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Abstract
The allele-based association test, comparing allele frequency difference between
case and control groups, is locally most powerful. However, application of the
classical allelic test is limited in practice, because the method is sensitive to
the Hardy–Weinberg equilibrium (HWE) assumption, not applicable to contin-
uous traits, and not easy to account for covariate effect or sample correlation. To
develop a generalized robust allelic test, we propose a new allele-based regression
model with individual allele as the response variable. We show that the score test
statistic derived from this robust and unifying regression framework contains a
correction factor that explicitly adjusts for potential departure from HWE and
encompasses the classical allelic test as a special case. When the trait of inter-
est is continuous, the corresponding allelic test evaluates a weighted difference
between individual-level allele frequency estimate and sample estimate where
the weight is proportional to an individual’s trait value, and the test remains
valid under 𝑌-dependent sampling. Finally, the proposed allele-based method
can analyze multiple (continuous or binary) phenotypes simultaneously and
multiallelic genetic markers, while accounting for covariate effect, sample cor-
relation, and population heterogeneity. To support our analytical findings, we
provide empirical evidence from both simulation and application studies.

KEYWORDS
allele-based association analysis, correlation, dependent sample, Hardy–Weinberg equilib-
rium, multiple phenotypes, multiple populations, robustness

1 INTRODUCTION

An association study aims to identify genetic markers
that influence a heritable trait or phenotype of interest,
while accounting for environmental effect. To formulate
the problem more precisely, let single nucleotide poly-
morphisms (SNPs) be the genetic markers available for
analysis. For each biallelic SNP, let 𝑎 and𝐴 be the two pos-
sible alleles, and as in convention, let 𝐴 denote the minor
allele with population frequency 𝑝 ≤ 0.5. The SNP geno-
type consists of a paired (but unordered) alleles, 𝑎𝑎,𝐴𝑎, or
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𝐴𝐴. For a case-control association study of a binary trait
(Table 1), intuitively one can compare the estimates of 𝑝
between the case and control groups. Indeed, the resulting
allelic test is locally most powerful (Sasieni, 1997). How-
ever, the validity of the test hinges on the assumption of
Hardy–Weinberg equilibrium (HWE), which assumes that
genotype frequencies depend only on allele frequencies.
That is, 𝑝𝑎𝑎 = (1 − 𝑝)2, 𝑝𝐴𝑎 = 2𝑝(1 − 𝑝), and 𝑝𝐴𝐴 = 𝑝2.
To evaluate the HWE assumption in an independent

sample, one typically applies the Pearson goodness-of-fit
𝜒2 test, and under the𝐻0 of HWE,
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TABLE 1 Notations for genotype and allele counts for a
case-control study

Genotype counts Allele counts
𝒂𝒂 𝑨𝒂 𝑨𝑨 Total 𝒂 𝑨 Total

Case 𝑟0 𝑟1 𝑟2 𝑟 2𝑟0 + 𝑟1 𝑟1 + 2𝑟2 2𝑟

Control 𝑠0 𝑠1 𝑠2 𝑠 2𝑠0 + 𝑠1 𝑠1 + 2𝑠2 2𝑠

𝑛𝑎𝑎 𝑛𝐴𝑎 𝑛𝐴𝐴 𝑛𝑎 𝑛𝐴

Total 𝑛0 𝑛1 𝑛2 𝑛 2𝑛0 + 𝑛1 𝑛1 + 2𝑛2 2𝑛

The HLA-DQ3 example from Sasieni (1997)
Case 40 45 28 113 125 101 226
Control 273 100 43 416 646 186 832
Total 313 145 71 529 771 287 1058

The HLA-DQ3 example is from Sasieni (1997), studying women with cervical
intraepithelial neoplasia 3. The sample estimates of allele frequency of allele
A in the case, control, and combined groups are denoted, respectively, as �̂�𝑟 =
(2𝑟2 + 𝑟1)∕2𝑟 = 𝑟𝐴∕2𝑟, �̂�𝑠 = (2𝑠2 + 𝑠1)∕2𝑠 = 𝑠𝐴∕2𝑠, and �̂� = (2𝑛2 + 𝑛1)∕2𝑛 =

𝑛𝐴∕2𝑛.

𝑇HWE, Pearson =
(𝑛0 − 𝑛(1 − �̂�)2)2

𝑛(1 − �̂�)2
+
(𝑛1 − 𝑛2�̂�(1 − �̂�))2

𝑛2�̂�(1 − �̂�)

+
(𝑛2 − 𝑛�̂�2)2

𝑛�̂�2
𝐻0
∼ 𝜒2

1. (1)

Using the HLA-DQ3 data in Table 1 as an illustra-
tion, application of 𝑇HWE, Pearson yields a test statistic of
49.7623 and a p-value of 1.74 × 10−12, suggesting departure
from HWE.
Prior to conducting a case-control genome-wide associ-

ation study (GWAS), testing HWE in the control sample
and excluding SNPs in Hardy–Weinberg disequilibrium
(HWD) is a routine part of data quality control; severe
HWD is an indication of genotyping error. However, the
need for a robust allelic association test remains. First, the
p-value threshold used for HWE-based screening in prac-
tice is subjective and depends on sample size, often rang-
ing between 10−8 and 10−12. For example, Bycroft et al.
(2018) recommended 10−12 for each batch of ∼4000 sam-
ples. With this stringent criterion, it is possible that a SNP
that passes the quality control step is truly in HWD at the
population level, but not attributed to genotyping error.
The corresponding allelic test is then biased, and we pro-
vide an application example in Section 5.2. Second, devel-
oping a robust and generalized allelic test is analytically
important, so that this locally most powerful test (Sasieni,
1997) can be applied to, for example, a continuous trait or
a sample of related individuals.
To robustify the classical allelic test against HWD, early

work focused on improving variance estimation (Schaid
and Jacobsen, 1999), but application is still limited to case-
control studies and in simple settings (e.g., independent
samples). Thus, most genetic association studies rely on
the 𝑌-on-𝐺 regression approach, where 𝐺 is coded addi-
tively as 0, 1, and 2 for 𝑎𝑎, 𝐴𝑎, and 𝐴𝐴. The result-
ing genotype-based additive test is known to be robust to

HWD, but the exact HWD-correction mechanism is not
clear. Further, data collection in practice typically first
samples individuals based on 𝑌, which can be random
or 𝑌-dependent sampling (Derkach et al., 2015), and then
collects 𝐺 for the sampled individuals. Thus, it can be
argued that 𝐺-on-𝑌 is a more fitting statistical framework.
This “reverse” regression approach can also readily ana-

lyze multiple phenotypes simultaneously, which was the
motivation for MultiPhen (O’Reilly et al., 2012). To deal
with the three genotype groups, O’Reilly et al. (2012) used
an ordinal logistic regression and stated that the proposed
likelihood ratio test does not assume HWE. However, the
statistical insight is lacking and analyzing pedigree data
remains a challenge. Zhang et al. (2014) provided more
background on using “reverse” regression to simultane-
ously analyze multiple traits and also proposed and com-
pared a series of genotype-based generalized estimating
equation (GEE) association tests.
This work generalizes the locally most powerful allelic

association test to more complex settings by developing
a novel allele-based “reverse” regression model. Section 2
revisits the classical allelic association test and provides
insight on the need for a more flexible formulation of the
test. Section 3 develops the new allele-based “reverse”
regression model by first appropriately partitioning the
two alleles of a genotype and then specifying the individual
allele as the response variable. In addition to the associa-
tion parameter, the proposed regression includes a param-
eter that models the dependency between the two alleles
of a genotype, explicitly accounting for potential departure
from HWE. Section 4 considers more complex settings
including related individuals from pedigree data, genetic
markers with more than two alleles, and multiple phe-
notypes or populations. Given the theoretical results pre-
sented, simulation experiments in Section 5 are relatively
brief with additional empirical evidence from two appli-
cations. Section 6 concludes with remarks and discussion.

2 THE CLASSICAL ALLELIC TEST
REVISITED

For a given SNP and a binary phenotype of interest, let 𝑝𝑟
and 𝑝𝑠 denote the allele frequencies, respectively, for the
case and control populations (Table 1). The classical allele-
based association test, testing𝐻0: 𝑝𝑟 = 𝑝𝑠, is based on

𝑇allelic =
(�̂�𝑟 − �̂�𝑠)

2(
1

2𝑟
+

1

2𝑠

)
�̂�(1 − �̂�)

HWE, 𝐻0
∼ 𝜒2

1. (2)

The validity of 𝑇allelic, however, requires theHWE assump-
tion, because only under HWE, v̂ar(�̂�𝑟 − �̂�𝑠) = (

1

2𝑟
+

1

2𝑠
)�̂�(1 − �̂�). Using the HLA-DQ3 data in Table 1 as an



ZHANG and SUN 489

F IGURE 1 The theoretical type 1 error rate of the classical
allelic test, 𝑇allelic. The nominal level is 𝛼 = 0.05, departure from
HWE is measured by 𝛿 = 𝑝𝐴𝐴 − 𝑝2, where 𝑝 is the frequency of the
minor allele 𝐴 and −𝑝2 ≤ 𝛿 ≤ 𝑝(1 − 𝑝). When 𝑝 = 0.5,
−0.25 ≤ 𝛿 ≤ 0.25

example, because the HWE test is significant (Section 1),
a direct application of the classical allelic association test
in this case is not appropriate.
Indeed, Sasieni (1997) has pointed out that 𝑇allelic is valid

and locally most powerful if and only if the HWE assump-
tion holds and the genetic effect is additive. In the pres-
ence of HWD, 𝑇allelic is known to be anticonservative. But,
we emphasize that this is true only if there is an excess of
homozygotes 𝐴𝐴, that is 𝛿 = 𝑝𝐴𝐴 − 𝑝2 > 0, where 𝛿 is a
measure of HWD (Weir, 1996). If 𝛿 < 0, 𝑇allelic is conserva-
tive as shown in Figure 1.
To robustify 𝑇allelic against HWD, Schaid and Jacobsen

(1999) used a multinomial distribution for the genotype
counts to improve variance estimate. The resulting test is

𝑇allelic, Schaid =
(�̂�𝑟 − �̂�𝑠)

2(
1

2𝑟
+

1

2𝑠

)
(�̂�(1 − �̂�) + �̂�)

𝐻0
∼ 𝜒2

1, (3)

where �̂� = (�̂�𝐴𝐴 − �̂�2) is the sample estimate of the HWD
measure. Section 3 provides analytical insight about how
𝑇HWE, Pearson in (1) is related to 𝛿. Here, the effect of 𝛿 ≠

0 on the accuracy of 𝑇allelic is clear. In the HLA-DQ3
example, �̂� = 0.061 and is highly significant, so the clas-
sical allelic test will be too optimistic, {𝑇allelic = 44.8470} >

{𝑇allelic, Schaid = 34.3207}.
𝑇allelic, Schaid is effective in making 𝑇allelic, the classi-

cal allele-based association test, robust to HWD, but its
direct application is limited to the simplest setting of case-
control studies using independent observations without
covariates. It is also not clear how to adapt this comparing-
two-proportions analytical framework to, for example,

analyzing a continuous trait. Thus, a new formulation of
the allele-based association test is needed.

3 A GENERALIZED ROBUST
ALLELE-BASED ASSOCIATION TEST

3.1 Decoupling the two alleles in a
genotype

Consider a biallelic SNP with genotype 𝐺 ∈ {𝑎𝑎,𝐴𝑎,𝐴𝐴},
and for the moment assume that there are 𝑛 indepen-
dent observations, 𝐺𝑖, 𝑖 = 1, … , 𝑛. We partition each 𝐺𝑖 as
follows:

(𝐺𝑖1, 𝐺𝑖2) =

⎧⎪⎪⎨⎪⎪⎩

(0, 0) if the genotype is 𝑎𝑎
(0, 1) if the genotype is 𝐴𝑎 and 𝑐𝑖 = 0

(1, 0) if the genotype is 𝐴𝑎 and 𝑐𝑖 = 1

(1, 1) if the genotype is 𝐴𝐴 ,

(4)
where 𝑐𝑖

𝑖𝑖𝑑
∼ Bernoulli(1∕2) if 𝐺𝑖 = 𝐴𝑎. The partition of a

genotype is straightforward for homozygotes 𝑎𝑎 or𝐴𝐴, but
not so for a heterozygote 𝐴𝑎. Previous work attempted to
split the 𝑛𝐴𝑎 observations to (0,1) and (1,0) equally (Schaid
et al., 2012), which reduces the variation inherent in a
randomly selected allele (Web Appendix A). The use of a
fair coin in our proposed approach ensures that

∑
𝑖
𝐺𝑖1 ∼

Binomial(𝑛, 𝑝𝐴𝐴 + 𝑝𝐴𝑎∕2) and similarly for
∑

𝑖
𝐺𝑖2, which

is critical to a valid HWE test as well as association infer-
ence.

3.2 Reformulating the test of HWE as
an allele-based regression

A critical component of developing a robust allelic associ-
ation test is the modeling of the HWE assumption. HWE
assumes that the two alleles in a genotype are indepen-
dent of each other, so a natural approach is to use a logistic
regression, logit(𝐸(𝐺𝑖1)) = log( 𝑝𝑖

1−𝑝𝑖
) = 𝛼 + 𝛽𝐺𝑖2. Indeed,

we show in Web Appendix B that the corresponding
score test of testing𝐻0 ∶ 𝛽 = 0 approximates 𝑇HWE, Pearson;
regressing 𝐺𝑖2 on 𝐺𝑖1 leads to the same conclusion. How-
ever, the differential treatment of 𝐺𝑖1 and 𝐺𝑖2 is not ideal.
Further, the sample size of this model is 𝑛 whereas there
are 2𝑛 alleles from 𝑛 genotypes. Thus, we consider an alter-
native regression model that “doubles” the sample size.
The proposed robust allele-based (RA) regressionmodel

for HWE testing is(
𝐺𝑖1

𝐺𝑖2

)
= 𝛼

(
1

1

)
+

(
𝜖𝑖1
𝜖𝑖2

)
,

where
(
𝜖𝑖1
𝜖𝑖2

)
𝑖𝑖𝑑
∼ 𝑁(0, 𝜎2

(
1 𝜌

𝜌 1

)
). (5)



490 ZHANG and SUN

This RA model has two important features. First, instead
of using the location parameter 𝛽 to represent the depen-
dence between two alleles, we reparameterize it as the cor-
relation parameter 𝜌 in the covariance matrix to capture
HWD. This model reformulation is crucial to methodol-
ogy development in Section 3.3 where the regression coef-
ficient is reserved for association testing. Second, instead
of a logistic regression, we use a Gaussian model even
though the outcome is binary. This is because the primary
goal here is hypothesis testing not parameter estimation
or interpretation. For testing the location parameters in
regression, Chen (1983) has shown that, under some reg-
ularity conditions, the score test statistics for regression
models from the exponential family have identical form.
In our setting, the Gaussian model enables explicit model-
ing of HWD through the correlation parameter 𝜌, and the
resulting score test encompasses 𝑇HWE, Pearson as a special
case which we show below.
Based on the Gaussian model of (5), the score test statis-

tic of testing𝐻0 ∶ 𝜌 = 0 is

𝑇HWE, RA =
(�̂�𝐴𝐴 − �̂�2)2

1

𝑛
�̂�2(1 − �̂�)2

=
�̂�2

1

𝑛
�̂�2(1 − �̂�)2

= 𝑛�̂�2
𝐻0
∼ 𝜒2

1,

(6)

where �̂� = �̂�𝐴𝐴 − �̂�2 and �̂� = �̂�∕(�̂�(1 − �̂�)), a scaled esti-
mate of HWD, 𝛿.
We first note that the newly developedHWE test statistic

is, attractively, proportional to �̂� = �̂�𝐴𝐴 − �̂�2. Interest-
ingly, after some algebraic manipulations, we show inWeb
AppendixC that𝑇HWE, RA in (6) is identical to𝑇HWE, Pearson

in (1). This equivalence, however, is under the simplest
scenario of an independent sample. For more complex
data, several authors have proposed different HWE testing
strategies, for example, Troendle and Yu (1994) developed
a method that tests HWE across strata, while Bourgain
et al. (2004) proposed a quasi-likelihood method that tests
HWE in related individuals. Section 4 shows how the
proposed regression (5) can be extended to derive a gen-
eralized HWE test. For the moment, we still consider an
independent sample but turn our attention to association
analysis.

3.3 The generalized robust allele-based
association test via regression

Let 𝐺𝑖1 and 𝐺𝑖2 be the two allele-based random variables,
as constructed in (4) for a biallelic SNP in an indepen-
dent sample of size 𝑛, 𝑖 = 1, … , 𝑛. We now also consider
𝑌, a (categorical or continuous) phenotype of interest, and
𝑍, one single covariate for notation simplicity but without

loss of generality. The proposed RA regression for associa-
tion analysis is(

𝐺𝑖1

𝐺𝑖2

)
= (𝛼 + 𝛽𝑌𝑖 + 𝛾𝑍𝑖)

(
1

1

)
+

(
𝜖𝑖1

𝜖𝑖2

)
,

where

(
𝜖𝑖1

𝜖𝑖2

)
𝑖𝑖𝑑
∼ 𝑁(0, 𝜎2

(
1 𝜌

𝜌 1

)
). (7)

The corresponding score test, testing𝐻0 ∶ 𝛽 = 0, is

𝑇RA =

{∑𝑛

𝑖=1

∑2

𝑗=1
(𝑔𝑖𝑗 − �̂� − �̂�(𝑧𝑖 − �̄�))𝑦𝑖

}2

2

[
1 −

{
∑

𝑖 (𝑦𝑖−�̄�)(𝑧𝑖−�̄�)}
2∑

𝑖 (𝑦𝑖−�̄�)
2
∑

𝑖 (𝑧𝑖−�̄�)
2

]∑
𝑖
(𝑦𝑖 − �̄�)2(1 + �̂�)�̂�2

𝐻0
∼ 𝜒2

1, (8)

where

�̂� =
∑
𝑖

(𝑔𝑖1 + 𝑔𝑖2)∕2𝑛, �̄� =
∑
𝑖

𝑦𝑖∕𝑛, �̄� =
∑
𝑖

𝑧𝑖∕𝑛,

�̂� =
∑
𝑖

(𝑔𝑖1 + 𝑔𝑖2 − 2�̂�)(𝑧𝑖 − �̄�)∕

{
2
∑
𝑖

(𝑧𝑖 − �̄�)2

}
,

�̂�2 =
∑
𝑖

∑
𝑗

(𝑔𝑖𝑗 − �̂� − �̂�(𝑧𝑖 − �̄�))2∕2𝑛,

and

�̂� =
∑
𝑖

(𝑔𝑖1 − �̂� − �̂�(𝑧𝑖 − �̄�))(𝑔𝑖2 − �̂� − �̂�(𝑧𝑖 − �̄�))∕𝑛�̂�2.

We provide the general form of 𝑇RA with multiple 𝑌s and
multiple 𝑍s in Web Appendix D.
The proposed 𝑇RA unifies previous methods. For exam-

ple, if 𝑌 is binary and there are no covariates, 𝑇RA in (8) is
simplified to

𝑇RA, binary,𝛾=0 =
(�̂�𝑟 − �̂�𝑠)

2(
1

2𝑟
+

1

2𝑠

)
(�̂�(1 − �̂�) + �̂�)

,

which is 𝑇allelic, Schaid in (3). If we further assume HWE,
𝑇RA is reduced to

𝑇RA, binary,𝛾=0, 𝜌=0 =
(�̂�𝑟 − �̂�𝑠)

2(
1

2𝑟
+

1

2𝑠

)
�̂�(1 − �̂�)

,

which is the classical allelic test, 𝑇allelic in (2).
The proposed RA test also generalizes the allelic asso-

ciation test. To provide analytical insight, consider a
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continuous trait without covariate effect. In that case,

𝑇RA,𝛾=0 =
{
∑

𝑖
((𝑔𝑖1 + 𝑔𝑖2)∕2 − �̂�)𝑦𝑖}

2

1

2

∑
𝑖
(𝑦𝑖 − �̄�)2(�̂�(1 − �̂�) + �̂�)

.

Thus, for a continuous trait, the generalized allelic asso-
ciation test evaluates a weighted difference between the
individual-level allele frequency estimate, (𝑔𝑖1 + 𝑔𝑖2)∕2,
and the whole sample estimate, �̂�, where the weight is an
individual’s trait value, 𝑦𝑖 . In hindsight, this result may not
be surprising. However, the advantages of developing the
proposed RA regression model become evident when we
analyze more complex data such as data with population
heterogeneity and related individuals, which we investi-
gate in the next section.

4 COMPLEX DATA

4.1 Multiple populations, alleles, or
phenotypes

The proposed RA regression model of (7) can naturally
adjust for population effects by including population indi-
cators, or top principal components, as part of the covari-
ates. Here we emphasize that the potential population
effects could include both difference in allele frequency
and difference in HWD between populations. The RA
framework models allele frequency heterogeneity through
𝛾 and 𝜎2, while accounting for HWD through 𝜌.
Without loss of generality, it is instructive to consider the

simple case of a case-control study with two populations
but without additional covariates. Denote 𝑍𝑖 = 0 for pop-
ulation I and 𝑍𝑖 = 1 for population II. The corresponding
RA regression model is(

𝐺𝑖1

𝐺𝑖2

)
= (𝛼 + 𝛽𝑌𝑖 + 𝛾𝑍𝑖)

(
1

1

)
+

(
𝜖𝑖1

𝜖𝑖2

)
,

where

(
𝜖𝑖1

𝜖𝑖2

)
∼ 𝑁(0, 𝜎2

𝑖

(
1 𝜌𝑖

𝜌𝑖 1

)
), (9)

𝜌𝑖 = 𝜌𝐼 and 𝜎2
𝑖
= (𝜎𝐼)

2
if 𝑍𝑖 = 0; 𝜌𝑖 = 𝜌𝐼𝐼 and 𝜎2

𝑖
= (𝜎𝐼𝐼)

2

if 𝑍𝑖 = 1. Using superscripts 𝐼 and 𝐼𝐼 for all the other nota-
tions introduced so far, the generalized RA test of𝐻0 ∶ 𝛽 =

0 while accounting for population heterogeneity has the
following expression:

𝑇RA, binary, 2 pop =

(
𝑤1

(
�̂�𝐼𝑟 − �̂�𝐼𝑠

)
+ 𝑤2

(
�̂�𝐼𝐼𝑟 − �̂�𝐼𝐼𝑠

))2
𝑤1 + 𝑤2

,

where 𝑤1 =
2𝑟𝐼𝑠𝐼

𝑛𝐼
∕(�̂�𝐼(1 − �̂�𝐼) + �̂�𝐼), and �̂�𝐼 = �̂�𝐼

𝐴𝐴
− (�̂�𝐼)2

captures the population-specific HWD in population I; the
analytical expressions are the same for 𝑤2 and �̂�𝐼𝐼 .
If evaluating HWE across multiple populations is the

primary objective, we can test𝐻0 ∶ 𝜌
𝐼 = 𝜌𝐼𝐼 = 0 and show

that 𝑇HWE, RA, 2 pop = 𝑇HWE, RA, pop I + 𝑇HWE, RA, pop II
𝐻0
∼

𝜒2
2 , where the expressions for 𝑇HWE, RA, pop I and

𝑇HWE, RA, pop II are given in (6). We note again the
unifying feature of the proposed RA framework. For
example, the test of Troendle and Yu (1994) developed
specifically for testing HWE across strata has identical
form as 𝑇HWE, RA, 2 pop.
The RA model of (7) can also be extended to derive a

generalized allelic association test for multiallelic mark-
ers with𝐾 > 2 alleles, with adjustments for covariate effect
and HWD. In that case, we need to introduce two indica-
tor vectors, 𝒈𝑖1 and 𝒈𝑖2, each of length 𝐾 − 1, to partition
the genotype of individual 𝑖; we leave the technical details
to Web Appendix E and Web Table 1. Given 𝒈𝑖1 and 𝒈𝑖2,
the implementation of the RA regression model of (7) is
straightforward. The RA model can also be used to derive
the regression-based HWE test of a multiallelic marker as
shown in Web Appendix F.
To analyze multiple 𝐽 phenotypes simultaneously, we

can simply include multiple 𝑌𝑗𝟏 vectors in the RA model
of (7), each representing one phenotype, and then test
𝐻0 ∶ 𝛽𝑗 = 0, ∀𝑗 ∈ {1, 2, … , 𝐽}. The corresponding score test
statistic is 𝜒2

𝐽 distributed under the null of no association.
Here we reiterate that the proposed “reverse” regression is
allele based, conceptually distinct from the genotype-based
MultiPhen (O’Reilly et al., 2012) which uses an ordinal
logistic regression for the three genotype groups.

4.2 Related individuals

We now consider a sample of 𝑛 correlated individuals
with known or accurately estimated pedigree structure
(Dimitromanolakis et al., 2019). For notation simplicity but
without loss of generality, we present results for analyz-
ing a biallelic SNP and one phenotype in a homogeneous
population. Let 𝒈 be a 2𝑛 × 1 vector of allele indicators
for the 𝑛 genotypes available, where 𝒈 = (𝒈′1, 𝒈

′
2, … , 𝒈′𝑛)

′

and 𝒈𝑖 = (𝐺𝑖1, 𝐺𝑖2)
′ for 𝑖 ∈ {1, … , 𝑛}, following the allele-

partition method in (4), and let 𝒚 = (𝒚′1, 𝒚
′
2, … , 𝒚′𝑛)

′, 𝒚𝑖 =
(𝑌𝑖, 𝑌𝑖)

′, 𝒛 = (𝒛′1, 𝒛
′
2, … , 𝒛′𝑛)

′, and 𝒛𝑖 = (𝑍𝑖, 𝑍𝑖)
′. The gener-

alized RA regression model for a dependent sample is,

𝒈 = 𝛼1 + 𝛽𝒚 + 𝛾𝒛 + 𝝐, where 𝝐 ∼ 𝑁(0, 𝜎2𝚺), (10)

1 is a 2𝑛 × 1 vector of 1s, and 𝚺 is a 2𝑛 × 2𝑛matrix that cap-
tures the genetic correlation between individuals as well as
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departure from HWE in founders. Founders are individu-
als who have no ancestors or siblings included in the sam-
ple, and their offspring genotypes are in HWE assuming
random mating (Web Appendix G).
The specification of 𝚺 is nontrivial, where for any

two individuals 𝑖 and 𝑗, 𝚺2(𝑖−1)+𝑙, 2(𝑗−1)+𝑙′ not only
measures the genetic correlation between individual 𝑖s
𝑙th allele and individual 𝑗s 𝑙′th allele, 𝑙 and 𝑙′ ∈ {1, 2},
but also accounts for potential HWD. We note that
if 𝑖 = 𝑗 and 𝑙 = 𝑙′, 𝚺2(𝑖−1)+𝑙, 2(𝑗−1)+𝑙′ = 1. If 𝑖 = 𝑗 and
𝑙 ≠ 𝑙′, 𝚺2(𝑖−1)+𝑙, 2(𝑗−1)+𝑙′ = 0 for a nonfounder and = 𝜌

for a founder, where 𝜌 models HWD. Finally, if 𝑖 ≠ 𝑗,
𝚺2(𝑖−1)+𝑙, 2(𝑗−1)+𝑙′ = 𝜙𝑖,𝑗(1 + 𝜌), where 𝜙𝑖,𝑗 is the kin-
ship coefficient between the two individuals (Web
Appendix H).
As an illustration, consider a sample of 𝑓 indepen-

dent sib-pairs. With a slight abuse of notations, let
{𝐺𝑗11, 𝐺𝑗12, 𝐺𝑗21, 𝐺𝑗22} denote the four alleles of the 𝑗th sib-
pair for 𝑗 ∈ {1, … , 𝑓}, where {𝐺𝑗11, 𝐺𝑗12} are for sibling 1
and {𝐺𝑗21, 𝐺𝑗22} are for sibling 2. In this case, 𝚺 is a block
diagonal matrix with

𝚺𝑗 =

⎛⎜⎜⎜⎜⎝
1 0 𝜙(1 + 𝜌) 𝜙(1 + 𝜌)

0 1 𝜙(1 + 𝜌) 𝜙(1 + 𝜌)

𝜙(1 + 𝜌) 𝜙(1 + 𝜌) 1 0

𝜙(1 + 𝜌) 𝜙(1 + 𝜌) 0 1

⎞⎟⎟⎟⎟⎠
,

where 𝜙 = 0.25 is the kinship coefficient for a sib-pair.
For further illustration, assume all sib-pairs are concor-

dant in phenotype (i.e., 𝑟 pairs of cases and 𝑠 pairs of con-
trols) with no covariates, the score statistic of testing 𝐻0 ∶

𝛽 = 0 is

𝑇RA, sib-pair, binary-concordant,𝛾=0

=
(�̄�𝑟 − �̄�𝑠)

2(
1

4𝑟
+

1

4𝑠

)
(1 + 2𝜙(1 + �̂�))�̄�(1 − �̄�)

, (11)

where

�̄�𝑟 =

𝑓∑
𝑗=1

2∑
𝑘=1

2∑
𝑙=1

𝑦𝑗𝑘𝑔𝑗𝑘𝑙∕4𝑟,

�̄�𝑠 =

𝑓∑
𝑗=1

2∑
𝑘=1

2∑
𝑙=1

(1 − 𝑦𝑗𝑘)𝑔𝑗𝑘𝑙∕4𝑠, �̄� =

𝑓∑
𝑗=1

2∑
𝑘=1

2∑
𝑙=1

𝑔𝑗𝑘𝑙∕4𝑓,

and

�̂� =

𝑓∑
𝑗=1

2∑
𝑙=1

2∑
𝑙′=1

(𝑔𝑗1𝑙 − �̄�)(𝑔𝑗2𝑙′ − �̄�)∕(4𝑓𝜙�̄�(1 − �̄�)) − 1.

It is compelling that the expression of (11) is similar to that
of the classical allelic test in (2). However, the denominator

in (11) explicitly adjusts for the inherent genetic correlation
between (not within unless inbreeding) the sibling alleles
through 𝜙, as well as any potential HWD through �̂�.

5 EMPIRICAL EVIDENCE

5.1 Simulation studies

To numerically demonstrate the robustness of 𝑇RA to
HWD as compared with 𝑇allelic, we simulated a case-
control study with an independent sample of 1000 cases
and 1000 controls. The minor allele frequency (MAF) was
𝑝 = 0.2 or 0.5 for the minor allele 𝐴. The amount of HWD
as measured by 𝛿 = 𝑝𝐴𝐴 − 𝑝2 ranged from the minimum
of −𝑝2 to the maximum of 𝑝(1 − 𝑝). Then 𝑝𝐴𝐴 = 𝑝2 + 𝛿

and 𝑝𝐴𝑎 = 2𝑝(1 − 𝑝) − 2𝛿, and (𝑛𝑎𝑎, 𝑛𝐴𝑎, 𝑛𝐴𝐴) ∼

Multinomial{𝑛, (1 − 𝑝𝐴𝑎 − 𝑝𝐴𝐴, 𝑝𝐴𝑎, 𝑝𝐴𝐴)}. For power
evaluation at 𝛼 = 0.05, we assumed an additive model
with disease penetrances 𝑓0 = 𝑃(𝑌 = 1|𝐺 = 𝑎𝑎) = 0.08,
𝑓1 = 𝑃(𝑌 = 1|𝐺 = 𝐴𝑎) = 0.10, and 𝑓2 = 𝑃(𝑌 = 1|𝐺 =

𝐴𝐴) = 0.12.
The empirical type 1 error results in Figure 2(A) and

(B) confirm the theoretical results in Figure 1: the pro-
posed 𝑇RA is accurate across the whole range of HWD val-
ues, while 𝑇allelic is not robust against HWD. Further, the
empirical power results in Figure 2(C) and (D) highlight
the fact that the classical allelic test could have reduced
power when the number of homozygotes𝐴𝐴 is fewer than
what is expected under the HWE assumption (i.e., when
𝛿 < 0), which is not well acknowledged in the existing
literature.
We also assessed the accuracy of 𝑇RA and 𝑇allelic when

analyzing SNPs with low MAF (𝑝 = 0.01 and 0.05), and
results in Web Figure 2 are similar to that in Figure 2. In
addition, we evaluated the performance of the tests using
the GWAS significance level of 𝛼 = 5 × 10−8, with 1010

simulation replicates for each parameter setting consid-
ered (Web Table 2); results for MAF > 0.1 are not shown,
because the performance of 𝑇RA is better for larger MAF
as expected. Overall, the proposed RA test is accurate or
slightly conservative for the whole range of HWD. In con-
trast, the classical allelic test has grossly inflated type 1
error rate up to 1.35 × 10−5 for 𝛼 = 5 × 10−8 (Web Table 2).

5.2 Application 1: Revisit the study of
Wittke-Thompson et al.

Studying HWD not due to the genotyping error, Wittke-
Thompson et al. (2005) identified 60 biallelic SNPs from
41 case-control association studies. Focusing on associa-
tion analysis of these 60 SNPs, we compared 𝑇allelic with
the proposed 𝑇RA (Figure 3). As expected based on the
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F IGURE 2 Empirical type 1 error rate and power of the classical allelic association test and the proposed RA test. The nominal level is
𝛼 = 0.05, evaluated based on 104 simulation replicates. Note that when 𝛿 > 0, the classical allelic test has the inflated type 1 error rate as
shown in (A) and (B), so the corresponding power in (C) and (D) is not meaningful and shown in a lighter shade. Also note that the HWD
measure 𝛿 is bounded by the MAF 𝑝, −𝑝2 ≤ 𝛿 ≤ 𝑝(1 − 𝑝). Results of type 1 error control when analyzing rare variants with 𝑝 = 0.01 or 0.05
are shown in Web Figure 2, and when using the GWAS significance level of 𝛼 = 5 × 10−8 (evaluated based on 1010 simulation replicates) are
shown in Web Table 2. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

simulation results in Figure 2, for SNPs with �̂� > 0, 𝑇allelic
can appear to be more powerful, due to the inflated
type 1 error rate, than the proposed 𝑇RA. For exam-
ple, for the most significant SNP, p-valueallelic = 1.82 ×

10−10 and p-valueRA = 6.60 × 10−9. However, for this SNP
�̂� = 0.052 > 0 with p-valueHWE = 3.09 × 10−4; the HWE
test is significant but not suggesting genotyping error.
Thus, 𝑇allelic is too optimistic. In contrast, for the third
most significant SNP, �̂� = −0.031 < 0 and p-valueHWE =

0.040. In that case, 𝑇allelic is conservative while the
proposed 𝑇RA is not only robust but also more pow-
erful, where p-valueallelic = 5.84 × 10−6 and p-valueRA =

8.86 × 10−7.

5.3 Application 2: A cystic fibrosis gene
modifier study

Here we applied 𝑇RA to simultaneously analyze two phe-
notypes using a sample with related individuals from the
Canadian cystic fibrosis (CF) genemodifier study. The two
phenotypes of interest are lung function, a quantitative
trait (Taylor et al., 2011), andmeconium ileus (MI), a binary
trait (Gong et al., 2019). The sample of 2540 CF subjects
includes 2420 singletons and 60 independent sib-pairs. For
completeness, we first analyzed each phenotype individu-
ally using the proposed allele-basedRA framework, andwe
compared the results with the traditional genotype-based
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TABLE 2 Results of application 2: Previously reported SNPs

Top CF lung function associated SNPs from Corvol et al. (2015)

Lung function only
Lung function and
MI simultaneously

Chr SNP −log𝟏𝟎𝒑LMM −log𝟏𝟎𝒑𝐑𝐀 −log𝟏𝟎𝒑𝐑𝐀,𝐥𝐮𝐧𝐠,𝐚𝐧𝐝𝐌𝐈

3 rs2246901 3.21 3.25 2.63
5 rs3749615 3.25 3.27 3.57
6 rs2395185 6.65 6.77 6.08
11 rs10466455 5.84 5.86 4.84
Top CFmeconium ileus associated SNPs from Sun et al. (2012)

MI only
Lung function and
MI simultaneously

Chr SNP −log𝟏𝟎𝒑GLMM −log𝟏𝟎𝒑𝐑𝐀 −log𝟏𝟎𝒑𝐑𝐀,𝐥𝐮𝐧𝐠,𝐚𝐧𝐝𝐌𝐈

1 rs4077468 5.34 5.47 4.87
1 rs7512462 4.54 4.82 4.56
1 rs7419153 3.68 4.07 3.35
1 rs12047830 3.10 3.20 2.63

The p-values in this table differ from those in Sun et al. (2012) andCorvol et al. (2015), because the analyses here only included theCanadian samples and individuals
with both phenotypes measured. For other details, see legend to Figure 4.

F IGURE 3 Results of application 1. Allele-based association
tests of the 60 SNPs identified in Wittke-Thompson et al. (2005),
contrasting the proposed RA method, 𝑇RA, with the classical allelic
test, 𝑇allelic. Unfilled triangles are for SNPs with �̂� > 0 (𝑇allelic having
inflated type 1 error), and filled triangles are for SNPs with �̂� < 0

(𝑇allelic having deflated type 1 error); see Figure 1 for theoretical
results and Figure 2 for simulation results regarding type 1 error
control of the two methods

method via the standard (generalized) linear mixed mod-
els (LMM or GLMM). We then analyzed both phenotypes
simultaneously using 𝑇RA.
Figure 4(A) and (B) show that results of genotype- and

allele-based methods are largely consistent; see Section 6

for a discussion. For the most significant SNP associated
with MI (Figure 4(B)), the p-value of 𝑇RA is 2.62 × 10−6,
slightly smaller than 7.80 × 10−6 of the GLMM method.
In addition, the proposed 𝑇RA method can simultaneously
analyze both phenotypes and identify suggestive SNPs that
have p-values several orders of magnitude smaller than
those from studying one phenotype at a time (Figure 4(C)
and (D)). However, these results are not genome-wide sig-
nificant and establishing true association requires follow-
up studies.
Table 2 summarizes the association results for previ-

ously reported and replicated SNPs associated with CF
lung function (Corvol et al., 2015) and MI association (Sun
et al., 2012). For all the SNPs in Table 2, the proposed
RA test yields slightly larger −log10(p-values) than LMM
or GLMM, suggesting that the allele-based method has
the potential to be more powerful than the traditional
genotype-based approach. The RA simultaneous analysis
of the two phenotypes, however, did not lead to more
significant results; this is not surprising because these
SNPs were selected based on the two previous single-
phenotype analyses.

6 DISCUSSION

To generalize the concept of comparing allele frequen-
cies between case and control groups to more complex
data settings, here we developed a novel RA-based regres-
sion framework that regresses individual alleles on phe-
notypes. Motivated by the earlier work of Chen (1983) for
testing regression coefficients in independent samples, the
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F IGURE 4 Results of application 2. Chromosome 5-wide. Genetic association studies of lung function and meconium ileus of 34,378
bi-allelic markers on chromosome 5, using a sample of 2540 individuals with cystic fibrosis of which 2420 are singletons and 120 are from 60
sib-pairs. LMM and GLMM are genotype-based association analyses based on, respectively, the standard linear mixed model for a continuous
trait (i.e., lung) and generalized LMM for a binary trait (i.e., MI), and RA is the proposed allele-based association method that can also
simultaneously analyze multiple traits using a sample of related individuals. Genome-wide results are shown in Web Figure 1. This figure
appears in color in the electronic version of this article, and any mention of color refers to that version

proposed method utilizes the Gaussian model of (10) that
(i) leads to a valid allelic association test through testing the
regression coefficient 𝛽, (ii) adjusts for the covariate effect
through additional regression coefficient 𝛾, (iii) explicitly
models potential departure from HWE through 𝜌 in the
covariance matrix 𝚺, (iv) accounts for sample correlation

through kinship coefficient 𝜙 in 𝚺, and (v) analyzes either
a binary or a continuous phenotype, or multiple pheno-
types simultaneously, where the phenotype data can be
subjected to 𝑌-dependent sampling.
The generalized allelic association test also unifies exist-

ing allelic tests. Under the HWE assumption and for a
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case-control study using an independent sample without
covariates, the score test of𝐻0 ∶ 𝛽 = 0 based on the simpli-
fied RA model (7) is identical to the classical allelic test in
(2), 𝑇RA, binary,𝛾=0, 𝜌=0 = 𝑇allelic. In the presence of HWD,
𝑇RA, binary,𝛾=0 = 𝑇allelic, Schaid.
A crucial stage of this work is creating the two allele-

based random variables, 𝐺𝑖1 and 𝐺𝑖2, and leveraging the
“power” of regression in new settings. The idea of reformu-
lating an existing test statistic as a regression to facilitate
method extension is not new. In their reader reaction to
the generalized nonparametric Kurskal–Wallis test of Acar
and Sun (2013) for handling group uncertainty, Wu and
Guan (2015) presented “ a rank linear regressionmodel and
derived the proposed generalized Kruskal-Wallis (GKW)
statistic as a score test statistic.” More recently, Soave and
Sun (2017) showed that by first reformulating the original
Levene’s test, testing for variance heterogeneity between
𝑘 groups in an independent sample without group uncer-
tainty, as a two-stage regression, the extension to more
complex data is more straightforward.
The concept of “reverse” regression has also been

explored before, focusing on regressing genotype on phe-
notype, notably by O’Reilly et al. (2012) for simultane-
ously analyses of multiple phenotypes. The corresponding
MultiPhen method uses an ordinal logistic regression for
the three genotype groups and then applies a likelihood
ratio test in independent samples. Zhang et al. (2014) then
examined GEE-based association tests for related indi-
viduals, but fundamentally these early tests are genotype
based.
Another stream of the genotype-based “reverse” or

retrospective approach started with the quasi-likelihood
method of Thornton and McPeek (2007) for case-control
association testing with related individuals. The method
first defines 𝑋𝑖 = 𝐺𝑖∕2 ∈ {0, 1∕2, 1}, then links the mean
of 𝑋𝑖 with 𝑌𝑖 via a logit transformation and uses the kin-
ship coefficient matrix as the covariance matrix of 𝑋𝑖 , and
finally obtains a quasi-likelihood score test. Subsequently,
Feng (2014) and Feng et al. (2011) extended the method of
Thornton and McPeek (2007) to a quasi-likelihood regres-
sion model that can incorporate multiple phenotypes.
Although 𝐸(𝑋𝑖) = 𝐸(𝐺𝑖∕2) can be interpreted as allele fre-
quency, the quasi-likelihood score test is fundamentally a
genotype-based associationmethod. Further, the use of the
kinship matrix alone as the covariance matrix requires the
assumption of HWE.
Most existing family-based association studies rely on

the 𝑌-on-𝐺 prospective regression framework via LMM or
GLMM (Eu-Ahsunthornwattana et al., 2014). For the appli-
cation study in Section 5.3, we applied both the proposed
RA method, and LMM (for the continuous CF lung func-
tion) and GLMM (for the binary meconium ileus status).
Although there are differences in the (single-phenotype)

analyses (Figure 4(A) and (B)), results are remarkably con-
sistent. Interestingly, in the simplest case of an indepen-
dent sample with no covariates, the corresponding RA
test statistic has identical form as that derived from the
genotype-based prospective regression model, as well as
that from the nonparametric trend test (Web Appendix
I). This inference similarity indirectly confirms the valid-
ity of the proposed approach (“reverse,” allele-based and
Gaussian model applied to a binary variable), but does
not take away the contribution of this work. In particu-
lar, unlike LMM or GLMM, the proposed RA method can
analyze multiple phenotypes simultaneously as shown in
Figure 4(C) and (D).
One of the challenges related to the proposed framework

is the interpretation of the parameter estimate for 𝛽 even
though its corresponding hypothesis testing is valid. Thus,
we emphasize that the method developed here is tailored
for rapid association testing, not effect size estimation. We
direct the readers to Krutchkoff (1967) and Halperin (1970)
for parameter estimation in the context of “reverse” regres-
sion. The proposed RA framework provides a statistically
efficient and computationally fast way for genome-wide
association scans. For example, the analysis of Application
2 took 23.16 h using one CPU core of an Intel Xeon Proces-
sor (Skylake, IBRS) at 2.40 GHz; the computation time is
reduced to less than 2 hwhen analyzing only the unrelated
individuals in the CF sample.
Another difficulty present in any “reverse” regression

approach is the modeling and interpretation of gene–gene
or gene–environment interactions. It is also not clear how
to performan allelic association test for anX-chromosomal
variant; see Chen et al. (2018) for genotype-based associa-
tion methods. Finally, although the proposed RA method
has good type 1 error control when analyzing rare variants
(Web Figure 2 and Web Table 2), power of the RA method
in its current implementation, analyzing one SNPat a time,
is likely to be low for a rare variant. Extending the RA
methodology to simultaneously analyzemultiple rare vari-
ants (Derkach et al., 2014) is of future interest but beyond
the scope of this work.
The proposed framework, however, is flexible and

promising in other directions. For example, the inclusion
of parameter 𝜌 in the RA model (7) is advantageous for
both method comparison and further development. In the
absence of𝑌 and𝑍 and sample correlation, we have shown
that the score test of𝐻0 ∶ 𝜌 = 0 is identical to the classical
Pearson’s 𝜒2 test of HWE in (1), 𝑇HWE, RA = 𝑇HWE, Pearson.
For more complex data, instead of developing individ-
ual remedies addressing specific challenges, the proposed
method provides a principled approach for extensions. For
example, we have shown in Section 4.1 that by introduc-
ing a population indicator we can derive a HWE test across
populations that, in the simple setting of an independent
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sample, has identical form with that of Troendle and Yu
(1994).
In terms of association testing, the value of explicitly

modeling HWD via 𝜌 in the regression is twofold. First, if
there is a strong prior evidence for HWE, we can restrict
𝜌 to be zero and establish a locally most powerful score
test. Second, for the special case of a case-control study,
Song and Elston (2006) and Wang and Shete (2010) have
argued that departure from HWE in the case group pro-
vides additional evidence for association. However, the
existing methods are ad hoc. For example, the method of
Song and Elston (2006) first conducts the genotype-based
association test and Pearson 𝜒2 test of HWE separately,
then aggregates the two (dependent) tests by a weighted
sum, and finally evaluates the statistical significance via
simulations. The proposed RA regression framework con-
ceptually offers a new approach that could directly incor-
porate group-specific 𝜌 into association inference, which
we will explore as future work.

ACKNOWLEDGMENTS
The authors thank Dr. Lisa Strug and her lab for providing
the cystic fibrosis application data. This research is funded
by theNatural Sciences and Engineering ResearchCouncil
of Canada (NSERC, RGPIN-04934 andRGPAS-522594) and
the Canadian Institutes of Health Research (CIHR, MOP-
310732) to LS. LZ is a trainee of the CANSSI-ONTARIO
STAGE training program at the University of Toronto.

DATA AVAILAB IL ITY STATEMENT
The dataset of Application 1 is publicly available from
Table 1 of Wittke-Thompson et al. (2005) available at https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1196455/. The
dataset of Application 2 is available by application to
the Cystic Fibrosis Canada National data registry for
researchers who meet the criteria for access to confiden-
tial clinical data for the purpose of CF research.

ORCID
LinZhang https://orcid.org/0000-0002-3120-6090
Lei Sun https://orcid.org/0000-0002-5640-937X

REFERENCES
Acar, E.F. and Sun, L. (2013) A generalized Kruskal–Wallis test incor-
porating group uncertainty with application to genetic association
studies. Biometrics, 69, 427–435.

Bourgain, C., Abney, M., Schneider, D., Ober, C. and McPeek, M.S.
(2004) Testing for Hardy–Weinberg equilibrium in samples with
related individuals. Genetics, 168, 2349–2361.

Bourgain, C., Hoffjan, S., Nicolae, R., Newman, D., Steiner, L.,
Walker, K., Reynolds, R., Ober, C. and McPeek, M.S. (2003) Novel
case-control test in a founder population identifies P-selectin as an
atopy-susceptibility locus. The American Journal of HumanGenet-
ics, 73, 612–626.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K.,
Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J. et al. (2018)
The UK Biobank resource with deep phenotyping and genomic
data. Nature, 562, 203–209.

Chen, B., Craiu, R.V., Strug, L.J. and Sun, L. (2018) The X fac-
tor: a robust and powerful approach to X-chromosome-inclusive
whole-genome association studies. arXiv preprint arXiv:1811.
00964.

Chen, C.-F. (1983) Score tests for regression models. Journal of the
American Statistical Association, 78, 158–161.

Corvol, H., Blackman, S.M., Boëlle, P.-Y., Gallins, P.J., Pace, R.G.,
Stonebraker, J.R., Accurso, F.J., Clement, A., Collaco, J.M., Dang,
H. et al. (2015) Genome-wide association meta-analysis identifies
five modifier loci of lung disease severity in cystic fibrosis. Nature
Communications, 6, 8382.

Derkach, A., Lawless, J.F. and Sun, L. (2015) Score tests for associ-
ation under response-dependent sampling designs for expensive
covariates. Biometrika, 102, 988–994.

Derkach, A., Lawless, J.F., Sun, L. et al. (2014) Pooled association tests
for rare genetic variants: a review and some new results. Statistical
Science, 29, 302–321.

Dimitromanolakis, A., Paterson, A.D. and Sun, L. (2019) Fast and
accurate shared segment detection and relatedness estimation
in un-phased genetic data via truffle. The American Journal of
Human Genetics, 105, 78–88.

Eu-Ahsunthornwattana, J., Miller, E.N., Fakiola, M., Wellcome Trust
Case Control Consortium 2, Jeronimo, S.M., Blackwell, J.M. and
Cordell, H.J. (2014) Comparison ofmethods to account for related-
ness in genome-wide association studies with family-based data.
PLoS Genetics, 10, e1004445.

Feng, Z. (2014) A generalized quasi-likelihood scoring approach for
simultaneously testing the genetic association of multiple traits.
Journal of the Royal Statistical Society: Series C (Applied Statistics),
63, 483–498.

Feng, Z., Wong, W.W., Gao, X. and Schenkel, F. (2011) Generalized
genetic association study with samples of related individuals. The
Annals of Applied Statistics, 5, 2109–2130.

Gong, J., Wang, F., Xiao, B., Panjwani, N., Lin, F., Keenan, K.,
Avolio, J., Esmaeili, M., Zhang, L., He, G. et al. (2019) Genetic
association and transcriptome integration identify contributing
genes and tissues at cystic fibrosis modifier loci. PLoS Genetics, 15,
e1008007.

Halperin, M. (1970) On inverse estimation in linear regression. Tech-
nometrics, 12, 727–736.

Krutchkoff, R. (1967) Classical and inverse regressionmethods of cal-
ibration. Technometrics, 9, 425–439.

O’Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C., Elliott, P.,
Jarvelin, M.-R. and Coin, L.J. (2012) Multiphen: joint model of
multiple phenotypes can increase discovery in GWAS. PloS One,
7, e34861.

Sasieni, P.D. (1997) From genotypes to genes: doubling the sample
size. Biometrics, 53, 1253–1261.

Schaid, D.J. and Jacobsen, S.J. (1999) Biased tests of association:
comparisons of allele frequencies when departing from Hardy–
Weinberg proportions. American Journal of Epidemiology, 149,
706–711.

Schaid, D.J., Sinnwell, J.P. and Jenkins, G.D. (2012) Regressionmodel-
ing of allele frequencies and testing Hardy Weinberg equilibrium.
Human Heredity, 74, 71–82.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196455/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196455/
https://orcid.org/0000-0002-3120-6090
https://orcid.org/0000-0002-3120-6090
https://orcid.org/0000-0002-5640-937X
https://orcid.org/0000-0002-5640-937X


498 ZHANG and SUN

Soave, D. and Sun, L. (2017) A generalized Levene’s scale test for
variance heterogeneity in the presence of sample correlation and
group uncertainty. Biometrics, 73, 960–971.

Song, K. and Elston, R.C. (2006) A powerful method of combining
measures of association and Hardy–Weinberg disequilibrium for
fine-mapping in case-control studies. Statistics in Medicine, 25,
105–126.

Sun, L., Rommens, J.M., Corvol, H., Li, W., Li, X., Chiang, T.A., Lin,
F., Dorfman, R., Busson, P.-F., Parekh, R.V. et al. (2012) Multi-
ple apical plasma membrane constituents are associated with sus-
ceptibility to meconium ileus in individuals with cystic fibrosis.
Nature Genetics, 44, 562.

Taylor, C., Commander, C.W., Collaco, J.M., Strug, L.J., Li, W.,
Wright, F.A.,Webel, A.D., Pace, R.G., Stonebraker, J.R., Naughton,
K. et al. (2011) A novel lung disease phenotype adjusted for mor-
tality attrition for cystic fibrosis genetic modifier studies. Pediatric
Pulmonology, 46, 857–869.

Thornton, T. and McPeek, M.S. (2007) Case-control association test-
ing with related individuals: a more powerful quasi-likelihood
score test. The American Journal of Human Genetics, 81, 321–
337.

Troendle, J. and Yu, K. (1994) A note on testing the Hardy–
Weinberg law across strata. Annals of Human Genetics, 58, 397–
402.

Wang, J. and Shete, S. (2010) Using both cases and controls for test-
ing Hardy–Weinberg proportions in a genetic association study.
Human Heredity, 69, 212–218.

Weir, B. (1996) Genetic Analysis II. Sunderland, MA: Sinauer.

Wittke-Thompson, J.K., Pluzhnikov, A. and Cox, N.J. (2005) Rational
inferences about departures from Hardy–Weinberg equilibrium.
The American Journal of Human Genetics, 76, 967–986.

Wu, B. and Guan, W. (2015) Reader reaction on the generalized
Kruskal–Wallis test for genetic association studies incorporating
group uncertainty. Biometrics, 71, 556–557.

Zhang, Y., Xu, Z., Shen, X., Pan, W., Initiative, A.D.N. et al. (2014)
Testing for association with multiple traits in generalized estima-
tion equations, with application to neuroimaging data. NeuroIm-
age, 96, 309–325.

SUPPORT ING INFORMATION
Web Appendices, Tables, and Figures referenced in Sec-
tions 3, 4 and 6 are available with this paper at the Biomet-
rics website onWileyOnline Library. Themethod has been
implemented, available at https://github.com/lzhangdc/
Robust-Allele-based-Regression-Framework.

How to cite this article: Zhang L, Sun L. A
generalized robust allele-based genetic association
test. Biometrics. 2022;78:487–498.
https://doi.org/10.1111/biom.13456

https://github.com/lzhangdc/Robust-Allele-based-Regression-Framework
https://github.com/lzhangdc/Robust-Allele-based-Regression-Framework
https://doi.org/10.1111/biom.13456

	A generalized robust allele-based genetic association test
	Abstract
	1 | INTRODUCTION
	2 | THE CLASSICAL ALLELIC TEST REVISITED
	3 | A GENERALIZED ROBUST ALLELE-BASED ASSOCIATION TEST
	3.1 | Decoupling the two alleles in a genotype
	3.2 | Reformulating the test of HWE as an allele-based regression
	3.3 | The generalized robust allele-based association test via regression

	4 | COMPLEX DATA
	4.1 | Multiple populations, alleles, or phenotypes
	4.2 | Related individuals

	5 | EMPIRICAL EVIDENCE
	5.1 | Simulation studies
	5.2 | Application 1: Revisit the study of Wittke-Thompson et al.
	5.3 | Application 2: A cystic fibrosis gene modifier study

	6 | DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


