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Abstract

Decisions are often based on imprecise, uncertain or vague information. Likewise, the con-

sequences of an action are often equally unpredictable, thus putting the decision maker into

a twofold jeopardy. Assuming that the effects of an action can be modeled by a random vari-

able, then the decision problem boils down to comparing different effects (random variables)

by comparing their distribution functions. Although the full space of probability distributions

cannot be ordered, a properly restricted subset of distributions can be totally ordered in a

practically meaningful way. We call these loss-distributions, since they provide a substitute

for the concept of loss-functions in decision theory. This article introduces the theory behind

the necessary restrictions and the hereby constructible total ordering on random loss vari-

ables, which enables decisions under uncertainty of consequences. Using data obtained

from simulations, we demonstrate the practical applicability of our approach.

1 Introduction

In many practical situations, decision making is a matter of urgent and important choices

being based on vague, fuzzy and mostly empirical information. While reasoning under uncer-

tainty in the sense of making decision with known consequences under uncertain precondi-

tions is a well-researched field (cf. [1–7] to name only a few), taking decisions with uncertain
consequences has received substantially less attention. This work presents a decision framework

to take the best choice from a set of options, whose consequences or benefit for the decision

maker are available only in terms of a random variable. More formally, we describe a method

to choose the best among two possible random variables R1, R2 by constructing a novel sto-

chastic order on a suitably restricted subset of probability distributions. Our ordering will be

total, so that the preference between two actions with random consequences R1, R2 is always

well-defined and a decision can be made. As it has been shown in [8, 9], there exist several

applications where such a framework of decision making on abstract spaces of random vari-

ables is needed.

To illustrate our method, we will use a couple of example data sets, the majority of which

comes from the risk management context. In risk management, decisions typically have uncer-

tain consequences that cannot be measured by a conventional von Neumann-Morgenstern
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utility function. For example, a security incident in a large company can either be made public,

or kept secret. The uncertainty in this case is either coming from the public community’s

response, if the incident is made public (as analyzed by, e.g., [10]), or the residual risk of infor-

mation leakage (e.g., by whistleblowing). The question here is: Which is the better choice,

given that the outcomes can be described by random variables? For such a scenario, suitable

methods to determine the consequence distributions using simulations are available [10], but

those methods don’t support the decision making process directly.

Typically, risk management is concerned with extreme events, since small distortions may

be covered by the natural resilience of the analyzed system (e.g., by an organization’s infra-

structure or the enterprise itself, etc.). For this reason, decisions normally depend on the distri-

bution’s tails. Indeed, heavy- and fat-tailed distributions are common choices to model rare

but severe incidents in general risk management [11, 12]. We build our construction with this

requirement of risk management in mind, but originate from the recognized importance that

the moments of a distribution play for decision making (cf. [13]). In section 3, we illustrate a

simple use of the first moment in this regard that is common in IT risk management, to moti-

vate the need to include more information in a decision. Interestingly, the ordering that we

define here is based on the full moment sequence (cf. Definition 2), but implies similar condi-

tions as other stochastic orders, only with an explicit focus on the probability mass located in

the distribution’s tails (cf. Theorem 2). Further, we pick some example data sets from risk

management applications in Section 5.2, and demonstrate how a decision can be made based

on empirical data.

The main contribution of this work is twofold: while any stochastic order could be used for

decision making on actions with random variables describing their outcome, not all of them

are equally suitable in a risk management context. The ordering we present in this article is

specifically designed to fit into this area. Second, the technique of constructing the ordering is

new and perhaps of independent scientific interest having applications beyond our context. In

the theoretical parts, this work is a condensed version of [14, 15] (provided as supporting

information S1 File), whereas it extends this preliminary research by practical examples and

concrete algorithms to efficiently choose best actions despite random consequences and with a

sound practical meaning.

2 Preliminaries and Notation

Sets, random variables and probability distribution functions are denoted as upper-case letters

like X or F. Matrices and vectors are denoted as bold-face upper- and lower-case letters,

respectively. The symbols |X|, |x| denote the cardinality of the finite set X or the absolute value

of the scalar x 2 IR. The k-fold cartesian product (with k =1 permitted) is Xk, and X1 is the

set of all infinite sequences ðanÞn2IN ¼ ða1; a2; a3; . . .Þ over X. Calligraphic letters like F denote

families (sets) of sets or functions. The symbol �IR denotes the space of hyperreal numbers,

being a certain quotient space constructed as �IR ¼ IR1U , where U is a free ultrafilter. We

refer to [16, 17] for details, as �IR is only a technical vehicle whose detailed structure is less

important than the fact that it is a totally ordered field. Our construction of a total ordering on

loss distributions will crucially hinge on an embedding of random variables into �IR, where a

natural ordering and full fledged arithmetic are already available without any further efforts.

The symbol X * FX means the random variable (RV) X having distribution FX, where the

subscript is omitted if things are clear from the context. The density function of FX is denoted

by its respective lower-case letter fX. We call an RV continuous, if it takes values in IR, and dis-
crete, if it takes values on a countably infinite set X. A categorical RV is one with only finitely
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many, say n, distinct outcomes. In that case, the density function can be treated as a vector

fX 2 IRn.

3 The Decision Framework

Our decision problems will concern choosing actions of minimal loss. Formally, if A is a set of

actions, from which we ought to choose the best one, then a loss-function is usually some map-

ping L : A! IRþ, so that an optimal choice from A is one with minimal loss under L (see [18]

for a full-fledged treatment and theory in the context of Bayesian decision theory). In IT

risk management (being used to illustrate our methods later in Section 5.2), risk is often

quantified by

risk ¼ damage� likelihood; ð1Þ

which roughly resembles the idea of understanding risk as the expectation of damage. In this

quantitative approach, the damage is captured by the aforementioned loss function L, whereas

the likelihood is obtained from the distribution of the random event causing the damage.

However, losses can not always be measured precisely. For the introductory example, con-

sider the two actions a1 = “publish the incident” and a2 = “keep the incident secret”. Either

choice has unpredictable consequences so we replace the deterministic loss-function by a ran-

dom variable. That is, let a1, a2 2 A be two arbitrary actions, and write X := L(a1) and Y := L
(a2), respectively, for the random losses implied by taking these actions. The challenge now is

to make a decision that minimizes the risk when losses are random.

Obviously, comparing X and Y in the way suggested by Eq (1) has some shortcomings, as it

is easy to construct random variables with equal mean but highly different variance (the same

issue would also exist in game theory [19], where the utility of mixed strategies is exactly the

expectation of outcomes but normally disregards further moments). For the example of two

Gaussian variables X � N ð5; 1Þ;Y � N ð5; 10Þ, the expectations are equal, but actions result-

ing in losses measured by Y are undesirable relative to X, since the fluctuation around the

mean for Y is considerably larger than for actions with consequences described by X. An

apparent quick fix is to take the variance into account for a decision. However, the previous

issue is still not mitigated, since it is equally easy (yet only slightly more involved) to construct

two random variables with equal first and second moment, but with different third moments

(Example 5 will give two such distributions explicitly). Indeed, the third moment can be taken

into account in the straightforward way, which has been discussed in the literature on risk atti-

tudes; see [13, 20, 21] for a few starting references. Towards a more sophisticated approach, we

will in the following use the whole object (the random variable) rather that a few representative

values thereof to make a decision.

3.1 The Usual Stochastic Order�st

Choosing a best action among {a1, a2}, we ought to compare the random variables X, Y in

some meaningful way. Without any further restrictions on the support or distribution, we may

take the usual stochastic order [22]�st for that purpose, which calls X�st Y if and only if

PrðX > xÞ � PrðY > xÞ for all x 2 ð� 1;1Þ: ð2Þ

Condition (2) can be stated equivalently by demanding E(ϕ(X))� E(ϕ(Y)) for all increasing

functions ϕ for which the expectations exist (so-called test-functions). In the latter formula-

tion, it is easy to see that, for example, the�st-ordering in particular entails E(X)� E(Y), so

that a comparison based on Eq (1) comes out the same under�st. Moreover, in restricting X
and Y to take on only positive values, as our above definition of L : A! IRþ implies, X�st Y

Decisions with Uncertain Consequences

PLOS ONE | DOI:10.1371/journal.pone.0168583 December 28, 2016 3 / 23



implies that all moments are in pairwise�-order, since the respective functions ϕ(x) = xk deliv-

ering them are all increasing on IRþ. Under this restriction, comparisons based on the second

and third moment [20] are also covered under�st.

3.2 Generalizing�st: The�-Ordering

In cases where it is sufficient to lower risk under an acceptance threshold, rather than truly

minimizing them, we may indeed relax the�st-ordering in several ways: we can require Eq (2)

only for large damages in (x0,1) for a threshold x0 that may be different for various applica-

tion domains, or we may not use all increasing functions, but only a few selected ones (our

construction will use the latter and entail the former relaxation). Given that moments are

being used to analyze risks and are related to risk attitudes [20], let us take the functions ϕ(x) =

xk for k 2 IN, which are all increasing on IRþ. To assure the existence of all moments E(ϕ(X))

<1 and the monotony of all members in our restricted set of test-functions, we impose the

following assumptions on a general random variable R, which we hereafter use to quantita-

tively model “risk”:

Definition 1. Let F be the set of all random variables R, who satisfy the following

conditions:

• R has a known distribution F with compact support (note that this implies that R is upper-

bounded).

• R� 1 (w.l.o.g., since as R is bounded, we can shift it into the region [1,1)).

• The probability measure induced by F is either discrete or continuous and has a density

function f. For continuous random variables, the density function is assumed to be

continuous.

Requirement 1 assures that all moments exist. Requirements 2 and 3 serve technical reasons

that will be made clear in Lemma 2. In brief, these two assure that the ordering obtained will

be total, and simplifies proofs by defining the order as equal to the natural ordering of hyper-

real numbers. This will be made rigorous in Theorem 1 below. The permission to restrict our

attention to moments rather than the whole random variable is given by the following well

known fact:

Lemma 1. Let two random variables X, Y have their moment generating functions μX(s), μY(s)
exist within a neighborhood Uε(0). Assume that mX(k) := E(Xk) = E(Yk) =: mY(k) for all k 2 IN.

Then X and Y have the same distribution.

Proof (Sketch). The proof is a simple matter of combining well-known facts about power-

series and moment-generating functions (see [15] for a description).

In the following, let us write mX(k) to mean the k-th moment of a random variable X. Our

next lemma establishes a total relation (so far not an ordering) between two random variables

from F, on which our ordering will be based:

Lemma 2. For any two probability distributions F1, F2 and associated random variables R1 *

F1, R2 * F2 according to Definition 1, there is a K 2 IN so that either [8k� K : mR1
(k)�mR2

(k)]

or [8k� K : mR1
(k)�mR2

(k)].

The proof of lemma 2 is given as supporting information S1 Proofs. The important fact

stated here is that between any two random variables R1, R2, either a� or a� ordering holds

asymptotically on the moment sequence. Hence, we can take Lemma 2 to justify the following

relaxation of the usual stochastic order:

Definition 2 (�-Preference Relation over Probability Distributions). Let R1, R2 2 F be two

random variables with distribution functions F1, F2. We prefer R1 over R2, respectively the
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distribution F1 over F2, written as

R1 � R2()F1 � F2 :()9K 2 IN s:t: 8k � K : mR1
ðkÞ � mR2

ðkÞ ð3Þ

Strict preference is denoted and defined as

R1 � R2()F1 � F2 :()9K 2 IN s:t: 8k � K : mR1
ðkÞ < mR2

ðkÞ

For this definition to be a meaningful ordering, we need to show that� behaves like other

orderings, say� on the real numbers. We get all useful properties almost for free, by establish-

ing an isomorphism between� and another well known ordering, namely the natural� order

on the hyperreal space �IR:

Theorem 1. Let F be according to definition 1. Assume every element X 2 F to be represented
by hyperreal number x ¼ ðEðXkÞÞk2IN 2 IR1=U , where U is any free ultrafilter. Let X, Y 2 F be
arbitrary. Then, X� Y if x� y in �IR, irrespectively of U .

Proof. (cf. [14]) Let F1, F2 be two probability distributions, and let R1 * F1, R2 * F2.

Lemma 2 assures the existence of some K 2 IN so that F1� F2 iff mR1
(k)�mR2

(k) whenever k
� K. Let L be the set of indices where mR1

(k)�mR2
(k), then complement set IN n L is finite (it

has at most K − 1 elements). Let U be an arbitrary free ultrafilter. Since IN n L is finite, it cannot

be contained in U as U is free. And since U is an ultrafilter, it must contain the complement a

set, unless it contains the set itself. Hence, L 2 U , which implies the claim.

Theorem 1 has quite some useful implications: first, the asserted independence of the ultra-

filter U spares us the need to explicitly construct U (note that the general question of whether

or not non-isomorphic hyperreal fields would arise from different choices of ultrafilters is still

unanswered by the time of writing this article). Second, the�-ordering on F inherits all prop-

erties (e.g., transitivity) of the natural ordering� on �IR, which by the transfer principle [16],

hold in the same way as for� on IR. More interestingly for further applications, topological

properties of the hyperreals can also be transferred to F. This allows the definition of a whole

game theory on top of�, as was started in [17]. It must be noted, however, that the�-ordering

still behaves different to� on IR, since, for example, the equivalence-relation induced by�

does not entail an identity between distributions (since a finite number of moments is allowed

to mismatch in any case).

Interestingly, although not demanded in first place, the use of moments to compare a distri-

bution entails a similar fact as inequality Eq (2) upon which the usual stochastic order was

defined:

Theorem 2. Let X, Y 2 F have the distributions F1, F2. If X� Y, then there exists a threshold
x0 2 supp(F1) [ supp(F2) so that for every x� x0, we have Pr(X> x)� Pr(Y> x).

The proof of this appears in the supporting information S1 Proofs. Intuitively, Theorem 2

can be rephrased into saying that:

If F1� F2, then “extreme events” are less likely to occur under F1 than under F2.

Summarizing the results obtained, we can say that the�-ordering somewhat resembles the

initial definition of the usual stochastic order�st, up to the change of restricting the range

from (−1,1) to a subset of [1,1) and in allowing a finite number of moments to behave

arbitrarily. Although this allows for an explicit disregard of the first few moments, the overall

effect of choosing a�-minimal distribution is shifting all the probability mass towards regions

of lower damages, which is a consequence of Theorem 2. As such, this result could by itself be

taken as a justification to define this ordering in first place. However, in the way developed

here, the construction roots in moments and their recognized relation to risk attitudes [13, 20,
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21], and in the end aligns itself to both, the intuition behind�st and the focus of risk manage-

ment on extreme events, without ever having stated this as a requirement to begin with. Still,

by converting Theorem 2 into a definition, we could technically drop the assumption of losses

being� 1. We leave this as an aisle for future research. As a justification of the restrictions as

stated, note that most risk management in the IT domain is based on categorical terms (see

[23–27]), which naturally map into integer ranks�1. Thus, our assumption seems mild, at

least for IT risk management applications (applications in other contexts like insurance [28]

are not discussed here and constitute a possible reason for dropping the lower bound in future

work).

3.3 Distributions with Unbounded Tails

Theorem 2 tells that distributions with thin tails would be preferred over those with fat tails.

However, catastrophic events are usually modeled by distributions with fat, heavy or long tails.

The boundedness condition in definition 1 rules out many such distributions relevant to risk

management (e.g., financial risk management [29]). Thus, our next step is extending the

ordering by relaxing some of the assumptions that characterize F.

The�-relation cannot be extended to cover distributions with heavy tails, as those typically

do not have finite moments or moment generating functions. For example, Lévi’s α-stable dis-

tributions [30] are not analytically expressible as densities or distribution functions, so the

expression E(ϕ(X)) could be quite difficult to work out for the usual stochastic order. Con-

versely, resorting to moments, we can work with characteristic functions, which can be much

more feasible in practice.

Nevertheless, such distributions are important tools in risk management. Things are, how-

ever, not drastically restricted, for at least two reasons:

1. Compactness of the support is not necessary for all moments to exist, as the Gaussian distri-

bution has moments of all orders and is supported on the entire real line (thus violating

even two of the three conditions of assumption 1). Still, it is characterized entirely by its

first two moments, and thus can easily be compared in terms of the�-relation.

2. Any distribution with infinite support can be approximated by a truncated distribution.

Given a random variable X with distribution function F, then truncated distribution F̂ is the

conditional likelihood F̂ðxÞ ¼ PrðX � xja � X � bÞ.
By construction, the truncated distribution has the compact support [a, b]. More impor-

tantly, for a loss distribution with unbounded support [1,1) and given any ε> 0, it is easy

to choose a compact interval [a, b] large enough inside [1,1) so that jFðxÞ � F̂ðxÞj < ε for

all x. Hence, restricting ourselves to distributions with compact support, i.e., adopting

assumption 1, causes no more than a numerical error that can be made as small as we wish.

More interestingly, we could attempt to play the same trick as before, and characterize a dis-

tribution with fat, heavy or long tails by a sequence of approximations to it, arising from better

and better accuracy ε! 0. In that sense, we could hope to compare approximations rather

than the true density in an attempt to extend the preference and equivalence relations� and

� to distributions with fat, heavy or long tails.

Unfortunately, such hope is an illusion, as a distribution is not uniquely characterized by a

general sequence of approximations (i.e., we cannot formulate an equivalent to lemma 1), and

the outcome of a comparison of approximations is not invariant to how the approximations

are chosen (i.e., there is also no alike for lemma 2). To see the latter, take the quantile function
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F−1(α) for a distribution F, and consider the tail quantiles F � 1
ðaÞ ¼ F � 1ð1 � aÞ. Pick any

sequence (αn)n!1 with αn! 0. Since limx!1 F(x) = 1, the tail quantile sequence behaves

like F � 1
ðanÞ ! 1, where the limit is independent of the particular sequence (αn)n! 1, but

only the speed of divergence is different for distinct sequences.

Now, let two distributions F1, F2 with infinite support be given. Fix two sequences αn and

ωn, both vanishing as n!1, and set

an :¼ F � 1

1
ðanÞ � bn :¼ F � 1

2
ðonÞ: ð4Þ

Let us approximate F1 by a sequences of truncated distributions f̂ 1;n with supports [1, an] and

let the sequence f̂ 2;n approximate f2 on [1, bn]. Since an< bn for all n, it is easily verified that

the sequence of moments of the distributions truncated to [1, an] and [1, bn] implies that the

respective moment sequences diverge so that f̂ 1;n � f̂ 2;n ultimately. However, by replacing the

“<” by a “>” in Eq (4), we can construct approximations to F1, F2 whose truncated supports

overlap one another in the reverse way, so that the approximations would always satisfy

f̂ 1;n � f̂ 2;n. It follows that the sequence of approximations cannot be used to unambiguously

compare distributions with infinite support, unless we impose some constraints on the tails of

the distributions and the approximations. The next lemma (see the supporting information S1

Proofs for a proof) assumes this situation to simply not occur, which allows to give a sufficient
condition to unambiguously extend strict preference in the way we wish.

Lemma 3. Let F1, F2 be two distributions supported on [1,1) with continuous densities f1, f2.

Let ðanÞn2IN be an arbitrary sequence with an!1 as n!1, and let f̂ i;n for i = 1,2 be the trun-
cated distribution fi supported on [1, an].

If there is a constant c< 1 and a value x0 2 IR such that f1(x)<c � f2(x) for all x� x0, then
there is a number N such that all approximations f̂ 1;n; f̂ 2;n satisfy f̂ 1;n � f̂ 2;n whenever n� N.

By virtue of lemma 3, we can extend the strict preference relation to distributions that sat-

isfy the hypothesis of the lemma but need not have compact support anymore. Precisely, we

would strictly prefer one distribution over the other, if all truncated approximations are ulti-

mately preferable over one another.

Definition 3 (Extended Preference Relation�). Let F1, F2 be distribution functions of non-

negative random variables that have infinite support and continuous density functions f1, f2.

We (strictly) prefer F1 over F2, denoted as F1� F2, if for every sequence an!1 there is an

index N so that the approximations F̂ i;n for i = 1,2 satisfy F̂ 1;n � F̂ 2;n whenever n� N.

The�-relation is defined alike, i.e., the ultimate preference of F2 over F1 on any sequence of

approximations.

Definition 3 is motivated by the above arguments on comparability on common supports,

and lemma 3 provides us with a handy criterion to decide the extended strict preference

relation.

Example 1. It is a matter of simple algebra to verify that any two out of the three kinds of

extreme value distributions (Gumbel, Frechet, Weibull) satisfy the above condition, thus are

strictly preferable over one another, depending on their particular parametrization.

Definition 3 can, however, not applied to every pair of distributions, as the following exam-

ple shows.
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Example 2. Take the “Poisson-like” distributions with parameter λ> 0,

f1ðkÞ /

(
lk=2

ðk=2Þ!
e� l; when k is even;

0; otherwise:
; f2ðkÞ /

( 0; when k is even;

lðk� 1Þ=2

ððk� 1Þ=2Þ!
e� l; otherwise

It is easy to see that no constant c< 1 can ever make f1 < c � f2 and that all moments exist.

However, neither distribution is preferable over the other, since finite truncations to [1, an]

based on the sequence an := n will yield alternatingly preferable results.

An occasionally simpler condition that implies the hypothesis of definition 3 is

lim
x!1

f1ðxÞ
f2ðxÞ

¼ 0: ð5Þ

The reason is simple: if the condition of definition 3 were violated, then there is an infinite

sequence ðxnÞn2IN for which f1(xn)� c � f2(xn) for all c< 1. In that case, there is a subsequence

ðxnkÞk2IN for which limk!1 f1(xnk)/f2(xnk)� c. Letting c! 1, we can construct a further subse-

quence of ðxnkÞk2IN to exhibit that limsupn!1(f1(xn)/f2(xn)) = 1, so that Condition (5) would

be refuted. Observe that Eq (5) is similar to the definition of a likelihood ratio order [22] in the

sense that it implies both, a likelihood ratio and�-ordering. Note that, however, a likelihood

ratio order does not necessarily imply a�-order, since the former only demands f(t)/g(t) to be

increasing, but not a<-relation among the densities.

Remark 1. It must be emphasized that the above line of arguments does not provide us

with a mean to extend the�- or�-relations accordingly. For example, an attempt to define�

and� as above is obviously doomed to failure, as asking for two densities f1, f2 to satisfy f1(x)

� c1 � f2(x) ultimately (note the intentional relaxation of< towards�), and f2(x)� c2 � f1(x)

ultimately for two constants c1, c2 < 1 is nonsense.

A straightforward extension of� can be derived from (based on) the conclusion of lemma 3:

Definition 4. Let F1, F2 be two distributions supported on the entire nonnegative real half-

line IRþ with continuous densities f1, f2. Let ðanÞn2IN be a diverging sequence towards1, and let

F̂ i;n for i = 1, 2 denote the density Fi truncated to have support [1, an]. We define F1� F2 if and

only if for every sequence ðanÞn2IN there is some index N so that F̂ 1;n � F̂ 2;n for every n� N.

More compactly and informally spoken, definition 4 demands preference on all approxima-

tions with finite support except for at most finitely many exceptions near the origin.

Obviously, preference among distributions with finite support implies the extended prefer-

ence relation to hold in exactly the same way (since the sequence of approximations will ulti-

mately become constant when an overshoots the bound of the support), so definition 4 extends

the�-relation in this sense.

3.4 Comparing Distributions of Mixed Type

The representation of a distribution by the sequence of its moments is of the same form, for

discrete, categorical and continuous random variables. Hence, working with sequence repre-

sentations (hyperreal numbers) admits to compare continuous to discrete and categorical vari-

ables, as long as there is a meaningful common support. The framework itself, up to the results

stated so far, remains unchanged and is applied to the category’s ranks instead. The ranking is

then made in ascending order of loss severity, i.e., the category with lowest rank (index) should

be the one with the smallest damage magnitude (examples are found in IT risk management

standards like ISO 27005 [31] or the more generic ISO 31000 [32] as well as related standards).
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A comparison of mixed types is, obviously, only meaningful if the respective random vari-

ables live in the same (metric) space. For example, it would be meaningless to compare ordinal

to numeric data. Some applications in natural risk management define categories as numeric

ranges (such as [23–26]), which could make a comparison of categories and numbers meaning-

ful (but not necessarily so).

4 Practicalities

It must be noted that Definition 2 demands only the existence of some index after which the

sequence of moment diverges, without giving any condition to assure this. Likewise, Theorem

2 is non-constructive in asserting the existence of a region onto which the�-smaller distribu-

tion puts more mass than the other. Hence, practical matters of deciding and interpreting the

�-ordering are necessary and discussed in the following.

In general, if the two distributions are supported on the sets [1, a] for F1 and [1, b] for F2

with b> a, then the mass that F2 puts on the set (a, b] will cause the moments of F2 to grow

faster than those of F1. In that case, we can thus immediately conclude F1� F2, and we get x0 =

a in Theorem 2. Thus, the more interesting situation arises when the supports are identical,

which is assumed throughout the following subsections. Observe that it is herein not necessary

to look at overlaps at the lower end of the supports, since the mass assigned near the “right

end” of the support is what determines the growth of the moment sequence; the proof of

Lemma 2 in the supporting information S1 Proofs more rigorously shows this.

4.1 Deciding� between Categorical Variables

Let F1, F2 be two distributions over a common support, i.e., a common finite set of categories,

hereafter denoted in descending order as c1 > c2 > . . .> cn. Let f̂ 1 ¼ ðp1; . . . ; pnÞ; f̂ 2 ¼

ðq1; . . . ; qnÞ be the corresponding probability mass functions. For example, these can be nor-

malized histograms (empirical density functions) computed from the available data to approx-

imate the unknown distributions F1, F2 of the random variables X, Y.

Letting the category ci correspond to its rank n − i + 1 within the support, it is easy to check

that the expectation of X * F1, Y * F2 by definition is a sequence whose growth is determined

by whichever distribution puts more mass on categories of high loss. Formally, if p1 > q1, then

EðXkÞ ¼
Pn

j¼1
pjckj >

Pn
j¼1

qjckj ¼ EðYkÞ, since the growth of either sum is determined by the

largest term (here being ck
1
). Upon the equality p1 = q1, we can retract the respective terms

from both sums (as they are equal), to see whether the second-largest term ck
2

tips the scale,

and so on.

Overall, we end up observing that�-comparing distributions is quite simple, and a special

case of another common ordering relation:

Definition 5 (lexicographic ordering). For two real-valued vectors x = (x1, x2, . . .) and y =

(y1, y2, . . .) of not necessarily the same length, we define x<lex y if and only if there is an index

i0 so that xi0 < yi0 and xi = yi whenever i< i0.

Our discussion from above is then the mere insight that the following is true:

Theorem 3. Let F1, F2 be two categorical random variables with a common ordered support O

= {c1 > c2 > . . .> cn}, and let f1,f2 be the respective (empirical) density functions. Then F1� F2

, f1<lex f2, where f i ¼ ðfiðc1Þ; fiðc2Þ; . . . ; fiðcnÞÞ 2 IRn.

For illustration, we will apply Theorem 3 to two concrete example data sets #1 and #2 in

section 5.
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4.2 Deciding� between Continuous Variables

Let us assume that the two random variables R1 * F1, R2 * F2 have smooth densities f1, f2 2
C1([1, a]) for some a> 1. Under this assumption, we can switch to yet another useful

sequence representation:

f 7!f ¼ ðð� 1Þ
kf̂ ðkÞðaÞÞk2IN: ð6Þ

Given two distributions f1, f2 2 C1, e.g., constructed from a Gaussian kernel (cf. remark 2

below), let the respective representations according to Eq (6) be f1,f2. Then, it turns out that

the lexicographic ordering of f1,f2 implies the same ordering w.r.t.�, or formally:

Lemma 4 ([15]). Let f, g 2 C1([1, a]) for a real value a> 1 be probability density functions. If

ðð� 1Þ
k
� f ðkÞðaÞÞk2IN <lex ðð� 1Þ

k
� gðkÞðaÞÞk2IN;

then f� g.

Lemma 4 will be demonstrated on our example data set #3, in connection with a kernel

density estimate, in section 5. Practically, we can thus decide the�-relation by numerically

computing derivatives of increasing order, until the decision is made by the lexicographic

ordering (which, for our experiments, happened already at zeroth order in many cases).

Remark 2. The assumption on differentiability is indeed mild, as we can cast any integrable

density function into a C1-function by convolution with a Gaussian density kh with zero

mean and variance h. Clearly, f � kh 2 C1 by the differentiation theorem of convolution.

Moreover, letting h! 0, we even have L1-convergence of f � kh! f, so that the approximation

can be made arbitrarily accurate by choosing the parameter h> 0 sufficiently small. Practi-

cally, when the distributions are constructed from empirical data, the convolution corresponds

to a kernel density estimation (i.e., a standard nonparametric distribution model). Using a

Gaussian kernel then has the additional appeal of admitting a closed form of the k-th deriva-

tives (f�kh)(k), involving Hermite-polynomials.

Observation – “��<lex”. As an intermediate résumé, the following can be said:

Under a “proper” representation of the distribution (histogram or continuous kernel den-

sity estimate), the�-order can be decided as a humble lexicographic order.

This greatly simplifies matters of practically working with�-preferences, and also fits into

the intuitive understanding of risk and its formal capture by theorem 2: whichever distribution
puts more mass on far-out regions is less favourable under�.

4.3 Comparing Deterministic to Random Effects

In certain occasions, the consequence of an action may result in perfectly foreseeable effects,

such as fines or similar. Such deterministic outcomes can be modeled as degenerate distribu-

tions (point- or Dirac-masses). These are singular and thus outside F by Definition 1. Note

that the canonic embedding of the reals within the hyperreals represents a number a 2 IR by

the constant sequence (a, a, . . .). Picking up this idea would be critically flawed in our setting,

as any such constant sequence would be preferred over any probability distribution (whose

moment sequence diverges and thus overshoots a inevitably and ultimately).

However, it is easy to work out the moment sequence of the constant X = a as E(Xk) = E(ak)
= ak for all k 2 IN. In this form, the�-relation between the number a and the continuous ran-

dom variable Y supported on O = [1, b] can be decided as follows:
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1. If a< b, then a� Y: to see this, choose ε< (b − a)/3 so that f is strictly positive on a com-

pact set [b − ε, b − 2ε] (note that such a set must exist as f is continuous and the support

ranges until b). We can lower-bound the k-th moment of Y as

Z b

1

ykf ðyÞdy � ð inf
½b� 2ε;b� ε�

f Þ �
Z b� ε

b� 2ε
ykdy

¼
1

kþ 1
ðb � εÞkþ1

� ðb � 2εÞkþ1
h i

:

Note that the infimum is positive as f is strictly positive on the compact set [b − 2ε, b − ε].

The lower bound is essentially an exponential function to a base larger than a, since b − 2ε
> a, and thus (ultimately) grows faster than ak.

2. If a> b, then Y� a, since Y – in any possible realization – leads to strictly less damage than

a. The formal argument is now based on an upper bound to the moments, which can be

derived as follows:

Z b

1

ykf ðyÞdy � ðsup
½1;b�

f Þ �
Z b

1

ykdy ¼ ðsup
½1;b�

f Þ
1

kþ 1
bkþ1:

It is easy to see that for k!1, this function grows slower than ak as a> b, which leads to

the claimed�-relation.

3. If a = b, then we apply the mean-value theorem to the integral occurring in EðYkÞ ¼
R a

1
ykf ðyÞdy to obtain an ξ 2 [1, a] for which

EðYkÞ ¼ x
k
Z a

1

f ðyÞdy
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼1

¼ x
k
� ak

for all k. Hence, Y� a in that case. An intuitive explanation stems from the fact that Y may

assign positive likelihood to events with less damage as a, whereas a deterministic outcome

is always larger or equal to anything that Y can deliver.

4.4 On the Interpretation of� and Inference

The practical meaning of the�-preference is more involved than just a matter of comparing

the first few moments. Indeed, unlike for IT risk preferences based on Eq (1), the first moment

can be left unconstrained while�may still hold in either direction.

For general inference, the comparison of two distributions provides a necessary basis (i.e.,

to define optimality, etc.). For example, (Bayesian) decision theory or game theoretic models

can be defined upon�, via a much deeper exploration of the embedding of F into the hyper-

reals (by mapping a distribution to its moment sequence), such as the induced topology and

calculus based on it. In any case, however, we note that the previous results may help in han-

dling practical matters of� inside a more sophisticated statistical decision or general inference

process. For practical decisions, some information can be obtained from the value x0 that The-

orem 2 speaks about. This helps assessing the meaning of the order, although the practical con-

sequences implied by�st or� are somewhat similar. The main difference is Eq (2) holding

only for values�x0 in case of�. The threshold can hence be found by numerically searching

for the largest (“right-most”) intersection point of the respective survival functions; that is, for

two distributions F1� F2, a valid x0 in Theorem 2 is any value for which 1 − F1(x)� 1 − F2(x)

for all x� x0. An approximation of x0, e.g., computed by a bisective search in common support
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of both distributions, then more accurately describes the “statistically best” among the available

actions, since losses>x0 are more likely for all other options. A practical decision, or more

general inference based on�, should therefore be made upon computing x0 as an explicit aux-

iliary information, in order to assign a quantitative meaning to “extreme events” in the inter-

pretation underneath Theorem 2. Further issues of practical decision making in the context of

IT risk management are discussed along the first empirical example found in section 5.2.

Section 5 will not discuss (statistical) inference since the details are beyond the scope of this

work (we leave this to follow up work). Instead, the following section will be dedicated to

numerical illustrations of� only, without assigning any decisional meaning to the�-preferred

distributions. For each example, we will also give an approximation (not the optimal) value

of x0.

5 Numerical Examples

Let us now apply the proposed framework to the problem of comparing effects that are empiri-

cally measurable, when the precise action/response dynamics is unknown. We start by looking

at some concrete parametric models of extreme value distributions first, to exemplify cases of

numerical comparisons of distributions with unbounded tails in Section 5.1.

In Section 5.3, we will describe a step-by-step evaluation of our�-ordering on empirical

distributions. The sources and context of the underlying empirical data sets are described in

section 5.2. From the data, we will compile non-parametric distribution models, which are

either normalized histograms or kernel density estimators. On these, we will show how to

decide the�-relation using the results from section 4.

5.1 Comparing Parametric Models

We skip the messy algebra tied to the verification of the criteria in Section 3.3, and instead

compute the moments numerically to illustrate the growth/divergence of moment sequences

as implied by Lemma 2.

Example 3 (different mean, same variance). Consider two Gumbel-distributions X * F1 =

Gumbel(31.0063, 1.74346) and Y * F2 = Gumbel(32.0063, 1.74346), where a density for Gum-
bel(a, b) is given by

f ðxja; bÞ ¼
1

b
ex� ab � e

x � a
b
;

where a 2 IR and b> 0 are the location and scale parameter.

Computations reveal that under the given parameters, the means are E(X) = 30, E(Y) = 31

and Var(X) = Var(Y) = 5. Fig 1 plots the respective densities of F1 (dashed) and F2 (solid line).

The respective moment sequences evaluate to

EðXkÞ ¼ ð30; 905; 27437:3; 835606; 2:55545� 107; . . .Þ;

EðYkÞ ¼ ð31; 966; 30243:3; 950906; 3:00162� 107; . . .Þ;

thus illustrating that F1� F2. This is consistent with the intuition that the preferred distribu-

tion gives less expected damage. The concrete region about which Theorem 2 speaks is at least

for damages >x0 = 25 (cf. Theorem 2).

Example 4 (same mean, different variance). Let us now consider two Gumbel-distributions

X * F1 = Gumbel(6.27294, 2.20532) and Y * F2 = Gumbel(6.19073, 2.06288), for which E(X)

= E(Y) = 5 but Var(X) = 8> Var(Y) = 7.
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Fig 2 plots the respective densities of F1 (dashed) and F2 (solid line). The respective moment

sequences evaluate to

EðXkÞ ¼ ð5; 33; 219:215; 1654:9; 11957:8; . . .Þ;

EðYkÞ ¼ ð5; 32; 208:895; 1517:51; 10806:8; . . .Þ;

thus illustrating that F2� F1. This is consistent with the intuition that among two actions lead-

ing to the same expected loss, the preferred one would be one for which the variation around

the mean is smaller; thus the loss prediction is “more stable”. The range on which damages

under F2 are less likely than under F1 begins at x> x0� 5.5 (cf. Theorem 2).

Example 5 (different distributions, same mean and variance). Let us now consider a situa-

tion in which the expected loss (first moment) and variation around the mean (second

moment) are equal, but the distributions are different in terms of their shape. Specifically, let X

Fig 1. Comparing distributions with different means.

doi:10.1371/journal.pone.0168583.g001

Fig 2. Comparing distributions with equal means but different variance.

doi:10.1371/journal.pone.0168583.g002
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* F1 = Gamma(260.345, 0.0373929) and Y * Weibull(20, 10), with densities as follows:

fGammaðxja; bÞ ¼

(
b� axa� 1e�

x
b

GðaÞ ; x > 0;

0; otherwise

fWeibullðxja; bÞ ¼

(
ae
� x

bð Þ
a

x
bð Þ

a� 1

b ; x > 0;

0; otherwise

Fig 3 plots the respective densities of F1 (dashed) and F2 (solid line). The respective moment

sequences evaluate to

EðXkÞ ¼ ð9:73504; 95:1351; 933:259; 9190:01; 90839:7; . . .Þ;

EðYkÞ ¼ ð9:73504; 95:1351; 933:041; 9181:69; 90640:2; . . .Þ;

thus illustrating that F2� F1. In this case, going with the distribution that visually “leans more

towards lower damages” would be flawed, since F1 nonetheless assigns larger likelihood to

larger damages. The moment sequence, on the contrary, unambiguously points out F2 as the

preferred distribution (the third moment tips the scale here; cf. [13, 20, 21]). The statistical

assurance entailed by Theorem 2 about an interval in which high damage incidents are less

likely (at least) includes losses>x0� 10.3.

5.2 Empirical Test Data and Methodology

To demonstrate how the practical matters of comparing distributions work, we will use three

sets of empirical data, based on qualitative data from risk estimation, and based on simulating

a malware outbreak using percolation.

Test Data Set #1 – IT Risk Assessments. The common quantitative understanding of

risk by the Formula (1) is easily recognized as the expectation (i.e., first moment) of a loss dis-

tribution. Although being standard in quantitative IT risk management, its use is discouraged

by the German Federal Office of Information Security (BSI) [33] for several reasons besides

the shortcomings that we discussed here (for example, statistical data may be unavailable at the

Fig 3. Comparing distributions with matching first two moments but different shapes.

doi:10.1371/journal.pone.0168583.g003
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desired precision and an exact formula like Eq (1) may create the illusion of accuracy where

there is none [33]).

Best practices in risk management (ranging up to norms like the ISO27005 [31], the

ISO31000 [32] or the OCTAVE Allegro framework [34]) usually recommend the use of quali-
tative risk scales. That is, the expert is only asked to utter an opinion about the risk being “low/

medium/high” or perhaps using a slightly more fine-grained but in any case ordinal scale. In a

slight abuse of formalism, these categories are then still carried into an evaluation of Eq (1) (cf.

[35]) towards finding the decision with the “least” risk in qualitative terms as Eq (1) gives.

Categorical risk assessments are heavily used in the IT domain due to their good systemati-

zation and tool support. Our first test data set is thus a risk assessment made in terms of the

Common Vulnerability Scoring System (CVSS) [27]. The CVSS ranks risks on a scale from 0

to 10, as a decimal rounded up to one place behind the comma. Usually, these CVSS values

come from domain experts, so there is an intrinsic ambiguity in the opinions on grounds of

which a decision shall be made. Table 1, taken from [36] (by kind permission of the author A.

Beck), shows an example of such expert data for two security system installments being

assessed by experts in the left and right part of the table (separated by the double vertical line).

The�-ordering shall now help to choose the better of the two options, based on the ambigu-

ous and even inconsistent domain expert inputs. For simplicity of the example, we did not

work with the fine-grained CVSS scores, but coarsened them into three categories, i.e., inter-

vals of scores low = [0, 3) (L), medium = [4, 8) (M) and high = [8, 10] (H). We remark that the

categorial assessment was added in this work, and is not from the source literature.

Test Data Set #2 – Malware Outbreaks. Computer malware infections are continuously

reported in the news, with an early and prominent example having been the Stuxnet worm in

2008 [37], which infected the Iranian uranium enrichment facilities. Ever since, the control

and supervision of cyber-physical systems has gained much importance in risk management,

since attacks on the computer infrastructure may have wide effects ranging up to critical sup-

ply infrastructures such as water supply, power supply, and many others (e.g., oil, gas or food

supply networks, etc.).

The general stealthiness of such infections makes an exact assessment of risk difficult. A

good approach to estimate that risk is to apply outbreak simulation models, such as, for exam-

ple, using percolation theory [38, 39]. These simulations provide us with possible infection sce-

narios, in which the number of infected nodes (after a fixed period of time), can be averaged

into a probability distribution describing the outcome of an infection. Repeating the simula-

tion with different system configurations yields various outcome distributions. An example for

a network with 20 nodes and 1000 repetitions per simulation is displayed in Table 2. The

�-relation shall then help deciding which configuration is better in minimizing the risk of a

large outbreak.

Test Data Set #3 – Nile Water Level. As a third data set, we use one that ships with the

statistical software suite R. Concretely, we will look at the dataset Nile that consists of the

measurements of the annual flow of the Nile river between 1871 and 1970. For comparisons,

Table 1. Example CVSS Risk Assessment [36].

Expert

(anonymized)

CN-

863

ER-

881

ÖL-

968

BA-

576

RC-

813

RR-

745

EN-

720

EF-

375

UE-

941

RI-740 UM-

330

TR-

790

EE-

677

ER-

640

EE-

489

Scenario 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

CVSS 10 6.4 9 7.9 7.1 9 10 7.9 8.2 7.4 10 8.5 9 9 8.7

Risk H M H M M H H M H M H H H H H

doi:10.1371/journal.pone.0168583.t001
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we will divide the data into two groups of 50 observations each (corresponding to years). The

decision problem associated with it is the question of which period was more severe in terms

of water level. Extending the decision problem to more than two periods would then mean

searching for a trend within the data. Unlike a numerical trend, such as a sliding mean, we

would here have a “sliding empirical distribution” to determine the trend in terms of

randomness.

5.3 Comparing Empirical Distributions

With the three data sets as described, let us now look into how decisions based on the empiri-

cal data can be made.

Categorical Data – Comparing Normalized Histograms. Compiling an empirical distri-

bution from the example CVSS data in Table 1 gives the histograms shown in Fig 4. Clearly,

scenario 1 is preferable here, as it is less frequently rated with high damage than scenario 2. On

the contrary, the decision is much less informed than in the case where the full numeric data

would have been used. We will thus revisit this example later again.

For the simulated malware infection data in Table 2, the empirical distribution of the num-

ber of affected nodes as shown in Fig 5 is obtained by normalization of the corresponding his-

tograms. In this case, configuration 2 is preferable as the maximal damage of 20 node has

occurred less often than in configuration 1.

Continuous Data – Comparing Kernel Density Estimates. If the data itself is known to

be continuous, then a nonparametric distribution estimate can be used to approximate the

unknown distribution.

Table 2. Simulated malware infection.

size n of the outbreak config. 1 config. 2

1 0 0

2 1 0

3 0 0

4 3 0

5 5 3

6 1 4

7 4 6

8 5 5

9 9 8

10 6 25

11 13 33

12 22 39

13 29 85

14 44 131

15 86 160

16 135 164

17 182 150

18 245 113

19 173 64

20 37 10

Data: number of occurrences of an outbreak of size n under two configurations, after a fixed time period [39]

doi:10.1371/journal.pone.0168583.t002
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Fig 4. Comparing Empirical Distributions – Test Data #1 in Nominal Scale. Outcome: “scenario 1”�

“scenario 2” (i.e., scenario 1 has lower security risk, based on the coarsened data), for medium and high

categories (x0 = ‘M’).

doi:10.1371/journal.pone.0168583.g004

Fig 5. Test Data #2 – (Simulated) Empirical Distribution of Malware Outbreak Sizes under two

Configurations. Outcome: “config. 2”� “config. 1” (i.e., the second configuration is more secure w.r.t.

extreme outcomes, i.e., infections of >x0 = 9 nodes).

doi:10.1371/journal.pone.0168583.g005

Decisions with Uncertain Consequences

PLOS ONE | DOI:10.1371/journal.pone.0168583 December 28, 2016 17 / 23



In the following, let us write f̂ to mean a general kernel density estimate based on the data

(observations) x1, . . ., xn, of the form

f̂ nðxÞ ¼
1

n � h

Xn

i¼1

K
x � xi
h

� �
; ð7Þ

where K(x) is the chosen kernel function, and h> 0 is a bandwidth parameter, whose choice is

up to any (of many existing) heuristics (see [40, 41] among others). Computing a kernel den-

sity estimate from data is most conveniently done by invoking the density command within

the R statistical computing software [42].

This comparison of two kernel density estimates (KDE) is illustrated in Fig 6. For that pur-

pose, we divided the test dataset #3 (data(Nile) in R) into observations covering the years

1871-1920 and 1921-1970. For both sets the density is estimated with a Gaussian kernel and

the default bandwidth choice nrd0 (Silverman’s rule [41]) yielding a KDE f̂ 1 with bandwidth

h1 = 79.32 for the years 1871-1920 and a KDE f̂ 2 with bandwidth h2 = 45.28 for the years 1921-

1970. Further we have the maximal observed values xn1
= 1370 and yn2

= 1170, and see that

xn1
þ h1 ¼ 1449:32 > yn2

þ h2 ¼ 1215:28:

Therefore (and also by visual inspection of Fig 6), the density for the period from 1871 until

1920 has had higher likelihoods for a high water level, which became less in the period from

1921-1970, thus indicating a “down-trend” by f̂ 2 � f̂ 1.

Using Gaussian Kernels. Commonly, the kernel density approximation is constructed

using Gaussian kernels per default, in which case K takes the form KðxÞ ¼ 1ffiffiffiffi
2p
p exp � 1

2
x2

� �
.

Definition 1 is clearly not met, but there is also no immediate need to resort to the extended

Fig 6. Comparison of two kernel density estimates – Test Data #3 (Nile Water Level). Outcome: “1921-

1970”� “1871-1920” (indicating that floodings at a water level >x0� 220 (Theorem 2) have been more likely

in the years before 1921).

doi:10.1371/journal.pone.0168583.g006
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version of� as given by Definition 4. Indeed, if we simply truncate the KDE at any point

a> 1 into the distribution f̂ and remember that K 2 C1, the truncated kernel density estimate

is again a C1-density, as required by Lemma 4.

Returning to the CVSS example data in Table 1, we constructed Gaussian kernel density

estimates f1, f2, with bandwidths h1� 0.798 and h2� 0.346 (using the default Silverman’s rule

in R); plots of which are given in Fig 7. Using the criterion of Lemma 4 in connection with the

lexicographic ordering, we end up finding that f2� f1, in contrast to our previous finding. This

is, however, only an inconsistency at first glance, and nevertheless intuitively meaningful if we

consider the context of the decision and the effect of the nonparametric estimation more

closely:

• Since scenario 2 is based on more data than scenario 1, the bandwidth h2 is less than h1. This

has the effect of the distribution being “more condensed” around higher categories, as

opposed to the distribution for scenario 1, whose tail is much thicker. Consequently, the

decision is to prefer scenario 2 is implicitly based on the larger data set, and considers the

higher uncertainty in the information about scenario 1.

• The Gaussian kernel has tails reaching out to +1, which also assigns positive mass to values

outside the natural range of the input data (1. . .10 in case of CVSS). In many contexts, obser-

vations may not be exhaustive for the possible range (e.g., monetary loss up to the theoretical

maximum may – hopefully – not have occurred in a risk management process in the past).

By construction, the KDE puts more mass on the tails the more data in this region is avail-

able. From a security perspective, this mass corresponds to zero-day exploit events. Thus,

such incidents are automatically accounted for by�.

Fig 7. Comparing Nonparametric Distribution Models – Test Data #1 (directly used). Outcome:

“scenario 2”� “scenario 1” (given a more refined view that in Fig 4, scenario 1 has less security).

doi:10.1371/journal.pone.0168583.g007
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6 Discussion

Our proposed preference relation is designed for IT risk management. In this context, decision

makers often rely on scarce and purely subjective data coming from different experts. Bayesian

techniques that need large amounts of data are therefore hard to apply (and somewhat ironi-

cally, a primary goal of IT risk management is exactly minimizing the lot of incidents that

could deliver the data). Since the available information may not only be vague but possibly

also inconsistent, consensus finding by data aggregation is often necessary. There exist various

non-probabilistic methods to do this (such as fuzzy logic, Dempster-Shafer theory, neural net-

works, etc.) and perform extremely well in practice, but the interpretation of the underlying

concepts is intricate and the relation to values and business assets is not trivial.

To retain interpretability, data aggregation often means averaging (or taking the median of)

the available risk figures, in order to single out an optimal action. This clearly comes at the cost

of losing some information. Stochastic orders elegantly tackle the above issues by letting the

entire data go into a probability distribution (and thus preserving all information), and defin-

ing a meaningful ranking on the resulting objects. However, not all stochastic orders are

equally meaningful for the peculiarities of IT risk management. For example, low damages are

normally disregarded as being covered by the system’s natural resilience, i.e., no additional

efforts are put on lowering a risk that is considered as low already. The relevance of risks

depends on whether or not a certain acceptable damage threshold is exceeded. IT risk manag-

ers typically care about significant (extreme) distortions and events with high potential of dam-

age but with only a limited lot of reported evidence so far, such as zero day exploits or

advanced persistent threats.

Consequently, a suitable ordering may reasonably ignore damages of low magnitude, and

focus on extreme outcomes, i.e., the tails of the respective loss distributions. This is a major

reason for our transition from the usual stochastic order that takes into account the entire loss

range (in fact all IR, according to Eq (2)) to one that explicitly focuses on a left neighborhood

of the loss maximum. In a converse approach to the same problem, this could as well be used

as a starting point to define an order, but starting from moments instead and finishing with an

ordering that is about the heaviness of tails is an interesting lesson learned from our proposed

technique of using �IR to construct the ordering here. More importantly, the rich structure of
�IR, being available without additional labor, makes our ordering useable with optimization

and game theory, so that important matters of security economics can be covered as a by-prod-

uct. This non-standard technique of constructing an ordering is an independent contribution

of this work.

Summarizing our point, decision making based on a stochastic ordering has the appeal of a

statistical fundament that is easy to communicate and, more importantly, fits well into existing

risk management standards (ISO 27000, ISO 31000, etc.).

Outlook: The well defined arithmetic over �IR, into which Theorem 1 embeds the (risk) dis-

tribution models in F, lets us technically work with distributions like as if we were in a topo-

logical field. This embedding offers an interesting unexplored (and nontrivial) route of future

research: though the operations on random variables (say, addition or quotients) do not corre-

spond to the same operations in �IR (which is immediately evident from the definition), many

other operations and even functions of random variables can be studied in the space �IR rather

than on the set of distributions. So we can, for example, do optimization theory over distribu-

tions but equipped with the full armory of calculus known from the reals (that analogously

holds in the space �IR by virtue of Łos’ theorem or the transfer principle [16]).

Our ordering relation on the set of probability distributions can be extended towards a the-

ory of games on these spaces (this extension is based on the topology that the order induces,
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upon which Nash’s result on the existence of equilibria can be re-established on our space of

probability distributions). First steps into applying the framework to competitive decision-sit-

uations have been taken in [17], and will be further detailed in follow up research articles.

Supporting Information
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