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Combination drug therapy is an efficient way to treat complicated diseases. Drug-drug interaction (DDI) is an important research
topic in this therapy as patient safety is a problem when two or more drugs are taken at the same time. Traditionally, in vitro
experiments and clinical trials are common ways to determine DDIs. However, these methods cannot meet the requirements
of large-scale tests. It is an alternative way to develop computational methods for predicting DDIs. Although several previous
methods have been proposed, they always need several types of drug information, limiting their applications. In this study, we
proposed a simple computational method to predict DDIs. In this method, drugs were represented by their fingerprint
features, which are most widely used in investigating drug-related problems. These features were refined by three models,
including addition, subtraction, and Hadamard models, to generate the representation of DDIs. The powerful classification
algorithm, random forest, was picked up to build the classifier. The results of two types of tenfold cross-validation on the
classifier indicated good performance for discovering novel DDIs among known drugs and acceptable performance for
identifying DDIs between known drugs and unknown drugs or among unknown drugs. Although the classifier adopted a
sample scheme to represent DDIs, it was still superior to other methods, which adopted features generated by some advanced
computer algorithms. Furthermore, a user-friendly web-server, named DDIPF (http://106.14.164.77:5004/DDIPF/), was

developed to implement the classifier.

1. Introduction

Drugs are deemed as an efficient way to treat different diseases.
However, some diseases are so complex that it is almost
impossible to treat them with a single drug because several tar-
gets are involved. In view of this, combination drug therapy is
proposed, which can improve drug efficacy and reduce drug
resistance [1]. This method should be carefully used because
some drugs can interact with others when they are taken at
the same time. These drug-drug interactions (DDIs) may
cause a serious problem in patient safety [2, 3]. On the other
hand, the safety problem caused by unexpected DDIs can lead
to the withdrawal of drugs from the market, bringing great
risks to pharmaceuticals companies. Thus, the correct deter-
mination of DDIs is important in the drug research area. Tra-
ditional in vitro experiments and clinical trials can solidly
complete this task. However, these methods also have some
shortcomings, such as low efficiency and high cost. It is neces-
sary to design quick and reliable methods for predicting DDIs.

In recent years, with the development of high-
throughput methods, more and more properties of drugs
have been discovered, which are stored in some online data-
bases, such as DrugBank [4, 5], KEGG [6], and STITCH [7].
By analyzing these abundant properties, investigators can
discover novel features of drugs. However, how to analyze
such huge properties is a problem. Fortunately, lots of newly
proposed computer algorithms provide strong technical sup-
port. For predicting DDIs, several computational methods
have been proposed. Although these methods cannot output
assured results, they can provide new clues for discovering
novel DDIs. Most computational methods always deeply
analyze current known DDIs and form patterns to predict
latent DDIs. To date, several types of computer algorithms
have been adopted to design quick and reliable methods
for predicting DDIs. Among them, machine learning algo-
rithms play essential roles [8-13]. For example, Kastrin
et al. [9] designed topological and semantic feature similari-
ties, which were learnt by five classification algorithms to
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FIGURE 1: Procedures of two types of cross-validation. (a) Entire cross-validation; (b) Composition cross-validation.
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F1GURE 2: Whole construction procedures of the classifier for predicting drug-drug interactions (DDIs). Validated DDIs are retrieved from
DrugBank, which are termed positive samples. Drugs involved in positive samples are used to randomly generate negative samples. Drugs
are represented by fingerprint features, which are further refined as DDI features using three models. Random forest is adopted to build the
classifier, which is evaluated by two types of tenfold cross-validation.

TaBLE 1: Performance of RF classifiers with different combinations of feature types under the entire tenfold cross-validation”.

Model Accuracy Precision Recall Fl-measure MCC*
Addition 89.26% 92.53% 86.85% 89.60% 78.69%
Subtraction 88.84% 92.31% 86.32% 89.22% 77.88%
Hadamard 73.63% 74.71% 73.13% 73.91% 47.27%
Addition + subtraction 89.33% 92.70% 87.20% 89.86% 79.25%
Addition + Hadamard 88.51% 92.14% 86.64% 89.30% 78.09%
Subtraction + Hadamard 88.81% 92.01% 86.48% 89.16% 77.78%
Addition + subtraction + Hadamard 89.47% 92.34% 87.33% 89.76% 79.08%

*Numbers in italics indicate the highest values in the corresponding column. *The Mathews correlation coefficient.

construct the classifier. Cheng and Zhao [10] set up a sup-
port vector machine (SVM) model to predict DDIs, which
adopted features derived from the Simplified Molecular
Input Line Entry System (SMILES) and side effect similari-

ties of the two drugs. Chen et al. [11] proposed a nearest
neighbor algorithm- (NNA-) based model to identify DDIs,
which designed a scheme to measure the similarity of two
drug pairs. Besides the machine learning-based methods,
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FIGURE 3: Performance of the classifiers using different combinations of feature types under the entire tenfold cross-validation evaluated by
ROC and PR curves. (a) ROC curves. (b) PR curves.

TaBLE 2: Performance of RF classifiers with different combinations of feature types under the composition tenfold cross-validation”.

Test set Model Accuracy Precision Recall Fl-measure McCC?
Addition 79.62% 74.27% 83.18% 78.46% 59.61%

Subtraction 78.60% 72.65% 82.46% 77.23% 57.63%

Hadamard 69.19% 65.84% 70.56% 68.10% 38.49%

ODITP test dataset Addition + subtraction 79.07% 72.71% 83.32% 77.63% 58.65%
Addition + Hadamard 79.86% 75.20% 82.99% 78.89% 60.06%

Subtraction + Hadamard 79.63% 74.74% 82.84% 78.57% 59.56%

Addition + subtraction + Hadamard 79.39% 73.49% 83.33% 78.08% 59.21%

Addition 63.58% 37.60% 78.53% 50.56% 31.88%

Subtraction 63.56% 39.66% 76.27% 52.01% 30.99%

Hadamard 62.40% 54.91% 64.56% 59.21% 25.15%

NDIT® test dataset Addition + subtraction 63.41% 37.72% 77.78% 50.50% 31.34%
Addition + Hadamard 64.49% 41.56% 76.82% 53.73% 32.64%

Subtraction + Hadamard 64.39% 42.04% 76.18% 53.99% 32.26%

Addition + subtraction + Hadamard 63.92% 39.72% 77.16% 52.21% 31.88%

“Numbers in italics indicate the highest values in the corresponding column. *“MCC: Mathews correlation coefficient. "ODIT: One Drug In Train set. “NDIT:
No Drug In Train set.

several other methods, such as deep learning-based [14-17], In this study, we proposed a simple computational
network-based [18-20], and text mining-based [21-23], method to predict DDIs. For wide applications of the
were also proposed to identify DDIs. Most previous methods ~ method, drugs were only represented by their fingerprint
adopted several types of drug properties, indicating that they ~ features, which can be easily obtained if their SMILES for-
cannot provide the result if these properties of the input  mats are available. Based on drug fingerprint features, three
drug are not available. This fact limits the applications of =~ models, including addition, subtraction, and Hadamard
these methods. models, were designed to generate features of each drug pair.
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FIGURE 4: Performance of the classifiers using different combinations of feature types under the composition tenfold cross-validation
evaluated by ROC and PR curves. (a) The ROC curves on the ODIT test dataset. (b) The PR curves on the ODIT test dataset. (c) ROC
curves on the NDIT test dataset. (d) The PR curves on the NDIT test dataset.

The powerful classification algorithm, random forest (RF)
[24], was used to construct the method. After trying all com-
binations of features produced by three models, we found
the classifier using features generated by addition and sub-

traction models was the best for predicting DDIs among
known drugs, and another classifier using features generated
by addition and Hadamard models was proper to identify
DDIs between known drugs and unknown ones or among
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TaBLE 3: Comparison of RF and SVM classifiers under the two types of tenfold cross-validation.
Cross-validation Cla551ﬁcat10n Model Accuracy Precision Recall Fl- McCC*
algorithm measure
Random forest Additi 89.54%  92.70% 87.20% 89.86% 79.25%
Entire tenfold cross-validation Support vector rmon *
machine subtraction 81.92%  85.92% 79.57% 82.62% 64.06%
b Random forest . 79.86%  75.20% 82.99% 78.89% 60.06%
ODIT” test S Addition +
Composition tenfold dataset uppor vector Hadamard — 64.65% 61.20% 6553% 63.06% 29.51%
omposition tenfold cross-
validation . Random forest - 64.49%  41.56% 76.82% 53.73% 32.64%
NDIT® test S  vect Addition +
dataset HppOrT vector Hadamard ~ 57.45%  4826% 5841% 52.46% 15.07%

machine

*MCC: Mathews correlation coefficient. "PODIT: One Drug In Train set. “NDIT: No Drug In Train set.

unknown drugs. Although the method adopted the generally
used fingerprint features, it was superior to some methods,
which used some advanced drug features.

2. Materials and Methods

2.1. Materials. The 6185 experimental validated drugs were
retrieved from DrugBank (https://go.drugbank.com/) [4, 5],
a public dataset containing information on drugs and drug
targets. Because we used fingerprints of drugs to conduct
this investigation, drugs that cannot extract their finger-
prints were removed, resulting in 6175 drugs. Then, we
downloaded the DDIs involving these 6175 drugs from
DrugBank, obtaining 37496 DDIs. These DDIs covered 722
drugs. As the obtained DDIs have been solidly validated,
they were termed positive samples in this study.

To construct a binary classifier, negative samples were
also necessary. They were produced in the following man-
ner. From the 772 drugs involved in positive samples, ran-
domly pick up two different drugs. If they cannot comprise
a positive sample, they were picked up as a negative sample.
This procedure was conducted several times until the num-
ber of different negative samples was equal to that of positive
samples. The obtained negative samples and above-
mentioned positive samples were combined to constitute a
dataset, denoted by D.

2.2. Drug Representation with Its Fingerprints. It is an essen-
tial problem to represent drugs with numbers when con-
structing efficient models for dealing with drug-related
problems. The SMILES [25] format is the most widely
accepted scheme to represent a drug. It is a line notation
with ASCII strings to represent molecules and reactions.
With this representation, the fingerprints can be extracted
for a given fingerprint type. Here, we used RDKit (http://
www.rdkit.org) to extract ECFP_4 fingerprints [26] for each
investigated drug. Generally, the fingerprints of one drug are
represented by a binary vector, where each component
denotes one fingerprint. The component is set to one if the
drug has the corresponding fingerprint of this component.
In this way, each of 772 drugs d was encoded into a 1024-

D vector, formulated by

F(d) = [fl’fz""’f1024]T- (1)

2.3. DDI Representation. For a DDI D =[d,, d,], where d,
and d, were two drugs, features can be obtained from their
fingerprint vectors F(d,) and F(d,). Since there was no
sequence information in the pair of d; and d,, that is, [d},
d,] = [d,, d,], it was not rigorous by directly combining F(
d,) and F(d,) into one vector because it was a problem of
which fingerprint vector should be put in the front of the
final vector. In view of this, we adopted the following three
schemes to fuse two fingerprint vectors into one vector,
while the order information was not involved. To give a clear

description, let us denote F(d,) and F(d,) by F(d,)=
T T

[f}’f;’ "'>f1024] and F(d,)= [ff’fg’ ""f%024] » respec-

tively. The first one was the addition model, which fused F

(d,) and F(d,) into a new vector V(D) using the addition
operation, formulated by

T

Vu(D) = [fi +f%’f; +f§""’f1024 +ff024] (2)

The second scheme was the subtraction model. F(d,)
and F(d,) were fused into a new vector V¢(D), defined by

)‘fé _fé > |f1024 _f%024HT’ (3)

where || represents the absolute operation. The last scheme
was the Hadamard model, which fused F(d,) and F(d,) as
follows:

Vg(D) = Hfi ‘f%

VH(D)z [fi 'ff’f;'f%"")f}oz4'f§oz4]T- (4)

Through the above three schemes, each DDI can be rep-
resented by three vectors. In this study, we would try each
combination to represent DDIs, thereby determining the
optimum representation for predicting DDIs.

2.4. Random Forest. Besides efficient features, a proper clas-
sification algorithm is also important to construct a powerful
classifier. In this study, we selected the classic classification
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F1GURE 5: Performance of the RF and SVM classifiers under two types of tenfold cross-validation evaluated by ROC and PR curves. (a) The
ROC curve under the entire tenfold cross-validation. (b) The PR curve under the entire tenfold cross-validation. (c) The ROC curve on the
ODIT test dataset under the composition tenfold cross-validation. (d) The PR curve on the ODIT test dataset under the composition tenfold
cross-validation. (e) The ROC curve on the NDIT test dataset under the composition tenfold cross-validation. (f) The PR curve on the NDIT

test dataset under the composition tenfold cross-validation.

algorithm, RF [24]. Such an algorithm is always a candidate
for building models to tackle different biological or medical
problems [27-32].

RF is a type of ensemble algorithm, which contains sev-
eral decision trees. Two random selection procedures are
involved to construct each decision tree. The first random
selection is for samples. Given a dataset with # samples, ran-
domly select n samples, with replacement, to constitute a

new dataset, based on which a decision tree is built. The sec-
ond random selection is for features. Selected features are
used to split one node to extend the tree. Although the deci-
sion tree is a weak classification algorithm, RF is much more
powerful [33].

This study used the RF program in scikit-learn (https://
scikit-learn.org/) [34]. Default parameters were used to exe-
cute such a program. The number of decision trees was 100.
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TaBLE 4: Comparison of fingerprint- and text-based classifiers under two types of tenfold cross-validation.
Cross-validation Classifier Model Accuracy Precision Recall Fl- MCcC*

measure
Fingerprint-based classifier - 89.55%  92.25% 87.53% 89.83% 79.23%
_ o (random forest) Addition +
Entire tenfold cross-validation Text_based classifi d subtraction
ext-based classifier (random 84.16%  87.52% 82.01% 84.67% 68.48%
forest)
. Fingerprint-based classifier B 80.01%  75.80% 82.81% 79.07% 60.33%
ODIT” test (random forest) Addition +
dataset - i Hadamard
- ataset  Text-based classifier (random adamar 77.55%  72.92% 80.37% 76.42% 55.39%
Composition tenfold forest)
cross-validation i int- i
v ) Fingerprint-based classifier » 65.06% 42.58% 77.55% 54.49% 33.81%
NDIT® test (random forest) Addition +
dataset - i Hadamard
Text-based classifier (random 66.97%  5438% 72.80% 61.73% 35.26%
forest)
*Mathews correlation coefficient. "ODIT: One Drug In Train set. “NDIT: No Drug In Train set.
2.5. Cross-Validation Method. Cross-validation [35] is a  (MCC) [36]. They can be computed by
widely used scheme to evaluate the performance of classi-
fiers. This study also adopted such a method. Based on the Precision = Tp (5)
composition of samples in this study, two types of cross- TP + FP’
validation were designed to fully evaluate the performance
of all constructed classifiers. Recall = TP (6)
For the first type of cross-validation, DDIs were equally TP+ FN’
and randomly divided into K parts. Each part was singled TP + TN
out one by one to comprise the test dataset and the rest parts Accuracy = TP+ TN+ FP - FN’ (7)
were combined to constitute the training dataset. The model
based on the training dataset was applied to the test dataset. 2 x Precision x Recall 2x TP
. F1-measure = — = >
Accordingly, each DDI was tested exactly once. Precision + Recall 2 x TP + FN + FP
The second type of cross-validation was quite different. (8)
It first divided drugs into K parts. Each part was singled
out one by one to constitute the drug test dataset, whereas )/~ _ TP x TN-FP x FN

drugs in the rest nine parts were combined as the drug train-
ing dataset. From the original dataset, three datasets were
constructed in this test, called the training dataset, One Drug
In Train (ODIT) test dataset, and No Drug In Train (NDIT)
test dataset. The training dataset included DDIs such that
two drugs were all in the drug training dataset, the ODIT test
dataset contained DDIs that one drug was in the drug train-
ing dataset and the other drug was in the drug test dataset,
and the NDIT test dataset consisted of DDIs that two drugs
were all in the drug test dataset. The model constructed on
the training dataset was applied to two test datasets.

For convenience, the first cross-validation was called
entire cross-validation, whereas the second one was termed
composition cross-validation. The K was set to ten. The pro-
cedures of these two types of cross-validation are illustrated
in Figure 1.

2.6. Performance Measurement. For a binary classification
problem, the predicted results can be counted as four values,
including true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). In detail, TP/TN represented
the number of correctly predicted positive/negative samples,
and FN/FP denoted the number of incorrectly predicted
positive/negative samples. Based on these values, some mea-
surements can be computed, such as precision, recall, accu-
racy, Fl-measure, and the Mathews correlation coeflicient

/(TN + EN) x (TN + FP) x (TP + EN) x (TP + FP)
©)

The first four measurements were between 0 and 1, and
high values meant high performance. The last measurement,
MCC, ranged between -1 and 1, where 1 indicated perfect
prediction and -1 suggested absolute wrong prediction.

In addition, to fully evaluate the performance of classi-
fiers under different thresholds, the receiver operating char-
acteristic (ROC) and precision-recall (PR) curve analyses
were conducted. Given a threshold for predicting positive
samples, the true positive rate (TPR) and false positive rate
(FPR) can be computed, where TPR was the same as recall
and FPR can be computed by

FP

FPR= —.
TN + FP

(10)

After setting a series of thresholds, a group of TPR and
FPR can be obtained. The ROC curve was plotted by setting
TPR as the y-axis and FPR as the x-axis. The definition of
the PR curve was similar to the ROC curve. It set precision
as the y-axis and recall as the x-axis. The areas under these
two curves were important measurements to assess the per-
formance of classifiers. They were called AUROC and AUPR
in this study.
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FIGURE 6: Performance of the fingerprint- and text-based classifiers (random forest) under two types of tenfold cross-validation evaluated by
the ROC and PR curves. (a) The ROC curve under the entire tenfold cross-validation; (b) the PR curve under the entire tenfold cross-
validation; (c) the ROC curve on the ODIT test dataset under the composition tenfold cross-validation; (d) the PR curve on the ODIT
test dataset under the composition tenfold cross-validation; (e) the ROC curve on the NDIT test dataset under the composition tenfold
cross-validation; (f) the PR curve on the NDIT test dataset under the composition tenfold cross-validation.

3. Results and Discussion

In this study, a simple classifier using widely used finger-
prints of drugs was proposed to predict DDIs. The whole
procedure is illustrated in Figure 2. Here, detailed evaluation
results were provided.

3.1. Performance of Classifiers under the Entire Tenfold
Cross-Validation. Based on fingerprint features of drugs,
three models were designed to generate three feature types
of DDIs. By combining one or more feature types produced
by different models, seven representations of DDIs were
obtained, which were learnt by RF, respectively, to construct
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TaBLE 5: Comparison of fingerprint- and network-based classifiers under two types of tenfold cross-validation.
Cross-validation Classifier Model Accuracy Precision Recall Fl- MCcC*

measure
Fingerprint-based classifier - 86.86%  89.21% 85.23% 87.16% 73.82%
. _ (random forest) Addition +
Entire tenfold cross-validation Network_based classifi subtraction
etwork-basec crassier 77.88%  77.60% 78.06% 77.81% 55.79%
(random forest)
. Fingerprint-based classifier - 7431%  72.43% 75.46% 73.77% 48.83%
ODIT" test (random forest) Addition +
dataset - i Hadamard
- Network-based classifier 7079%  66.72% 72.65% 69.31% 41.94%
Composition tenfold (random forest)
cross-validation i int- ]
. Fingerprint-based classifier - 59.99%  3323% 70.80% 43.48% 23.34%
NDIT® test (random forest) Addition +
dataset - i Hadamard
Network-based classifier 57.53%  41.20% 62.17% 48.49% 16.42%

(random forest)

*Mathews Correlation Coefficient. "ODIT: One Drug In Train set. “NDIT: No Drug In Train set.

RF classifiers. Each classifier was evaluated by the entire ten-
fold cross-validation. Predicted results were counted as mea-
surements calculated by Equations (5)-(9), which are listed
in Table 1. It can be observed that classifiers using different
combinations of feature types almost provided similar per-
formance, except for the classifier using features produced
by the Hadamard model. Relatively speaking, the classifier
using features generated by addition and subtraction models
and the classifiers using features produced by all three
models were better than other classifiers. The classifier using
features generated by addition and subtraction models pro-
vided the highest performance on precision, Fl-measure,
and MCC, whereas the classifiers using features produced
by all three models yielded the best performance on accuracy
and recall.

To further evaluate the performance of the above RF
classifiers, the ROC and PR curves for each classifier were
plotted, as shown in Figure 3. The key measurements
AUROC and AUPR are also listed in this figure. Evidently,
the classifier using features derived from the Hadamard
model still provided the lowest AUROC and AUPR, whereas
other classifiers yielded similar values on these two measure-
ments. By careful comparisons, the classifier using features
generated by addition and subtraction models provided the
highest AUROC and AUPR, 0.9629 and 0.9601, respectively.
Thus, it is believed that the classifier using features generated
by addition and subtraction models was better than the clas-
sifier using features produced by all three models.

With the above arguments, we can construct the RF clas-
sifier using features generated by addition and subtraction
models to predict DDIs. This classifier provided good per-
formance under the entire tenfold cross-validation. It can
be used to discover novel DDIs among known drugs.

3.2. Performance of Classifiers under Composition Tenfold
Cross-Validation. In addition to the entire tenfold cross-val-
idation, we also used composition tenfold cross-validation to
assess RF classifiers using different combinations of feature
types. As this cross-validation test involved two test datasets,
including ODIT and NDIT test datasets, two groups of pre-
dicted results can be obtained, which are listed in Table 2.

For the ODIT test dataset, the classifier using features pro-
duced by the Hadamard model was still evidently inferior
to other classifiers. However, when adding the features
yielded by the addition model, the classifier became much
better, which provided the highest accuracy, precision, F1-
measure, and MCC. The classifier using features generated
by all models produced the highest recall. Accordingly, it
can be concluded that the classifier using features obtained
by the addition and Hadamard models gave the best perfor-
mance on the ONIT test dataset. To further confirm this
conclusion, the ROC and PR curves of seven classifiers were
plotted, as shown in Figures 4(a) and 4(b). The classifier
using features obtained by addition and Hadamard models
yielded the highest AUROC (0.9026) and AUPR (0.8890).
Thus, this classifier was better than other classifiers under
such a test. Furthermore, it is easy to see that all measure-
ments on the ODIT test dataset under the composition ten-
fold cross-validation were much lower than those under the
entire tenfold cross-validation. For example, the MCC
decreased by about 8%-20%. As one drug was not included
in the training procedures, it was reasonable that the perfor-
mance declined.

As for the NDIT test dataset, we also calculated five mea-
surements described in Equations (5)-(9), which are also
listed in Table 2. It can be observed that the highest value
for each measurement was dispersive. The classifier using
features obtained by addition and Hadamard models yielded
the highest accuracy and MCC. Furthermore, from the ROC
and PR curves on the NDIT test dataset, shown in Figures 4
(c) and 4(d), such a classifier produced the highest AUROC
and second-highest AUPR. Thus, we still concluded that
such a classifier was best under such a test. Compared with
the predicted results on the ODIT test dataset, those on
NDIT were much lower. As two drugs were all not included
in the training procedures, the performance was further
declined.

In this section, we tested the classifiers under the compo-
sition tenfold cross-validation. Such a test was more rigid
than the entire tenfold cross-validation because less infor-
mation of the test sample was included in the training proce-
dures. With the above arguments, the classifier using
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FIGURE 7: Performance of the fingerprint- and network-based classifiers (random forest) under two types of tenfold cross-validation
evaluated by the ROC and PR curves. (a) The ROC curve under the entire tenfold cross-validation; (b) the PR curve under the entire
tenfold cross-validation; (c) the ROC curve on the ODIT test dataset under the composition tenfold cross-validation; (d) the PR curve
on the ODIT test dataset under composition tenfold cross-validation; (e) the ROC curve on the NDIT test dataset under the
composition tenfold cross-validation; (f) the PR curve on the NDIT test dataset under the composition tenfold cross-validation.

features obtained by the addition and Hadamard models was
best, which can be a tool for predicting DDIs between
known and unknown drugs or among unknown drugs.

3.3. Comparison of Classifiers Based on Support Vector
Machine. We used RF to build the classifier for the predic-
tion of DDIs. In fact, another classic classification algorithm,
SVM [37], was also adopted to construct the classifier. The

SVM program was also retrieved from scikit-learn. The ker-
nel was a polynomial function, and the regularization
parameter C was set to one. Here, we would elaborate that
RF was more proper to build the efficient classifier.

For the best RF classifier under the entire tenfold cross-
validation, it adopted the features generated by addition
and subtraction models. The SVM classifier was also built
by learning such representation of DDIs. The entire tenfold
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cross-validation was used to assess this SVM classifier.
Obtained measurements, including accuracy, precision,
recall, F1-measure, and MCC, are listed in Table 3. For easy
comparison, the measurements yielded by the RF classifier
are also provided in this table. It can be observed that the
accuracy, precision, recall, and F1-measure were about 7%
lower than those of the RF classifier, whereas the MCC was
about 15% lower, indicating the superiority of the RF classi-
fier. Furthermore, the ROC and PR curve analyses were also
performed for this SVM classifier, as shown in Figures 5(a)
and 5(b). Clearly, the SVM classifier provided lower
AUROC and AUPR, further confirming the superiority of
the RF classifier.

As for the best RF classifier under the composition ten-
fold cross-validation, the features generated by the addition
and Hadamard models were used. The SVM classifier was
also built on such representation of DDIs and evaluated by
composition tenfold cross-validation. The predicted results
on ODIT and NDIT test datasets are listed in Table 3. Like-
wise, the results of the RF classifier are also provided in this
table for easy comparison. On the ODIT test dataset, the RF
classifier was greatly superior to SVM classifier. All measure-
ments were 10% higher, even 30% higher for MCC. Further-
more, as shown in Figures 5(c) and 5(d), the ROC and PR
curves of the SVM classifier were always under those of the
RF classifier, inducing lower AUROC and AUPR. This argu-
ment further confirmed the superiority of the RF classifier
on the ODIT test dataset. On the NDIT test dataset, the per-
formance of the SVM classifier was also lower than that of

the RF classifier. For example, MCC was about 17% lower.
However, the inferiority was smaller than that in the above
tests. The SVM classifier even provided a higher perfor-
mance on precision. The ROC and PR curves, shown in
Figures 5(e) and 5(f), display a similar phenomenon, i.e.,
the SVM classifier yielded lower AUROC and AUPR. Thus,
the RF classifier also provided a better performance on the
NDIT test dataset than the SVM classifier.

Based on the above arguments, the RF classifier was
always better than the SVM classifier no matter which
cross-validation was adopted. It was reasonable to select
RF for building the classifier.

3.4. Comparison of Classifiers Using Other Drug Features.
Although the proposed RF classifier only adopted the drug
fingerprint features, its performance was satisfied. To further
elaborate on the utility of such a classifier, some classifiers
using other drug features were constructed and compared
with our classifier. To distinguish our classifier and other
classifiers, we called our classifier a fingerprint-based classi-
fier in this section.

The fingerprint-based classifier used the features
derived from the binary fingerprint features of drugs. It
was deemed to be a simple way. Some advanced schemes
can be adopted to generate deep features of drugs. Here,
we employed the natural language processing (NLP)
method to produce drug features. First, 10763 drugs were
retrieved from DrugBank, together with their SMILES.
Second, the Morgan fingerprints [26] of these drugs were
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extracted by RDKit. 26932 substructures were obtained.
Third, these substructures were termed words, and each
drug was represented by these words. Such representation
was fed into a NLP method, Word2vec [38], to generate
the features of substructures. Finally, for a drug, the fea-
ture vectors of its substructures were collected, and their
average vector was computed as the feature vector of the
drug. Such obtained features were called text features.
Based on these features, we generated two representations
of DDIs. The first representation used the addition and
subtraction models, and the second representation adopted
the addition and Hadamard models, which were the best
models of the fingerprint-based classifier under the entire
and composition tenfold cross-validation, respectively. As
the text features were not available for some drugs, we
excluded these drugs and corresponding DDIs. Accord-
ingly, the new dataset containing 26309 DDIs (positive
samples) and the same number of drug pairs (negative
samples) was constructed. Two RF classifiers with the
above-mentioned two representations of DDIs were built
on such dataset and evaluated by the corresponding ten-
fold cross-validation. These classifiers were called text-
based classifiers. Also, fingerprint-based classifiers were
also built and compared with text-based classifiers. The
performance of fingerprint-based and text-based classifiers
is listed in Table 4 and Figure 6. Under the entire tenfold
cross-validation, the fingerprint-based classifier provided a
much higher performance on all measurements. The same
results occurred under the composition tenfold cross-
validation on the ODIT test dataset. For the composition
tenfold cross-validation on the NDIT test dataset, the
fingerprint-based classifier provided higher values on
recall, AUROC, and AUPR, but lower values on other
measurements, suggesting the equal performance of these
two classifiers. On the whole, the fingerprint-based classi-
fier was superior to the text-based classifier. Although
the fingerprint-based classifier used the drug features gen-
erated in a simple way, its performance was not low at all.

In recent years, a network is deemed to be a good form
to organize research objects. To date, several studies adopted
a network to investigate various drug-related problems [29,
39, 40]. The hidden information in one or more drug net-
works was quite different from that extracted from a single
drug, giving a new view to investigate drugs. Here, we
adopted the drug associations reported in STITCH [41]
and KEGG [42] (SIMCOMP and SUBCOMP [43]) to con-
struct three drug networks, where 772 drugs were defined
as nodes and obtained associations were defined as edges.
From these three networks, we adopted the scheme in a
well-known network embedding method, Node2vec [44],
to produce lots of paths. These paths were deemed as sen-
tences, and nodes in paths were considered words, which
were fed into Word2vec [38] to generate drug features.
These features were called network features. Likewise, not
all 772 drugs had network features as some drugs were iso-
lated in all three networks. These drugs were excluded, and
corresponding DDIs were also discarded. 3893 DDIs were
accessed, which were put into a new dataset as positive sam-
ples. We also generated the same number of drug pairs,
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termed negative samples, and put them into such a new
dataset. Then, two RF classifiers were built on such a dataset.
One classifier adopted the features of DDIs derived from
network features via addition and subtraction models, and
the other classifier used the features of DDIs derived from
network features using the addition and Hadamard models.
The former classifier was evaluated by the entire tenfold
cross-validation, and the late one was assessed by the com-
position tenfold cross-validation. For convenience, these
classifiers were called a network-based classifier. For a fair
comparison, two fingerprint-based classifiers were also built
on the above-mentioned dataset. The performance of
fingerprint-based and network-based classifiers is shown in
Table 5 and Figure 7. Evidently, the fingerprint-based classi-
fier was superior to the network-based classifier under the
entire tenfold cross-validation. For the composition tenfold
cross-validation on the ODIT test dataset, we can obtain
the same result. As the results of the composition tenfold
cross-validation on the NDIT test dataset, the superiority
of the fingerprint-based classifier was not very obvious. On
some measurements, the network-based classifier provided
higher performance. However, this cannot prevent us from
reaching the conclusion that the fingerprint-based classifier
was superior to the network-based classifier.

With the above arguments, the fingerprint-based classi-
fier was better than classifiers using features generated by
some advanced computational methods. The simple repre-
sentation scheme of the fingerprint-based classifier not only
made the classifier easy to implement but also provided a
satisfactory performance.

3.5. User Guide of the Web-Server. In this study, a RF classi-
fier only using drug fingerprint features was proposed to
predict DDIs. For wide applications of such a classifier, a
web-server, named DDIPF, was set up. Users can access such
web-server at http://106.14.164.77:5004/DDIPF/. The home
page is illustrated in Figure 8.

Three tabs “Read Me,” “Supporting Information,” and
“Citation” lie at the top of the home page. The basic infor-
mation of this web-server can be found by clicking the “Read
Me” button. Through the “Supporting Information” button,
users can download the DDIs (positive samples) used in this
study. The reference of this web-server is listed behind the
“Citation” button.

Users can test the interaction probability of two drugs
using the following steps:

Stepl: input the SMILES formats of two drugs at the
input boxes. Three examples can be found by clicking the
“Example” button above the input boxes.

Step2: select one model or combination of two or more
models at the drop-down box beside the “Feature model.”
This can determine the representations of input drug pairs.

Step3: click the “Submit” button to upload the input
drug pair.

Step4: after a few seconds, the probability is displayed in
the box beside the “The probability is.” A high probability
indicates two input drugs can interact with high likelihood.
Users can click the “Clear” button for another input.
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4. Conclusions

This study proposed a simple classifier to predict drug-drug
interactions. The classifier only adopted the widely used fin-
gerprint features of drugs, which induced it to have wider
applications than most previous methods. On the other
hand, the classifier provided good performance when one
or two drugs in the DDI were used in the training procedure,
indicating that it can be a latent tool to predict possible
drug-drug interactions. However, if two drugs in the DDI
were not included in the training procedure, the classifier
was not good enough. In the future, we will improve the
classifier in this regard. Furthermore, we set up a web-
server (http://106.14.164.77:5004/DDIPF/). Users can easily
test drug pairs through such web-server. We hope this con-

tribution can improve the research on drug-drug
interactions.
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