar profile. In all cases, we observe

clusters that are more ligand-specific than pocket-specific, as the

well-predicted rates of prediction is overall (and for each cluster)

better for ligand-only model than for pocket-only model. This can be

in agreement with the large plasticity of the pockets and their

ability to adapt to the ligand [34].

This method gives valuable information about the second

partner of an interaction by providing general profile properties of

potential ligands (if the pocket is known for example) and in

addition examples of ligands having such properties. Our results

show that this approach is promising to propose some pocket or

ligand profiling. Given a binding-pocket of a therapeutic target, for

which no information is known about ligand capable of binding

this target, our tool could help finding some critical physico-

chemical parameters of likely binders. However, additional

investigations are needed to suggest more detailed profiling of

likely ligands at this stage but our preliminary results suggest that

our models could be valuable in the early steps of drug discovery

or of chemical biology.

Materials and Methods

We carried out a multivariate analysis over the pocket-ligand

pair space as one would anticipate that considering descriptors

from both ligand and receptor binding pockets would allow better

navigation in that space and extrapolations in either, the pocket

space or the ligand space. The first step along this line was to build

dataset to determine the most important pocket and ligand

descriptors within the pocket-ligand pair space. We then combine

some pocket and ligand descriptors to define and characterize

pocket-ligand pairs.

Dataset
To create a large training set of pocket-ligand pairs, we initially

gathered the refined set from the PDBbind database [35,36] and the

Astex test set [37] and selected complexes that contained drug-like

ligands (i.e. small chemical compounds).

Two protein-ligand complex datasets were compiled for the

training set. The first one is composed of 560 non-redundant

protein-ligand structures, with a resolution better than 2.5 Å

retrieved from the refined set of the PDBbind database. From these

structures, we removed those containing metal ions or cofactors

next to the co-crystallized ligand resulting in a selection of 432

structures. The second one is composed of 85 manually curated

protein-ligand complexes from the Astex test set. As for the

previous set, we removed the structures with some ions or

cofactors next to the ligand, resulting in a selection of 51

structures. The resulting training set corresponds at the end to 483

protein-ligand structures. All the protein files were prepared by

Table 1. Number of simulations with optimal number of neighbor k for the three models (pocket-ligand pair, pocket-only, ligand-
only).

Number of neighbors 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pocket-ligand pair 50 12 5 1 15 8 9

Pocket-only 5 82 9 4

Ligand-only 1 6 3 6 19 13 7 5 8 7 6 6 4 5 2 1 1

This was performed on k-nearest neighbor prediction approach using 100 simulations of a 10-fold simple cross-validation, testing k values from 2 to 20. The optimal is
(k= 3) for pocket-ligand pair models on 50/100 simulations, (k= 3) or pocket-only models on 82/100 simulations, (k= 7) for ligand-only models on 19/100 simulations.
doi:10.1371/journal.pone.0063730.t001

Table 2. Pocket-ligand pair cluster prediction results (in
percentage) using simple and double cross-validations.

Clusters

Models
Cross-validation
type Overall a b c d e

Pocket-ligand pair Simple (k = 3) 90.3 82.2 85.3 88.2 91.1 91.0

Double 89.6 91.2 88.6 86.3 91.1 91.6

Pocket-only Simple (k = 3) 63.7 52.6 60.5 58.4 69.0 68.6

Double 60.3 37.7 62.2 58.7 73.7 65.2

Ligand-only Simple (k = 7) 74.8 80.6 66.1 63.7 82.3 76.2

Double 73.6 90.8 68.2 63.5 84.0 71.6

Ten-fold simple and double cross-validation results obtained on 100
simulations based on pocket-ligand pair models, pocket-only models and ligand-
only models using k-nearest neighbors method with k = 3, k = 3 and k = 7
neighbors.
These rates are calculated over all pairs with no missing values, that is over 469
pairs instead of 483.
doi:10.1371/journal.pone.0063730.t002
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adding hydrogen atoms using the software pdb2pqr [38,39]. For

that study, we decided to remove water molecules from the files.

A description of this dataset is available at the following URL:

http://dx.doi.org/10.6084/m9.figshare.662781. This description

summarizes, in a table, information about each pocket-ligand pair

with from the protein side (i) pdb codes, protein chains, protein

sequences and their UniProt Id and for the ligands (ii) smile codes,

ligand pdb Id (the name of the HET-group ligand) and their

cluster assignation.

The redundancy of the 483 proteins was tested by computing

pairwise identity percentages between the crystallized sequences of

all protein chains. For the computation of the identity sequence

percentage, when a protein has several chains, we conserved only

the chain presenting the lower sequence identity percentage with

other protein chains. In average the identity percentage between

protein chain pairs on the training set is only of 17%. As indicated

by the percentage identity histogram (see Figure S2.I), only a small

number of protein chains presents high similarity, for instance only

1.3% of protein chain pairs exhibit more than 90% of identity.

The chemical diversity of ligands was assessed using a

fingerprint-based clustering approach and the Tanimoto coeffi-

cient with the MDL Public Keys (MACCS). Starting with the 483

ligands and using a dissimilarity criterion of 0.1 (Tanimoto

coefficient), 411 cluster centers were obtained therefore proving

the overall diversity of ligands. Ligand similarity was illustrated

using Tanimoto coefficient histogram, see Figure S2.II. On

average the Tanimoto coefficient between ligand pairs of the

training set is of only 0.4, only a small part of ligands (0,3%) exhibits

high similarity (a Tanimoto coefficient higher than 0.8).

Definition and Description of the Pocket-ligand Pairs
We thus gathered experimental protein structures co-crystal-

lized with a ligand and developed tools to compute established

molecular descriptors on both ligands and protein binding pockets.

Pocket definition. Among the numerous methods that exist

to detect a binding pocket [40] we decided to use the Protomol

utility implemented in the software Surflex [41–43] (Version 2.1)

because it provides an energy-based definition of a binding pocket.

The output file is then used to compute several relevant pocket

descriptors. The algorithm of Surflex probes the protein binding-

sites using a co-crystallized ligand as reference with three types of

molecular fragments (CH4, C = O, N-H). These probes constitute

what we will refer here to as ‘‘virtual pockets’’. ‘‘True pockets’’ are

defined by pocket solvent-accessible residues and/or atoms in a

radius of 4 Å from any probe. Solvent accessibility was computed

via the NACCESS program [44] which calculates the atomic

accessible surface defined by rolling a probe of given size around a

Van der Waals surface.

Pocket descriptors. Based on the current literature, we

developed some tools/scripts or used available packages to

compute the following standard pocket descriptors on the binding

cavities predicted by Surflex: volume (MSMS package imple-

mented in Chimera [45]), surface, compacity (ratio between

volume and surface), roughness, shape, planarity, narrowness,

moments of inertia, polarity, charge, hydrogen bond acceptors and

donors, amino acids and atoms composition. Initially, 24 pocket

descriptors were considered.

Polarity was represented by a polarity ratio as in [24]. It ranges

from 0 (not polar) to 1 (polar). Roughness [25] represents how

rough a pocket is: a high value induces a rough pocket. The pocket

shape, Rvs [32] provides an estimation of the surface/volume ratio

for a given cavity relative to that of a sphere having the same

volume as the cavity. Rvs indicates how spherical a cavity is, i.e.

the value would be 1.0 for a perfect sphere and would become

smaller than 1 as the cavity deviates from a sphere. The three

moments of inertia correspond to the eigenvalues of the inertia

matrix computed on the virtual pockets. The easiest interpretable

values are the smallest and the biggest values among the three. We

will refer to these terms as lambda0 (for the smallest value) and

lambda2 (for the largest value). The moments of inertia of a virtual

pocket with regards to a given axis describe how many probes the

pocket has overall and how far each probe is from the axis.

Consequently the closest the moments of inertia are one from

another, the more spherical the pocket is. And conversely the more

lambda0 is different from lambda2, the more cylindrical the

pocket tends to be. We also compute the planarity of the binding

sites [33]. The planarity ranges from 0 (concave) to 1 (flat). To

assess how narrow a pocket is, we computed this value as described

in [33]. The narrowness ranges from 0 (full circle) to 1 (line). We

also considered the pocket charge computed as the difference

between the number of positively charged amino acids and the

number of negatively charged amino acids as well as the number

and proportion of hydrogen bond acceptors (HBA and hba%) and

donors (HBD and hbd%). Finally, the number and proportion of

amino acids and atoms were computed.

Ligand descriptors. Standard ligand descriptors were cho-

sen for our analysis as they are related to pocket descriptors. The

following 20 ligand descriptors were computed: volume, surface,

shape, moments of inertia, polarity ratio, molecular weight, polar

surface area (PSA), charge, LogP, rotatable bond (RBond and

rbond%) (counts and proportion), hydrogen-bond acceptors and

hydrogen-bond donors (counts and proportion for both). The

ligand descriptors also computed on pockets were computed as

described in pocket descriptors section while the remaining ones

were computed using the software FAF-Drugs2 [46].

A table of pocket and ligand descriptor values of each pocket-

ligand pair of the training set and the cluster assignation is available

upon request to the corresponding author.

Multivariate Methods
Multivariate analyses were performed by combining both

pocket and ligand descriptors. We first defined the most important

pocket and ligand properties of the pocket-ligand pairs and

removed redundant information using correlation. We then

optimized the pocket-ligand property space and removed redun-

dant information through the use of a Principal Component

Analysis (PCA). The second step involved the analysis of the

pocket-ligand pairs by using a hierarchical clustering approach.

Analysis of pocket-ligand pair descriptors. All redundant

pocket descriptors and ligand descriptors were removed. This was

performed by grouping descriptors having an absolute value of

Pearson correlation coefficient higher than 0.8. We chose one

representative by group favoring descriptors computed on both

pockets and ligands. For instance, we decided to keep the volume

descriptor of the ligand rather than its molecular weight (highly

correlated to the volume), because the volume is also computed on

pockets. We also computed Pearson correlation coefficients

between pocket and ligand descriptors.

To define an optimal pocket-ligand pair space, a PCA was used. It

projects the standardized data, i.e. the pocket-ligand pair

descriptors, into a subspace made of orthogonal linear combina-

tions of both the original non-redundant pocket and ligand

descriptors, so-called principal components. Data may then be

explored in a smaller dimensional space spanning the most

informative view according to data variability. To keep maximal

information from the descriptors while reducing noise, we then

work on 95% of the data variability, which corresponds to the first

14 principal components of PCA space, which defines the optimal
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pocket-ligand space. The principal components can also be interpret-

ed in terms of the original descriptors thanks to correlation studies.

This allows us to study the relationships between all descriptors,

and in particular between pocket and ligand descriptors. The

FactoMineR package [47] as implemented in the software R (R

development core team 2008) was used to carry out the PCA.

Construction of pocket-ligand pair clusters. This optimal

pocket-ligand space, i.e. space formed by the 14 first component of the

PCA, is then used to cluster pocket-ligand pairs by performing a

hierarchical clustering [48]. To perform that, Euclidean distances

between all pocket-ligand pairs were computed on the optimal

pocket-ligand space. Using these distances, a hierarchical classification

of pocket-ligand pairs was created that allows us to build

embedded partitions by progressively gathering pairs then pair

clusters according to Ward metric. This metric is a minimum

variance method that aims at finding compact and spherical

clusters. It results in a tree representation. This tree helps the

visualization of the proximity between pair clusters and allows

choosing a number C of clusters. The function used to cluster

pocket-ligand pairs is the ‘‘hclust’’ function implemented in R.

Analysis of Pocket-ligand Pair Clusters
Characterization of clusters. To characterize the obtained

pair clusters and reveal their main properties, we performed an

analysis of variance on each descriptor with regards to the C pair

clusters. This analysis allows the determination whether or not a

global difference between the average values of the considered

descriptors in the different clusters exists. In such a case, a post-hoc

Tukey’s Honestly Significant Difference test (Tukey’s HSD test) is

applied to find which average values are significantly different

from the other ones. The results of these tests allow us to

characterize pocket and ligand properties among the C clusters.

Stability of pocket-ligand pair clusters. The robustness of

the clustering (initial classification) was tested by analyzing the

stability of the C clusters obtained after randomly removing 10%

of the data, related to C random clusters. The training set is

randomly partitioned into 10 parts respecting the effectives of the

C true clusters in the training set. PCA based on both pocket and

ligand descriptors are performed using the pocket-ligand pairs of 9

parts ( = 90% of the data), named PCA_90. Euclidean distances

between pocket-ligand pairs on 90% of the data were computed

on the 14 principal components of PCA_90. Using these distances,

the 90% of pocket-ligand pairs were clustered using a hierarchical

classification, named hclust_90. hclust_90 is then cut to obtain C

clusters. The repartition of the C clusters in hclust_90 is then

compared to the repartition in C clusters obtained on initial

classification. To quantify the stability of a cluster I from the initial

classification, the cluster of hclust_90 including the biggest number

of pocket-ligand pairs from this cluster I is identified. The

percentage of pocket-ligand pairs found in this cluster is computed

related to the 90% of the data considered. For example, 66 pairs of

cluster I of the initial classification are used to build hclust_90.

Amongst these 66 pairs, 57 are in the cluster homologous to cluster

I in hclust_90. Thus, we count that 86% (57/66) pairs of cluster I

are well-classified. We performed that for the C clusters and

compute the average number of well-classified pairs on the C

clusters. This complete procedure was run 10 times in order to

each part was removed one time of the dataset to construct the

PCA_90 and the hierarchical classification, and this 10-fold

procedure was run 100 times. To compare, this complete

procedure was run on a random dataset obtained after randomly

permutated the cluster assignation of the initial data.

Cluster Prediction Using Similarity Profile
Once a C-cluster classification is established, the next step is to

develop a statistical model to predict the cluster of a new pocket-

ligand complex or a new ligand or a new pocket. As the

hierarchical classification does not allow assigning a new individual

to the obtained clusters, we performed cluster prediction using the

k-nearest neighbor method. First, the cluster prediction was built

on the case where we knew both pocket and ligand, named pocket-

ligand pair model. Then, the performance of this approach is tested

in a much more challenging and interesting case: when only one

partner (pocket or ligand) of the interaction is known, named

pocket-only and ligand-only models, respectively.

Cluster prediction using pocket-ligand pair model. The

input of our pocket-ligand pair model is the vector of ligand and

pocket descriptors for all pocket-ligand pairs. The building of the

pocket-ligand pair model is based on two steps. Firstly, the pocket-

ligand pair to be predicted, named new pair, is projected on the

optimal pocket-ligand space that means the 14 first components of the

PCA computed using both pocket and ligand descriptors. Then in

a second step, we use a k-nearest neighbor approach to predict the

cluster of the new pocket-ligand pair. k-nearest neighbor approach

relies on the pocket-ligand pair neighbors, in the optimal pocket-

ligand space of the new pair, that is to say the k closest complexes with

regards to the Euclidean distances computed in this space. The

cluster assigned to the new pair is the one including the majority of

neighbors. This k-nearest neighbor prediction approach needs the

determination of the optimal number of neighbors, named k. This

was performed by using 100 simulations of a ten-fold cross-

validation for testing all k values from 2 to 20. In order to increase

the representativeness of each fold, for each cross-validation

application, the frequency of the C clusters into each fold is

equivalent to the global frequencies obtained in the initial C–

cluster classification. The final number of neighbor k is the one

that maximizes the average well-predicted rate obtained after 100

simulations of a 10-fold of cross-validation. Once this number of

considered neighbors is chosen, it is applied on the dataset still

using a ten-fold cross-validation run 100 times. Then, to avoid

overfitting, our protocol was also performed using a double cross-

validation scheme allowing an optimization of parameter k and a

realistic evaluation of the prediction errors [49].

Cluster prediction using pocket-only or ligand-only

models. Two other prediction models, which are more

interesting for application purposes, named pocket-only and ligand-

only models, were training following the same protocol. The pocket-

only model could be used to propose a profile of potential ligands

for a given a new pocket, through the prediction of the pocket

cluster. To build this model, we used only the pocket descriptors of

the considered dataset and assigned to each pocket a virtual ligand

profile computed as the average value of each descriptor obtained

on training set. This virtual ligand is also assigned to the pocket to

be predicted, new pocket. Then, the previous prediction protocol

is applied to this pocket-virtual ligand pair dataset. Firstly, the

pocket-virtual ligand pair dataset and the new pocket-virtual

ligand pair are projected on the optimal pocket-ligand space, i.e. on the

14 principal components computed using pocket and ligand

descriptors. Then, we applied the k-nearest neighbor approach to

predict the cluster of the new pocket. Like in pocket-ligand pair

model, a 10-fold cross-validation is used and a double 10-folds

cross-validation to determine the optimal number of neighbor k.

The ligand-only model could be used to predict the properties of a

potential pocket for a given ligand. In that case, we used the

similar procedure than the one used to build the pocket-only model

by determining virtual pocket profiles, which correspond to the

average pocket descriptor values on the training set.
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Conclusions
We presented here a new original way to merge binding pockets

through pocket-ligand pair space by using multivariate analysis on

complementary descriptors of these pocket-ligand spaces. The

advantage is to propose a join analysis of these two spaces

described by interpretable descriptors, without predefinition of

feature vectors representing and simplifying each object, resulting

in better understanding about correspondences between pocket

and ligand properties. For instance, the polarity of pockets and

ligands are clearly correlated for small pockets, while the geometry

of large pockets determines their ability to bind ligands with

different polarity. The reduced pocket-ligand pair space defined by

the PCA constitutes a suitable space to classify pocket-ligand pairs

and validates the relevance of our approach to consider pocket and

ligand spaces together and not independently.

This analysis provides a useful and detailed classification of a

representative sample of pocket-ligand pair space resulting for the

dataset considered in five particular types of pocket-ligand pairs,

which are statistically different from each other with regard to

several pocket and ligand properties. Thus, it suggests that similar

ligands, in terms of our descriptors, assigned to the same cluster

could be good candidates to interact with similar targets, in terms

of our descriptors. An interesting point is that this join pocket-

ligand pair classification enlarges the notion of protein family. This

is in the line of the increasing observations that a drug can hit

more than one target. Thus, this type of classification could help to

understand compound binding to off- and anti-targets or for

polypharmacology analysis.

Using this classification based on pocket-ligand recovery

characteristics, a preliminary prediction model approach was

developed to predict some pocket profile when we only have

ligand information or conversely, to predict potential ligand profile

when we only have pocket information. The prediction models

from our classification provide good prediction performance,

suggesting that our method constitutes a promising tool for drug

discovery or chemical biology although substantial investigations

such as to define more precise pocket-ligand profile on larger

number of clusters obtained on larger complex dataset, are still

required to develop our concept. In the future, we believe that this

type of approach could open the way to predict off-target

candidates in the case of ligand or pocket not yet complexed.

Supporting Information

Figure S1 Correlation graphs between some pocket and
ligand descriptors. (A) Correlation graph between pocket

volume and pocket sphericity (p-value = 10296). (B) Correlation

graph between pocket volume and pocket roughness (p-val-

ue = 10210). (C) Correlation graph between pocket volume and

ligand volume (p-value#102100). (D) Correlation graph between

pocket polarity ratio and ligand polarity ratio (p-value#102100).

The colors correspond to the classification, which is described in

Figure 3. As indicated by the pairs color, large pockets and ligands

(red and yellow pairs) correspond to rather few polar pocket

associated to more (red pairs) or less polar (yellow pairs) ligands

(Figure D) with weak roughness and sphericity pocket values

(Figure B and Figure A). This indicates large pockets and ligands

correspond to rather few polar, few roughness and few spheric

pocket associated to rather few polar ligands suggesting to perform

direct multivariate analysis to propose interpretable analysis

combining both pocket and ligand descriptors in a more complex

way.

(DOCX)

Figure S2 Histograms of protein identity or ligand
similarity computed on the set of 483 complexes. (A)

The redundancy of the 483 proteins is quantified by the identity

sequence percentage between each protein pairwise. (B) Ligand

similarity of the 483 ligands is quantified using Tanimoto score

histogram.

(DOCX)
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