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The voltage-dependent anion channel (VDAC) is well known as the pathway for passive 
diffusion of anionic hydrophilic mitochondrial metabolites across the outer membrane, 
but a more complex functionality of the three isoforms of VDAC has emerged, as 
addressed in the Frontiers in Oncology Research Topic on “Uncovering the Function of 
the Mitochondrial Protein VDAC in Health and Disease: from Structure-Function to Novel 
Therapeutic Strategies.” VDAC as the single most abundant protein in mitochondrial 
outer membranes is typically involved in isoform-specific interactions of the mitochon-
drion with its surroundings as, for example, during mitochondria-dependent pathways 
of cell death. VDAC closure can also act as an adjustable limiter (governator) of global 
mitochondrial metabolism, as during hepatic ethanol metabolism to promote selective 
oxidation of membrane-permeant acetaldehyde. In cancer cells, high free tubulin 
inhibits VDAC1 and VDAC2, contributing to suppression of mitochondrial function in 
the Warburg phenomenon. Erastin, the canonical inducer of ferroptosis, opens VDAC 
in the presence of tubulin and hyperpolarizes mitochondria, leading to mitochondrial 
production of reactive oxygen species, mitochondrial dysfunction, and cell death. Our 
understanding of VDAC function continues to evolve.

Keywords: erastin, ethanol, ferroptosis, reactive oxygen species, tubulin, voltage-dependent anion channel, 
Warburg phenomenon

In 1976, voltage-dependent anion channels (VDACs) were identified in mitochondria from 
Paramecium tetraurelia (1). Subsequent work, especially by Marco Colombini and his students, 
revealed VDAC to be a highly conserved ~30 kDa integral outer mitochondrial membrane protein 
that forms aqueous channels of ~3 nm diameter in the open state, allowing passage of molecules up 
to 5 kDa in size, although electrostatic profile is also an important determinant of channel permeance 
by charged molecules (2, 3). Consequently, VDAC is the common pathway for passive diffusion of 
all mostly anionic hydrophilic mitochondrial metabolites across the outer membrane. Thus, VDAC 
confers properties of a molecular sieve to the mitochondrial outer membrane, a long accepted and 
necessary attribute, but one that is, let’s face it, a little boring.

Positive and negative membrane potentials symmetrically close VDAC to most metabolites with 
half maximal closure at ±50 mV, indicating more complexity to VDAC functionality. With closure, 
pore diameter decreases to 1.8  nm, which blocks movement of respiratory substrates, adenine 
nucleotides, and other molecules that move in and out of mitochondria during metabolism (4). In its 
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closed state, VDAC becomes a relatively cation selective channel 
that nonetheless conducts small anions like Cl− (5). The ques-
tion remains controversial whether voltage gating of VDAC is 
physiologically important, since Donnan potentials are too small 
for closure at the ionic strength of the intracellular milieu and 
because VDAC’s own permeability to small electrolytes collapses 
metabolism-driven potentials. However, metabolite channeling 
within complexes of hexokinase, creatine kinase, the adenine 
nucleotide translocator (ANT), and VDAC has been suggested 
to form a positive inside outer membrane potential sufficient 
to close VDAC (6, 7). Voltage gating may also be a fail-safe 
mechanism against loss of cellular metabolites should VDAC be 
inserted into the plasma membrane, as sometimes and somewhat 
controversially reported (8, 9), since cells have mechanisms to 
rapidly restore homeostasis of Na, K, Ca, and Cl ions passing 
through “closed” VDAC, whereas homeostatic restoration of 
anionic metabolites released through “open” VDAC occurs much 
more slowly.

Each of the three VDAC isoforms (VDAC1, VDAC2, and 
VDAC3) has very similar structure, conductance, and voltage-
gating properties, but the existence of these different isoforms 
in humans and other mammalian species and their differential 
expression in various tissues suggests more functional complex-
ity to VDAC (10–15). Since VDAC is the most abundant protein 
in the outer membrane, interactions of mitochondria with 
cytosolic proteins and other organelles typically involve VDAC, 
and generally speaking, these interactions are isoform specific. 
As well illustrated in this Frontiers in Oncology Research Topic 
on “Uncovering the Function of the Mitochondrial Protein 
VDAC in Health and Disease: from Structure-Function to Novel 
Therapeutic Strategies,” specific VDAC isoforms are important 
for pathways signaling both apoptotic and non-apoptotic cell 
death (16, 17). Moreover, Reina and coworkers review new evi-
dence of a unique role for VDAC3 cysteine over-oxidation as a 
mitochondrial oxidative marker participating in reactive oxygen 
species (ROS) signaling (18).

Scientists studying VDAC have long wondered whether and 
how changes of VDAC conductance might regulate mitochon-
drial function. Concrete evidence for this came from studies 
showing closure of VDAC at an early stage of apoptosis (19), 
but what about VDAC in cells that are not dying? It was then 
proposed that various degrees of VDAC closing can act as a 
dynamic limiter, or “governator,” of global mitochondrial func-
tion (20). Such VDAC closure might account for unexplained 
anomalies of mitochondrial function seen in cells and tissues in 
certain contexts.

As an example, hepatic oxygen and ethanol metabolism nearly 
doubles within 2–3  h after gastric ethanol feeding, a so-called 
swift increase of alcohol metabolism (SIAM), which is an adap-
tive metabolic response to hasten the detoxification and elimina-
tion of both ethanol and its more toxic metabolite, acetaldehyde, 
by mostly alcohol dehydrogenase in the cytosol and aldehyde 
dehydrogenase in mitochondria (21, 22). Despite increased 
mitochondrial respiration, hepatic ATP paradoxically decreases 
by more than half after ethanol treatment but without activation 
of an identifiable ATPase. Moreover, steatosis occurs in parallel, 
indicative of inhibition of mitochondrial β-oxidation. To explain 

these phenomena, VDAC closure was proposed as a mechanism 
to inhibit mitochondrial release of ATP and uptake of fatty acyl-
CoA, leading to cellular ATP depletion and steatosis, respectively. 
In addition, a protonophoric uncoupling pathway was hypoth-
esized to open to stimulate respiration (20). Subsequent studies 
showed that the outer membranes of hepatocyte mitochondria 
do indeed become less permeable to adenine nucleotides and 
low molecular weight dextrans after ethanol and acetaldehyde 
treatment (23). Ethanol and acetaldehyde also decrease ureagenic 
respiration, a process requiring considerable flux of different 
metabolites through VDAC (24). Finally, intravital multiphoton 
microscopy reveals a reversible dose- and time-dependent depo-
larization of hepatocellular mitochondria after ethanol feeding in 
which depolarization occurs in an all-or-nothing fashion within 
any particular hepatocyte (25). Because small neutral aldehydes 
do not need VDAC or other carrier to cross the outer and inner 
membranes of mitochondria, VDAC closure and respiratory 
stimulation by uncoupling during SIAM together promote more 
rapid oxidation of membrane-permeant acetaldehyde while 
simultaneously inhibiting oxidation of competing substrates that 
require VDAC to enter mitochondria. These adaptations depend 
on hepatic aldehyde formation and revert as acetaldehyde is 
eliminated by oxidation to acetate. Similar mechanisms may also 
play a role in nonalcoholic steatohepatitis in which oxidative 
stress is an important component, since lipid peroxidation chain 
reactions generate aldehydes like malondialdehyde that close 
VDAC even more potently than acetaldehyde (24, 26).

Another example of a possible governator role for VDAC is the 
suppression of mitochondrial metabolism and enhancement of 
aerobic glycolysis that characterize the pro-proliferative Warburg 
metabolic phenotype of cancer cells. In this hypothesis, VDAC 
closure decreases mitochondrial ATP release, lowers cytosolic 
ATP/ADP, and thereby stimulates glycolysis (20). Hexokinase 
may be one molecule inhibiting VDAC, since hexokinase is 
overexpressed in cancer cells and inhibits VDAC reconstituted 
into planar lipid bilayers (27).

A more important VDAC closer in cancer cells is free dimeric 
tubulin, as reviewed in the Research Topic by Maldonado (28). 
Proliferating cancer cells have much higher levels of free tubulin 
compared to post-mitotic cells, because tubulin is needed for 
spindle formation at metaphase. Rostovtseva’s group showed 
that low nanomolar free tubulin closes VDAC reconstituted 
into planar bilayers (29). VDAC1 and VDAC2, the most abun-
dant isoforms in most cells, are sensitive to tubulin, whereas 
the least abundant VDAC3 is insensitive (14). In intact cancer 
cells, increased free tubulin after microtubule depolymerization 
causes mitochondrial membrane potential (ΔΨ, an indicator of 
mitochondrial metabolism) to decrease, apparently due to the 
inhibition of respiratory substrate entry through VDAC (30). 
By contrast, microtubule stabilization with paclitaxel, which 
decreases free tubulin, causes ΔΨ to increase. Remarkably, the 
VDAC-binding molecule erastin blocks the inhibitory effect of 
free tubulin on VDAC inserted into lipid bilayers and reverses 
mitochondrial depolarization induced by elevated free dimeric 
tubulin in intact cancer cells (14, 31).

Erastin is the canonical inducer of ferroptosis, a type of non-
apoptotic, oxidative cell death that is so-named because the iron 
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chelator, desferal (deferoxamine), prevents erastin-induced cell 
killing (32). Desferal is well known to protect against many oxi-
dative stresses, including ischemia-reperfusion, drug-induced 
hepatotoxicity, and exposure to oxidant chemicals (33–37). 
How then can VDAC opening be linked to oxidative stress? The 
answer is that mitochondrial ROS generation increases with 
increasing mitochondrial ΔΨ and with increased reduction of 
the respiratory chain as respiratory substrates enter following 
VDAC opening (38–42). Thus, erastin and several erastin-like 
small molecules identified by high content screening increase 
mitochondrial ROS in parallel with mitochondrial hyperpolari-
zation, as highlighted in Maldonado’s review (28, 43, 44)1. At 
later time points, ROS-dependent mitochondrial dysfunction 
occurs, which likely represents onset of the mitochondrial 
permeability transition. Ultimately cell death occurs, which is 
prevented by antioxidants like N-acetylcysteine. Thus, VDAC 

1 deHart DN, Fang D, Heslop K, Li L, Lemasters JJ, Maldonado EN. Opening of 
voltage dependent anion channels promotes reactive oxygen species generation, 
mitochondrial dysfunction and cell death in cancer cells. (2017) Submitted for 
publication.

opening is what Maldonado calls an “anti-Warburg pro-oxidant 
switch” that leads to reversion of the pro-proliferative Warburg 
metabolic phenotype of aerobic glycolysis, increased ΔΨ, 
mitochondrial ROS generation, and oxidative stress-induced 
ferroptoic cell death.

Overall, our understanding of VDAC function continues to 
evolve. No longer just a sieve allowing passive movement of small 
molecules across the mitochondrial outer membrane, VDAC is 
an active agent regulating interactions between mitochondria 
and their surroundings, global mitochondrial metabolism, and 
the life or death fate of cells. Not so boring after all.
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