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Abstract

Mathematical modelling has become an established tool for studying the dynamics of bio-

logical systems. Current applications range from building models that reproduce quantitative

data to identifying systems with predefined qualitative features, such as switching behav-

iour, bistability or oscillations. Mathematically, the latter question amounts to identifying

parameter values associated with a given qualitative feature. We introduce a procedure to

partition the parameter space of a parameterized system of ordinary differential equations

into regions for which the system has a unique or multiple equilibria. The procedure is based

on the computation of the Brouwer degree, and it creates a multivariate polynomial with

parameter depending coefficients. The signs of the coefficients determine parameter

regions with and without multistationarity. A particular strength of the procedure is the avoid-

ance of numerical analysis and parameter sampling. The procedure consists of a number of

steps. Each of these steps might be addressed algorithmically using various computer pro-

grams and available software, or manually. We demonstrate our procedure on several mod-

els of gene transcription and cell signalling, and show that in many cases we obtain a

complete partitioning of the parameter space with respect to multistationarity.

Author summary

Mathematical modelling has become an important tool in biology. As modelling requires

separating the essential from the ordinary, there is never just one model but a collection

thereof. To understand biology through modelling it is therefore crucial to be able to tell

which of these models are capable of reproducing an observed behaviour and which are

not. For example, to understand cellular decision making, models allowing multiple equi-

libria are studied and one asks which models allow for this behaviour. Here we describe a

procedure that links the existence of a unique and of multiple equilibria to the sign of a

single expression. We demonstrate the usefulness of the procedure by applying it to mod-

els of gene transcription and cellular signalling.
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Introduction

Mathematical models in the form of parameterized systems of ordinary differential equations

(ODEs) are valuable tools in biology. Often, qualitative properties of the ODEs are associated

with macroscopic biological properties and biological functions [1–4]. It is therefore important

that we are able to analyse mathematical models with respect to their qualitative features and

to understand when these properties arise in models. With the growing adaptation of differen-

tial equations in biology, an automated screening of ODE models for parameter dependent

properties and discrimination of parameter regions with different properties would be a very

useful tool for biology, and perhaps even more for synthetic biology [5]. Even though it is cur-

rently not conceivable how and if this task can be efficiently formalized, we view the procedure

presented here as a first step in this direction.

Multistationarity, that is, the capacity of the system to rest in different positive equilibria

depending on the initial state of the system, is an important qualitative property. Biologically,

multistationarity is linked to cellular decision making and ‘memory’-related on/off responses

to graded input [2–4]. It has been suggested that different stable equilibria of a cell represent

different cell types [6, 7]. Whole-cell modelling provides an opportunity to understand the

number and type of the stable equilibria of the cell and could potentially give insight into the

different cell types that a particular cell can differentiate into and transition between. Cur-

rently, this is an important open question in biology [8]. Moreover, the existence of multiple

equilibria is often a design objective in synthetic biology [9, 10]. Various mathematical meth-

ods, developed in the context of reaction network theory, can be applied to decide whether

multistationarity exists for some parameter values or not at all, or to pinpoint specific values

for which it does occur [11–20]. Some of these methods are freely available as software tools

[21, 22].

It is a hard mathematical problem to delimit parameter regions for which multistationarity

occurs. Often it is solved by numerical investigations and parameter sampling, guided by bio-

logical intuition or by case-by-case mathematical approaches. A general approach, in part

numerical, is based on a certain bifurcation condition [18, 19, 23, 24]. Alternatively, for poly-

nomial ODEs, a decomposition of the parameter space into regions with different numbers of

equilibria could be achieved by Cylindrical Algebraic Decomposition (a version of quantifier

elimination) [25]. This method, however, scales very poorly and is thus only of limited help in

biology, where models tend to be large in terms of the number of variables and parameters.

Here we present two new theoretical results pertaining to multistationarity (Theorem 1 and

Corollary 2). The results are in the context of reaction network theory and generalize ideas in

[26, 27]. We consider a parameterized ODE system defined by a reaction network and com-

pute a single polynomial in the species concentrations with coefficients depending on the

parameters of the system. The theoretical results relate the capacity for multiple equilibria or a

single equilibrium to the signs of the polynomial as a function of the parameters and the vari-

ables (concentrations).

The theoretical results apply to dissipative reaction networks (networks for which all trajec-

tories eventually remain in a compact set) without boundary equilibria in stoichiometric com-

patibility classes with non-empty interior. These conditions are met in many reaction network

models of molecular systems. We show by example that the results allow us to identify regions

of the parameter space for which multiple equilibria exist and regions for which only one equi-

librium exists. Subsequently this leads to the formulation of a general procedure for detecting

regions of mono- and multistationarity. The procedure verifies the conditions of the theoreti-

cal results and further, calculates the before-mentioned polynomial. A key ingredient is the

existence of a positive parameterization of the set of positive equilibria. Such a parameterization
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is known to exist for many classes of reaction networks, for example, systems with toric steady

states [14] and post-translational modification systems [28, 29].

The conditions of the procedure might be verified manually or algorithmically according to

computational criteria. The algorithmic criteria are, however, only sufficient for the conditions

to hold. For example, a basic condition is that of dissipativity. To our knowledge there is not a

sufficient and necessary computational criterion for dissipativity, but several sufficient ones. If

these fail, then the reaction network might still be dissipative, which might be verified by other

means. By collecting the algorithmic criteria, the procedure can be formulated as a fully auto-

mated procedure (an algorithm) that partitions the parameter space without any manual inter-

vention. The algorithm might however terminate indecisively if some of the criteria are not

met.

Table 1 shows two examples of reaction network motifs that occur frequently in intracellu-

lar signalling: a two-site protein modification by a kinase–phosphatase pair and a one-site

modification of two proteins by the same kinase–phosphatase pair. These reaction networks

are in the domain of the automated procedure and conditions for mono- and multistationarity

can be found without any manual intervention. The conditions discriminating between a

unique and multiple equilibria highlight a delicate relationship between the catalytic and

Michaelis-Menten constants of the kinase and the phosphatase with the modified protein as a

substrate (the kc- and kM-values). If the condition for multiple equilibria is met, then multiple

equilibria occur provided the total concentrations of kinase, phosphatase and substrate are in

suitable ranges (values thereof can be computed as part of the procedure).

The paper has three main sections: a theoretical section, a section about the procedure and

an application section. We close the paper with two brief sections discussing computational

limitations, related work and future directions. In the theoretical section we first introduce

notation and mathematical background material. We then give the theorem and the corollary

that links the number of equilibria to the sign of the determinant of the Jacobian of a certain

function, which is derived from the ODE system associated with a reaction network. In the

second section we state the procedure, derive the algorithm and comment on the feasibility

and verifiability of the conditions. Finally, in the application section we apply the procedure to

several examples. The S1 File has six sections. All proofs are relegated to x1–4 together with

background material. In x5 we elaborate further on how the conditions of the procedure/

Table 1. Conditions for unique and multiple equilibria in post-translational modification of proteins.

Motif Condition

Aþ K Ð AK � ! Ap þ K Bþ K Ð BK � ! Bp þ K
Ap þ F Ð ApF � ! Aþ F Bp þ F Ð BpF � ! Bþ F

bðkÞ ¼ ðkc1kc4 � kc2kc3Þ �
kc1kc4
kM1kM4

�
kc2kc3
kM2kM3

� �

Multiple: b(κ) < 0, Unique: b(κ)� 0

Aþ K Ð AK � ! Ap þ K Ð ApK � ! App þ K
App þ F Ð AppF � ! Ap þ F Ð ApF � ! Aþ F

b1(κ) = kc1kc4 − kc2kc3

b2(κ) = kc1kc4(kM2 + kM3) − kc2kc3(kM1 + kM4)

Multiple: b1(κ) < 0,

Unique: b1(κ)� 0 and b2(κ)� 0

The symbols kci and kMi denote respectively the catalytic and the Michaelis-Menten constants of the i-th

modification step (i = 1: phosphorylation of A, i = 2: dephosphorylation of Ap, i = 3: phosphorylation of B or

Ap, i = 4: dephosphorylation of Bp or App). All parameter values satisfying the conditions in the second

column yield multiple (unique) equilibria for some (all) values of the conserved quantities. For the second

motif, we cannot decide on the number of equilibria for b1(κ)� 0 and b2(κ) < 0. See x6.1 and x6.2 in the S1

File for details.

https://doi.org/10.1371/journal.pcbi.1005751.t001
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algorithm can be verified. In x6 we provide details of the algorithmic analysis of the examples

in Table 1. Also we include a further monostationary example for illustration of the algorithm.

Results

Theory

In this part of the manuscript we present the theoretical results. We start by introducing the

basic formalism of reaction networks. Theorem 1, Corollary 1 and 2 below apply to dissipative
networks without boundary equilibria and concern the (non)existence ofmultiple equilibria in

some stoichiometric compatibility class. Corollary 2 assumes the existence of a positive parame-
terization of the set of positive equilibria. Before stating the results these five concepts are for-

mally defined.

Reaction networks. A reaction network, or simply a network, consists of a set of species

{X1, . . ., Xn} and a set of reactions of the form:

Rj:
Xn

i¼1

aijXi � !
Xn

i¼1

bijXi; j ¼ 1; . . . ; ‘ ð1Þ

where αij, βij are non-negative integers. The left hand side is called the reactant, while the right

hand side is called the product. We letN ¼ ðNijÞ 2 R
n�‘ be the stoichiometric matrix of the net-

work, defined as Nij = βij − αij, that is, the (i, j)-th entry encodes the net production of species

Xi in reaction Rj. We refer to the ‘running example’ in Fig 1 for an illustration of the

definitions.

The concentrations of the species X1, . . ., Xn are denoted by lower-case letters x1, . . ., xn and

we let x = (x1, . . ., xn). We denote by Rn
>0

(Rn
�0

), the positive (non-negative) orthant in Rn. The

evolution of the concentrations with respect to time is modeled as an ODE system derived

from a set of reaction rate functions. A reaction rate function for reaction Rj is a C1
-function

vj: R
n
�0
� ! R�0 that models the (non-negative) speed of the reaction. We further assume that

vjðxÞ ¼ 0 , xi ¼ 0 for some i such that aij > 0; ð2Þ

that is, the reaction only takes place in the presence of all reactant species. We refer to the set

of reaction rate functions as the kinetics.
A particular important example of a kinetics is that ofmass-action kinetics. In this case the

reaction rate functions are given by

vjðxÞ ¼ kjx
a1j
1 � . . . � xanj

n ; j ¼ 1; . . . ; ‘;

where κj is a positive number called the reaction rate constant and we assume 00 = 1. Other

important examples are Michaelis-Menten kinetics and Hill kinetics. All three types of kinetics

fulfil the assumption in Eq (2).

For a choice of reaction rate functions v = (v1, . . ., vℓ), the ODE system modelling the spe-

cies concentrations over time with initial condition x(0) = x0, is

_x ¼ f ðxÞ; x 2 Rn
�0
; where f ðxÞ ¼ NvðxÞ: ð3Þ

Under assumption Eq (2), the orthants Rn
>0

andRn
�0

are forward-invariant under f in Eq (3) [30,

Theorem 5.6], [31, Section 16]. Forward-invariance implies that the solutions to the ODE sys-

tem stays inRn
>0

(resp. Rn
�0

) for all positive times if the initial condition is inRn
>0

(resp.Rn
�0

).

The trajectories of the ODEs in Eq (3) are confined to the so-called stoichiometric compati-
bility classes, which are defined as follows. Let s = rank(N) be the rank of the network and
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d = n − s be the corank. Further, letW 2 Rd�n be any matrix of full rank d such thatWN = 0,

see Fig 1 for an example. This matrix is zero-dimensional if N has full rank n. For each c 2 Rd,
there is an associated stoichiometric compatibility class defined as

Pc :¼ fx 2 Rn
�0
jWx ¼ cg:

This set is empty if c =2WðRn
�0
Þ. The positive stoichiometric compatibility class is defined as the

relative interior of Pc, that is, the intersection of Pc with the positive orthant:

Pþc :¼ fx 2 Rn
>0
jWx ¼ cg ¼ Pc \ R

n
>0
:

The sets Pþc and Pc are convex. Since by constructionWx is conserved over time and deter-

mined by the initial condition, then Pþc and Pc are also forward-invariant.

An equation of the form ω � x = c0 for some ω 2 im(N)? and c0 2 R is called a conservation
relation. In particular,Wx = c forms a system of d conservation relations.

For the running example in Fig 1, the rank of the network is s = 1 and the corank is d = 1.

The matrixW in the figure leads to the conservation relation x1 + x2 = c. Here the stoichiomet-

ric compatibility class Pc has non-empty interior, that is, Pþc 6¼ ;, if and only if c> 0.

Fig 1. Running example. Example network with two species, X1 and X2, and three reactions with mass-

action kinetics.

https://doi.org/10.1371/journal.pcbi.1005751.g001
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In the following, to ease the notation, we implicitly assume a reaction network comes with a

kinetics (a set of reaction rate functions) and the associated ODE system.

Dissipative and conservative reaction networks. A reaction network is dissipative if, for

all stoichiometric compatibility classes Pc, there exists a compact set where the trajectories of

Pc eventually enter (see x3.2 in the S1 File). A reaction network is conservative if there exists a

conservation relation with only positive coefficients, or, equivalently, if for all species Xi there

is a conservation relation such that the coefficient of xi is positive and all other coefficients are

non-negative. This is equivalent to the stoichiometric compatibility classes being compact sets

[32]. Hence, in particular, a conservative reaction network is dissipative because we can choose

the attracting compact set to be the stoichiometric compatibility class itself. Because of the con-

servation relation x1 + x2 = c, the reaction network of the running example is conservative.

Equilibria. Given the ODE in Eq (3), the set of non-negative equilibria is the set of points

for which f(x) vanishes:

V ¼ fx 2 Rn
�0
j f ðxÞ ¼ 0g: ð4Þ

We are interested in the positive equilibria in each stoichiometric compatibility class, that is, in

the set V \ Pþc . Generically, this set consists of isolated points obtained as the simultaneous

positive solutions to the equations

f ðxÞ ¼ 0; Wx ¼ c: ð5Þ

Fig 1 shows a representation of the set V together with examples of stoichiometric compatibil-

ity classes for the running example. The figure suggests that the set V intersects each stoichio-

metric compatibility class in exactly one point.

We introduce some definitions: a network admitsmultiple equilibria (or ismultistationary)
if there exists c 2 Rd such that V \ Pþc contains at least two points, that is, the system in Eq (5)

has at least two positive solutions. Equilibria belonging to V \ Pc but not to V \ Pþc for some

c are boundary equilibria. A boundary equilibrium has at least one coordinate equal to zero.

The function φc(x). Some of the n equations in the system f(x) = 0 might be redundant.

Indeed, every vector ω 2 im(N)? fulfils ω � f(x) = 0, and hence gives a linear relation among

the entries of f(x). As a consequence, there are (at least) as many independent linear relations

as rows ofW, that is, d, and there are at most s = n − d linearly independent equations in the

system f(x) = 0. Thus d of the equations are redundant. By removing these from f(x) = 0, the

system in Eq (5) becomes a system of n equations in n variables.

In order to systematically choose d equations to remove, we proceed as follows. We choose

the matrix of conservation relationsW 2 Rd�n to be row reduced and let i1, . . ., id be the indi-

ces of the first non-zero coordinate of each row. Then the scalar product of the j-th row ofW
with f(x) can be used to express fij(x) as a linear combination of the entries of f(x) with indices

different from i1, . . ., id. It follows that the equations fi1(x) = 0, . . ., fid(x) = 0 can be removed.

For c 2 Rd, we define the C1
-function φcðxÞ: R

n
�0
� ! Rn by

φcðxÞi ¼

( fiðxÞ i =2 fi1; . . . ; idg

ðWx � cÞi i 2 fi1; . . . ; idg:
ð6Þ

For the running example in Fig 1 the matrixW is already row reduced with i1 = 1. Hence φc is
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obtained by replacing f1(x) with x1 + x2 − c:

φcðxÞ ¼
x1 þ x2 � c

k1x1 � 2k2x2
2
þ k3x1x2

 !

:

As the function φc(x) is obtained by replacing redundant equations in f(x) = 0 with equa-

tions defining Pc, we have

V \ Pc ¼ fx 2 R
n
�0
j φcðxÞ ¼ 0g:

Consequently, a network admitsmultiple equilibria if the equation φc(x) = 0 has at least two

positive solutions for some c 2 Rd.
A theorem for unique and multiple equilibria. LetMðxÞ 2 Rn�n be the Jacobian matrix

of φc(x), that is, the matrix with (i, j)-th entry equal to the partial derivative of φc,i(x) with

respect to xj. The matrixM(x) does not depend on c, see Eq (6).

We say that an equilibrium x� 2 V \ Pc is non-degenerate if the Jacobian of φc at x�,M(x�),
is non-singular, that is, if det(M(x�)) 6¼ 0 [13].

Theorem 1 (Unique and multiple equilibria). Assume the reaction rate functions fulfil

Eq (2), let s = rank(N) and let Pc be a stoichiometric compatibility class such that Pþc 6¼ ;,
where c 2 Rd. Further, assume that

(i) The network is dissipative.

(ii) There are no boundary equilibria in Pc.
Then the following holds.

(A’) Uniqueness of equilibria. If

signðdetðMðxÞÞÞ ¼ ð� 1Þ
s for all positive equilibria x 2 V \ Pþc ;

then there is exactly one positive equilibrium in Pc. Further, this equilibrium is non-

degenerate.

(B’) Multiple equilibria. If

signðdetðMðxÞÞÞ ¼ ð� 1Þ
sþ1 for some equilibrium x 2 V \ Pþc ;

then there are at least two positive equilibria in Pc, at least one of which is non-degenerate. If

all positive equilibria in Pc are non-degenerate, then there are at least three and always an odd

number.

The proof of Theorem 1 is based on relating det(M(x)) to the Brouwer degree of φc at 0 (see

x1-x4 in the S1 File). Note that the only situation that is not covered by Theorem 1 is when

sign(det(M(x))) takes the value 0 for some x, but never the value (−1)s+1. The determinant of

M(x) is the same as the core determinant in [33, Lemma 3.7]. See also [13, Remark 9.27].

To check whether the sign conditions in part (A’) or (B’) hold requires information about

the equilibria in Pþc . As such, these conditions are difficult to check. If sign(det(M(x))) is con-

stant for all x in a set containing the positive equilibria, then the condition in (A’) is always ful-

filled. In particular, this is the case for injective networks, where sign(det(M(x))) = (−1)s for all

x 2 Rn
>0

[13] (see also [34–39] for related work on injective networks). The latter might be ver-

ified or falsified without any knowledge about the equilibria of the system (see the comments

to Step 5 and Step 7 in the section “Procedure for finding parameter regions for mono- and

multistationarity”).

Corollary 1 (Unique equilibria). Assume that the assumptions of Theorem 1 hold and that

sign(det(M(x))) = (−1)s for all x 2 Rn
>0

. Then there is exactly one positive equilibrium in each

stoichiometric compatibility class. Further, this equilibrium is non-degenerate.
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The conclusions of Theorem 1 refer specifically to non-degenerate equilibria. Non-degener-

ate equilibria are always isolated from each other within a given stoichiometric compatibility

class, as det(M(x)) 6¼ 0 ensuresM(x) is locally invertible. In some situations we might be able

to “lift” non-degenerate equilibria of a reaction network to another reaction network that in

some sense is larger, thereby proving lower bounds on the number of non-degenerate equilib-

ria of the larger reaction network. This is for example the case if the smaller network is embed-

ded in the larger [40, 41], if the smaller network is without inflows/outflows while the larger

has all inflows/outflows [42], or if the smaller is obtained by elimination of intermediate spe-

cies [43]. Conditions for the existence of degenerate equilibria, where det(M(x)) is expected to

change sign, are also known [23, 44].

Positive parameterizations and a corollary. Verifying condition (A’) or (B’) is consider-

ably easier if there exists a positive parameterization of the set V \ Rn
>0

of all positive equilibria.

In this subsection we define such a parameterization and restate Theorem 1 as Corollary 2 in

this situation. In the following sections this corollary will become the foundation for the proce-

dure to partition the parameter space into regions with different equilibrium properties.

By a positive parameterization of the set of positive equilibria we mean a surjective function

F: Rm
>0

� ! V \ Rn
>0

x̂ ¼ ðx̂1; . . . ; x̂mÞ 7! ðF1ðx̂Þ; . . . ;Fnðx̂ÞÞ;
ð7Þ

for somem< n, such that x̂ 2 Rm
>0

is the vector of free variables. In other words, a positive

parameterization implies that x1, . . ., xn are expressed at equilibrium as functions of x̂:

xi ¼ Fiðx̂Þ; i ¼ 1; . . . ; n;

such that x1, . . ., xn are positive provided x̂ is positive. Thus

V \ Rn
>0
¼ fFðx̂Þ j x̂ 2 Rm

>0
g: ð8Þ

Typically, the number of free variables equals the corank of the network, that ism = d = n − s.
We say that a parameterization is algebraic if the components Fiðx̂Þ are polynomials or

rational functions (quotients of polynomials) and can be given such that the denominator is

positive for all x̂. See Fig 2 (Step 6) for an application to the running example. Note that the

parameterizations considered here do not make use of the conservation relations.

A positive equilibrium Fðx̂Þ, x̂ 2 Rm
>0

, belongs to the stoichiometric compatibility class Pc
where

c :¼WFðx̂Þ: ð9Þ

Combining Eqs (8) and (9), it follows that the positive solutions to Eq (5) for a given c are in

one-to-one correspondence with the positive solutions to Eq (9), that is,

V \ Pþc ¼ fFðx̂Þ j x̂ 2 R
m
>0

and c ¼WFðx̂Þg:

In order to restate Theorem 1 using the parameterization F, we consider the determinant

ofM(x) evaluated at Fðx̂Þ,

aðx̂Þ ¼ detðMðFðx̂ÞÞÞ; x̂ 2 Rm
>0
: ð10Þ

Corollary 2 (Positive parameterization). Assume the reaction rate functions fulfil Eq (2)

and let s = rank(N). Further, assume that

(i) The network is dissipative.

(ii) There are no boundary equilibria in Pc, for all c 2 Rd such that Pþc 6¼ ;.

Identifying parameter regions for multistationarity
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(iii) The set of positive equilibria admits a positive parameterization as in Eq (7).

Then the following holds.

(A) Uniqueness of equilibria. If

signðaðx̂ÞÞ ¼ ð� 1Þ
s for all x̂ 2 Rm

>0
;

then there is exactly one positive equilibrium in each Pc with Pþc 6¼ ;. Further, this equilib-

rium is non-degenerate.

(B) Multiple equilibria. If

signðaðx̂ÞÞ ¼ ð� 1Þ
sþ1 for some x̂ 2 Rm

>0
;

then there are at least two positive equilibria in the stoichiometric compatibility class Pc where

c :¼WFðx̂Þ. Further, at least one of the equilibria is non-degenerate. If all positive equilibria

in Pc are non-degenerate, then there are at least three equilibria and always an odd number.

Note that, contrary to Theorem 1, the stoichiometric compatibility class Pc is not fixed in

the corollary.

In the next section we formulate a procedure based on Corollary 1 and Corollary 2 to find

regions of mono- and multistationarity. Before that we end this section with an application to

the running example. The analysis is divided into seven steps which prelude the steps of the

procedure.

Application of Corollary 1 and Corollary 2 to the running example. We start with the

setup given in Fig 1 and first check whether the sign condition of Corollary 1 is fulfilled, in

which case there is a single equilibrium in all stoichiometric compatibility classes. The steps of

the analysis are illustrated in Fig 2.

Fig 2. Step 1-3 check the assumptions of Corollary 1 and Corollary 2. In step 4 the function φc(x) is constructed and the determinant of M(x) is

found. Step 5 is the sign analysis of the polynomial det(M(x)) for x 2 R2
>0

. Step 6 establishes a positive parameterization and finds the polynomial

aðx̂Þ. Step 7 is similar to step 5, but for aðx̂Þ.

https://doi.org/10.1371/journal.pcbi.1005751.g002
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The assumptions of the corollary are easily verified in this case. As we are assuming mass-

action kinetics, Eq (2) is fulfilled (Fig 2, Step 1). Further the network is conservative, hence dis-

sipative and (i) is fulfilled (Fig 2, Step 2). It is easily seen that there are no boundary equilibria

in any stoichiometric compatibility class with non-empty interior (Fig 2, Step 3). Hence (ii) is

fulfilled. We then construct φc(x) and calculate the determinant ofM(x). It is a polynomial (in

fact, a linear function) in x1, x2 with coefficients containing both positive and negative terms

(Fig 2, Step 4). By choosing ðx1; x2Þ 2 R
2

>0
with x1 large enough, the determinant ofM(x) is

positive (Fig 2, Step 5). Therefore Corollary 1 cannot be applied as s = 1. We note that this con-

clusion is independent of the specific choice of the parameter vector κ = (κ1, κ2, κ3), so in fact

it holds for all parameter values.

Corollary 2 has the same assumptions as Corollary 1. We find a positive parameterization

by solving the equilibrium equation for x1. That is, we treat it as an equation in x1, while x2 ð¼

x̂Þ is treated as a parameter. The function a(x2) obtained by substituting x by F(x2) in the

determinant ofM(x) is given in Fig 2, Step 6. It is clear from the expression of a(x2) that it

takes the sign −1 for all x2 > 0. Also this conclusion does not depend on the specific value of κ.

By application of Corollary 2(A) with s = 1, we conclude that there exists a unique positive

non-degenerate equilibrium in each stoichiometric compatibility class with c> 0, for all values

of the reaction rate constants (Fig 2, Step 7). The possibility of multiple equilibria is therefore

excluded. In this particular example the existence of a positive parameterization is essential to

draw the conclusion.

To illustrate how Corollary 2 can be used to find parameter regions for multistationarity,

we consider the polynomial aðx̂Þ corresponding to the hybrid histidine kinase example worked

out in detail below, where n = 6 and s = 4:

aðx̂Þ ¼
1

k3

ðk2k4k
2

5
ðk1 � k3Þx4x

2

5
þ ðk1 þ k2Þk3k4k5k6x

2

5
þ 2k1k2k3k4k5x4x5

þk1ðk2 þ k3Þk3k5k6x5 þ k1k2k
2
3
k5x4 þ k1k2k

2
3
k6Þ:

Only one of the coefficients of the polynomial aðx̂Þ in x4, x5 can be negative. If κ3� κ1, then

signðaðx̂ÞÞ ¼ ð� 1Þ
4
¼ 1 for all positive x̂. Corollary 2(A) implies that there is a unique positive

non-degenerate equilibrium in each stoichiometric compatibility class with non-empty posi-

tive part.

Oppositely, we show that for κ3 > κ1, Corollary 2(B) applies. For that, let x4 = T and x5 = T.

Then aðx̂Þ becomes a polynomial in T with negative leading coefficient of degree 3. For T large

enough, aðx̂Þ is negative, and we conclude that there exists x̂ such that

signðaðx̂ÞÞ ¼ ð� 1Þ
5
¼ � 1. Corollary 2(B) implies that there exists a stoichiometric compati-

bility class Pc that contains at least two positive equilibria. In summary, the region of the

parameter space for which multistationarity exists is completely characterized by the inequality

κ3 > κ1.

Step 5 and 7 are sign analyses of det(M(x)) and aðx̂Þ, respectively. These are crucial steps

and essential for determining parameter regions with mono- and multistationarity. In general,

the sign of a polynomial might be studied by studying the signs of the coefficients of the mono-

mials in the polynomial. If all coefficients have the same sign, then the polynomial is either

positive or negative for all x 2 Rn
>0

, respectively, x̂ 2 Rm
>0

, depending on the sign, and Corol-

lary 1, respectively, Corollary 2(A) applies. If this is not the case, then Corollary 2(B) might be

applicable if we can show that the polynomial has the sign (−1)s+1 for some x̂ 2 Rm
>0

. In the

two examples discussed here, the signs of det(M(x)) and aðx̂Þ are straightforward to analyse.

However, this is not always the case, see the section “Checking the steps of the procedure”.
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Procedure for finding parameter regions for multistationarity

In the previous subsection we applied Corollary 1 and Corollary 2 to the running example by

going through a number of steps corresponding to the conditions of the statements and the

calculation of the determinant. In this section we outline the steps formally. Afterwards we dis-

cuss the steps and how they can be verified either manually or algorithmically, that is, without

user intervention. Finally we devise an algorithm to conclude uniqueness of equilibria or to

find regions in the parameter space where multistationarity occurs. We conclude this section

with some extra examples that follow the steps of the procedure.

We assume the reaction rate functions v(x) depend on some parameters κ. The reaction

rate functions are further assumed to be polynomials (as for mass-action kinetics) or quotients

of polynomials (as for Michaelis-Menten and Hill kinetics with integer exponents).

The input to the procedure is v(x) and N (the stoichiometric matrix) and the output is

parameter regions for which the network admits multistationarity or uniqueness of equilibria.

Procedure (Identification of parameter regions for multistationarity)

Input: N and v(x) depending on κ.

1. Find f(x), a row reduced matrixW of size d × n such thatWN = 0, and check that v(x)
vanishes in the absence of one of the reactant species, that is, check that it satisfies Eq (2).

2. Check that the network is dissipative.

3. Check for boundary equilibria in Pc for Pþc 6¼ ; and c 2 Rd.
4. Construct φc(x),M(x) and compute det(M(x)).
5. Analyze the sign of det(M(x)). Find conditions on the parameters κ such that

sign(det(M(x))) = (−1)s for all x 2 Rn
>0

, in which case Corollary 1 holds.

If Corollary 1 does not hold for all κ, continue to the next step.

6. Obtain an algebraic parameterization Fðx̂Þ of the set of positive equilibria for all κ, as in

Eq (7), such that the coefficients of the numerator and the denominator of each Fiðx̂Þ possibly

depend on κ. Compute aðx̂Þ ¼ detðMðFðx̂ÞÞÞ. By hypothesis, aðx̂Þ can be written as the quo-

tient of two polynomials in x̂ with coefficients depending on κ, whose denominator takes posi-

tive values.

7. Analyze the sign of the numerator of aðx̂Þ.
7a. Identify coefficients with sign (−1)s+1 and coefficients that can have different signs

depending on the parameters.

7b. Use the terms corresponding to identified coefficients to construct parameter inequali-

ties such that, whenever these inequalities hold, one has either signðaðx̂ÞÞ ¼ ð� 1Þ
s

for all

x̂ 2 Rm
>0

or signðaðx̂ÞÞ ¼ ð� 1Þ
sþ1

for at least one x̂ 2 Rm
>0

, in which case either Corollary 2(A)

or (B) holds.

There is no guarantee that all steps of the procedure can be carried out successfully,

let alone automatically. While step 1 and 4 usually are straightforward (only computational

issues might arise for large networks), step 2, 3, 5, 6 and 7 might in particular require case spe-

cific approaches. However, there exist computationally feasible sufficient criteria that guaran-

tee the conditions in each step can be checked efficiently.

Checking the steps of the procedure. Step 2: establishing dissipativity. If the network is

not dissipative, then at least one concentration grows to infinity over time. This is typically not

the case for realistic networks, but it needs to be ruled out in order to apply the procedure.

We start by checking whether the network is conservative. This implies solving the linear

system ωt N = 0 with the constraint ω> 0. Alternatively, conservation relations are often easily

established by inspection of the reactions. For example, in many signalling networks, the total

concentration of enzyme (free and bounded) and of substrate (phosphoforms) are conserved.

Identifying parameter regions for multistationarity
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If the network is not conservative, then we check whether it is strongly endotactic [45, 46].

Strongly endotactic reaction networks are in particular permanent, that is, dissipative and the

compact set can be chosen such that it does not intersect the boundary of Rn
>0

, see [45–47] for

details.

If the network is neither conservative nor strongly endotactic, then we can use the following

proposition to decide on dissipativity (see the x3.2 in the S1 File).

Proposition 1 (Dissipative network). Let ||�|| be a norm in Rn. Assume that for each c with

Pþc 6¼ ;, there exists a vector oc 2 R
n
>0

and a number R> 0 such that ωc � f(x)< 0 for all

x 2 Pc with ||x||> R. Then the network is dissipative.

Thus, we look for vectors ωc with all coordinates positive and such that ωc � f(x)< 0 for large

x. To avoid restricting the parameter values, this computation should be done symbolically.

Step 3: absence of boundary equilibria. For systems of moderate size it is often possible to

establish nonexistence of boundary equilibria by arguments similar to those employed in the

analysis of the running example: for each i, assume xi = 0, and show that it leads to a

contradiction.

A systematic procedure to check for the existence of boundary equilibria relies on comput-

ing the so-calledminimal siphons of the network [48]. A siphon is a set of species Z� {X1, . . .,

Xn} fulfilling the following closure property: if Xi 2 Z and Xi is produced in reaction Rj (that is,

βij> 0), then there exists Xk 2 Z such that Xk is consumed in the same reaction (that is, αkj>
0). Aminimal siphon is a siphon that does not properly contain any other siphon.

Proposition 2 (Siphons) ([49, 50]) If for every minimal siphon Z there exists a subset {Xi1,
. . ., Xik}� Z, and a conservation relation λ1xi1 + . . . + λkxik = c for some positive λ1, . . ., λk, then

the network has no boundary equilibria in any stoichiometric compatibility class Pc with

Pþc 6¼ ;.
The hypothesis of the proposition can be summarised by saying that each minimal siphon

contains the support of a positive conservation relation.

For example, the running example has only one minimal siphon, namely {X1, X2}. The con-

servation relation x1 + x2 = c fulfils the requirement of Proposition 2, and hence the network

has no boundary equilibria in any Pc with c> 0.

More information about using siphons to preclude boundary equilibria is given in the sec-

tion “Computational issues” below and in x5.1 of the S1 File.

Step 5: determining the sign of det(M(x)). If the kinetics is mass-action, then det(M(x)) is a

polynomial in x. In general, if the reaction rate functions are rational functions in x, then so is

det(M(x)). In the latter case, if the jth reaction rate function fulfils vj(x) = pj(x)/qj(x) with

pj(x)� 0 and qj(x)> 0 for all x 2 Rn
>0

, then det(M(x)) = p(x)/q(x), where

qðxÞ ¼
Q‘

j¼1
qjðxÞ

2
> 0. It follows from the definition ofM(x) and by differentiation of vj(x),

j = 1, . . ., ℓ.
We determine conditions on the parameters such that all coefficients of p(x) have sign

(−1)s. Then the sign of det(M(x)) is also (−1)s for all x 2 Rn
>0

and Corollary 1 holds.

Step 6: finding an algebraic positive parameterization.Computer algebra systems like

Maple or Mathematica can be used to find a parameterization. One strategy is to solve the

equations fi(x) = 0, i =2 {i1, . . ., id}, for some subset of (at most) s variables, treating the remain-

ing (at least) d variables as coefficients of the system. If a parameterization found in this way

exists but is not positive, another set of variables should be tried out. This can be systematically

addressed by trying out all possible subsets of variables. It requires computation and analysis

of at most n
d

� �
parameterizations. Alternatively, one can compute the circuits of degree one of

the matroid associated with the equilibrium equations [51].
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In some cases, the network structure implies that a positive parameterization of the set of

equilibria exists. A set, say {Xk+1, . . ., Xn} with n − k elements for some k, is non-interacting if

two species never appear on the same side of a reaction and they have coefficient at most one

in all reactions. In this case the equilibrium equations fk+1(x) = � � � = fn(x) = 0 form a linear sys-

tem in the variables {xk+1, . . ., xn}. Provided that the determinant of the coefficient matrix of

the linear system is not identically zero, this system can be solved and we obtain a positive

parameterization of the non-interacting variables xk+1, . . ., xn at equilibrium in terms of the

remaining variables x1, . . ., xk [52, 53]. A necessary condition for the determinant of the coeffi-

cient matrix not being identically zero is that there is no conservation relation of the form

xi1 + � � � + xil with i1, . . ., il 2 {k + 1, . . ., n}. If a non-interacting set with k = d exists, that is,

with s = n − d elements, then this guarantees the existence of the desired parameterization. In

the running example there is not a non-interacting set because both species have coefficient 2

in the reaction 2X1 � ! 2X2.

The non-interacting condition can be relaxed in some cases by requiring that none of the

species in {Xk+1, . . ., Xn} appear together in a reactant (these sets are called reactant-non-inter-
acting [54]). Proceeding as above, provided that the determinant of the coefficient matrix is

not identically zero, xk+1, . . ., xn can be expressed at equilibrium in terms of x1, . . ., xk. Condi-

tions that ensure this is a positive parameterization are given in [54]. In the running example,

species X1 is a reactant-non-interacting set and we can obtain a positive parameterization of x1

in terms of x2, see Figs 1 and 2.

If the network admits so-called toric steady states, then a positive parameterization also

exists [14].

Step 7: the sign of aðx̂Þ and the Newton polytope. This is perhaps the hardest step of all. We

write aðx̂Þ ¼ pðx̂Þ=qðx̂Þ with qðx̂Þ positive for all x̂ and would like to determine the sign of

pðx̂Þ. We first look for conditions that ensure uniqueness of positive equilibria by imposing

that all coefficients of pðx̂Þ as a polynomial in x̂ have sign (−1)s.

We next identify the monomials of pðx̂Þ, where the sign of the coefficient, say β, is (−1)s+1

for some parameter values. For each of these monomials we check whether the monomial can

“dominate” the sign of pðx̂Þ. That is to say, if sign(β) = (−1)s+1, then we determine whether

there is an x̂ such that pðx̂Þ also has the sign (−1)s+1. If it is the case, then the condition sign(β)

= (−1)s+1 is a sufficient condition for multiple equilibria according to Corollary 2(B).

Given a coefficient of a monomial with sign (−1)s+1, it might not be straightforward to

decide if the polynomial pðx̂Þ has the same sign for some value of x̂. (For example, the polyno-

mial x2 − 2xy + y2 = (x − y)2 has one monomial with negative sign, but the polynomial itself

can never be negative.) When the number of variables is small, one can attempt to decide the

sign as we did in the examples above. Otherwise, our strategy is to determine whether the

monomial of interest corresponds to a vertex of the Newton polytope. If that is the case, then

the monomial can dominate the sign of pðx̂Þ (see x5.2 in the S1 File). The Newton polytope of

pðx̂Þ is defined as the convex hull of the exponent vectors a ¼ ða1; . . . ; amÞ 2 R
m correspond-

ing to the monomials x̂a1
1 � . . . � x̂am

m of pðx̂Þ. If α is a vertex of the Newton polytope, then there

exists x̂ 2 Rm
>0

such that the sign of pðx̂Þ agrees with the sign of the coefficient of the monomial

(see x5.2 in the S1 File).

An algorithm. In the previous subsection we have outlined computational criteria that

might be used to verify the conditions of the steps in the procedure. These computational crite-

ria are only sufficient, that is, even if they fail the procedure might still work on the given net-

work. For example, a sufficient computational criterion for the absence of boundary equilibria

is based on Proposition 2. However, it might happen that Proposition 2 cannot be applied, but
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that the network nonetheless has no boundary equilibria in stoichiometric compatibility clas-

ses with non-empty interior.

We have collected sufficient computational criteria that guarantee the conditions of the

procedure are fulfilled. In this way the procedure is formulated as an algorithm with decision

diagram shown in Fig 3. If one step of the algorithm fails, then we say that the algorithm ends

indecisively. In that case we might check whether the step can be verified by other means.

For simplicity, we have restricted to mass-action kinetics. Under this assumption, det(M
(x)) is a polynomial in x and the parameters κ, and aðx̂Þ is a rational function in x̂ and κ
because the parameterization is assumed to be algebraic.

Applications to selected examples

To illustrate several aspects of the algorithm we provide a detailed step-by-step analysis of a

collection of examples.

Two-component system. We have chosen this example to illustrate the situation where

an algebraic parameterization is not required, as already det(M(x)) is of constant sign. The

algorithm therefore stops successfully at Step 5 (and consequently skips Step 6 and 7).

We consider a simple version of a two-component system consisting of a histidine kinase

HK that autophosphorylates and transfers the phosphate group to a response regulator RR,

which undergoes autodephosphorylation. The reactions of the network are

HK � !
k1 HKp HKp þ RR � !

k2 HKþ RRp RRp � !
k3 RR:

We let X1 = HK, X2 = HKp, X3 = RR and X4 = RRp. The stoichiometric matrix N and a row

reduced matrixW such thatWN = 0 are

N ¼

� 1 1 0

1 � 1 0

0 � 1 1

0 1 � 1

0

B
B
@

1

C
C
A; W ¼

1 1 0 0

0 0 1 1

 !

:

The matrixW gives rise to the conservation relations x1 + x2 = c1 and x3 + x4 = c2. With mass-

action kinetics, the vector of reaction rates is v(x) = (κ1x1, κ2x2x3, κ3x4), and the function f(x) =

Nv(x) is

f ðxÞ ¼ ð� k1x1 þ k2x2x3; k1x1 � k2x2x3 � k2x2x3 þ k3x4; k2x2x3 � k3x4Þ:

We apply the algorithm to this network.

Step 1. Mass-action kinetics fulfills assumption in Eq (2) on the vanishing of reaction rate

functions. The function f(x) andW are given above. The matrixW is row reduced.

Step 2. The network is conservative since (1, 1, 1, 1) 2 im(N)?. Therefore the network is

dissipative.

Step 3. The minimal siphons of the network are {X1, X2} and {X3, X4}. These two sets are

the supports of the conservation relations. By Proposition 2, there are no boundary equilibria

in any Pc as long as Pþc 6¼ ;.
Step 4. With our choice ofW, we have i1 = 1, i2 = 3. Hence φc is obtained by replacing the

components f1(x), f3(x) of f(x) by the expressions derived from the two conservation relations:

φcðxÞ ¼ ðx1 þ x2 � c1; k1x1 � k2x2x3; x3 þ x4 � c2; k2x2x3 � k3x4Þ:
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Fig 3. Decision diagram of the algorithm. At each step either the condition is fulfilled or the algorithm terminates indecisively. If that is the case, the

corresponding condition might still be verified manually and the algorithm resumed from the next following step.

https://doi.org/10.1371/journal.pcbi.1005751.g003
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The JacobianM(x) of φc and its determinant are

MðxÞ ¼

1 1 0 0

k1 � k2x3 � k2x2 0

0 0 1 1

0 k2x3 k2x2 � k3

0

B
B
B
B
@

1

C
C
C
C
A
;

detðMðxÞÞ ¼ k1k2x2 þ k2k3x3 þ k1k3:

Step 5. All terms of det(M(x)) have sign +1 = (−1)s, since s = 2, and thus the conclusion of

Corollary 1 holds. The network admits exactly one non-degenerate equilibrium point in every

stoichiometric compatibility class with non-empty positive part.

Hybrid histidine kinase. This example has been analysed in [55]. Taken with mass-action

kinetics the network is known to be multistationary for specific choices of reaction rate con-

stants. We have chosen this example to illustrate how the algorithm can be used to sharpen

known results: not only does it establish multistationarity for some parameter values, it pro-

vides precise conditions for when it occurs and allows a complete partition of the parameter

space into regions with and without multistationarity. It also illustrates the use of an algebraic

parameterization, which can be obtained by identifying sets of reactant-non-interacting spe-

cies, and the use of the Newton polytope in Step 7.

This reaction network is an extension of the two-component system discussed above and it

is given in the first row of Fig 4. Specifically, the histidine kinase is assumed to be hybrid, that

is, it has two ordered phosphorylation sites [55]. Whenever the second phosphorylation site is

occupied, the phosphate group can be transferred to a response protein.

Fig 4. Two examples describing a hybrid histidine kinase (row 1) and a gene transcription network (row 2). Column 1: the reaction network;

Column 2: the function aðx̂Þ where monomials with coefficients of constant sign (−1)s are in blue, and those that can have sign (−1)s+1 are in red;

Column 3: parameter conditions for multistationarity; Column 4: Newton polytope where each point corresponds to the exponent vector of a

monomial of the numerator of aðx̂Þ (e.g. (1, 2) is the exponent vector of the monomial x4x
2
5
), blue points are the vertices of the Newton polytope and

red numbers indicate the exponents of the red monomials in column 2.

https://doi.org/10.1371/journal.pcbi.1005751.g004
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Using the notation X1 = HK00, X2 = HKp0, X3 = HK0p, X4 = HKpp, X5 = RR and X6 = RRp,

the stoichiometric matrix N and a row reduced matrixW such thatWN = 0 are

N ¼

� 1 0 0 1 0 0

1 � 1 0 0 1 0

0 1 � 1 � 1 0 0

0 0 1 0 � 1 0

0 0 0 � 1 � 1 1

0 0 0 1 1 � 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; W ¼
1 1 1 1 0 0

0 0 0 0 1 1

 !

:

The matrixW gives rise to the conservation relations x1 + x2 + x3 + x4 = c1 and x5 + x6 = c2. We

assume mass-action kinetics

vðxÞ ¼ ðk1x1; k2x2; k3x3; k4x3x5; k5x4x5; k6x6Þ;

and the function is

f ðxÞ ¼ ð� k1x1 þ k4x3x5; k1x1 � k2x2 þ k5x4x5; � k3x3 þ k2x2 � k4x3x5;

k3x3 � k5x4x5; � k4x3x5 � k5x4x5 þ k6x6; k4x3x5 � k6x6 þ k5x4x5Þ:

We apply the algorithm to this network.

Step 1. Mass-action kinetics fulfills assumption in Eq (2) on the vanishing of reaction rate

functions. The function f(x) andW are given above. The matrixW is row reduced.

Step 2. Since (1, 1, 1, 1, 1, 1) 2 im(N)? the network is conservative and hence dissipative.

Step 3. The network has two minimal siphons {X1, X2, X3, X4} and {X5, X6}, which are

respectively the supports of the two conservation relations. We apply Proposition 2 to con-

clude that there are no boundary equilibria in any Pc as long as Pþc 6¼ ;.
Step 4. Since i1 = 1, i2 = 5, the function φc is obtained by replacing the components f1(x),

f5(x) of f(x) by the expressions derived from the two conservation relations:

φcðxÞ ¼ ðx1 þ x2 þ x3 þ x4 � c1; k1x1 � k2x2 þ k5x4x5; � k3x3 þ k2x2 � k4x3x5;

k3x3 � k5x4x5; x5 þ x6 � c2; k4x3x5 � k6x6 þ k5x4x5Þ:

The JacobianM(x) of φc(x) and its determinant are

MðxÞ ¼

1 1 1 1 0 0

k1 � k2 0 k5x5 k5x4 0

0 k2 � k3 � k4x5 0 � k4x3 0

0 0 k3 � k5x5 � k5x4 0

0 0 0 0 1 1

0 0 k4x5 k5x5 k4x3 þ k5x4 � k6

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

;

detðMðxÞÞ ¼ k2k4k5ðk1 � k3Þx3x5 þ k1k2k4k5x4x5 þ k4k5k6ðk1 þ k2Þx2
5

þk1k2k3k4x3 þ k1k2k3k5x4 þ k1k5k6ðk3 þ k2Þx5 þ k1k2k3k6:

Step 5. The sign of the first coefficient of det(M(x)) depends on the parameters. If κ1� κ3,

then the sign is positive and det(M(x)) has sign +1 = (−1)4 (s = 4) as the remaining terms are

positive. According to Corollary 1, there is a single non-degenerate equilibrium in each stoi-

chiometric compatibility class with non-empty positive part. If κ1 < κ3, then Corollary 1 can-

not be applied. We proceed to the next step to investigate the parameter space further.

Step 6. The set {X1, X2, X3, X6} is reactant-non-interacting and consists of s = 4 elements. We

solve the equilibrium equations f1 = f2 = f3 = f6 = 0 for x1, x2, x3, x6. This gives the following

Identifying parameter regions for multistationarity
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algebraic parameterization F: R2

>0
� ! V \ R6

>0
of the set of equilibria in terms of x̂ ¼ ðx4; x5Þ:

Fðx4; x5Þ ¼
k4k5x4x2

5

k1k3

;
k5ðk4x5 þ k3Þx4x5

k2k3

;
k5x4x5

k3

; x4; x5;
k5ðk4x5 þ k3Þx4x5

k3k6

� �

:

The function aðx̂Þ, which is det(M(x)) evaluated at F(x4, x5), is the polynomial given in the first

row of Fig 4.

Step 7. We assume κ1 < κ3, as the case κ1� κ3 is analysed in Step 5. Only one coefficient of

aðx̂Þ has sign −1 = (−1)s+1 = (−1)5. The monomial associated with this term is x4x2
5
. As the

point (1, 2) (the degrees of the monomial) is a vertex of the Newton polytope (see Fig 4), then

there exists x̂ 2 Rm
>0

such that the sign of aðx̂Þ is −1. Corollary 2(B) implies that there exists c =

(c1, c2) such that Pc contains at least two positive equilibria.

Multistationarity is thus completely characterized by the inequality κ3 > κ1. This condition

states that the reaction rate constant for phosphorylation of the first site of the hybrid kinase is

larger if the second site is phosphorylated than if it is not.

Gene transcription network. We consider the gene transcription network given in row 2

of Fig 4. This example has been studied in [56]. The particularities of this example are that the

network is dissipative but not conservative, and that it displays multistationarity for all param-

eters κ. Further, this network illustrates the situation where the algorithm stops inconclusively

at some step, but can be resumed after successful manual verification.

The network represents a gene transcription motif with two proteins P1, P2, produced by

their respective genes X1, X2, and such that P2 dimerises [56]. Further, the proteins cross regu-

late each other as depicted in Fig 4. Using the notation X1 = X1, X2 = X2, X3 = P1, X4 = P2, X5 =

X2P1, X6 = P2P2, and X7 = X1P2P2 the stoichiometric matrix N and a row reduced matrixW
such thatWN = 0 are

N ¼

0 0 0 0 0 0 0 0 � 1 1

0 0 0 0 � 1 1 0 0 0 0

1 0 � 1 0 � 1 1 0 0 0 0

0 1 0 � 1 0 0 � 2 2 0 0

0 0 0 0 1 � 1 0 0 0 0

0 0 0 0 0 0 1 � 1 � 1 1

0 0 0 0 0 0 0 0 1 � 1

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

;

W ¼
1 0 0 0 0 0 1

0 1 0 0 1 0 0

� �

:

FromW we find the conservation relations x1 + x7 = c1 and x2 + x5 = c2. Here s = 5. We con-

sider mass-action kinetics such that

vðxÞ ¼ ðk1x1; k2x2; k3x3; k4x4; k5x2x3; k6x5; k7x2
4
; k8x6; k9x1x6; k10x7Þ

and f(x) = Nv(x) is the function

ð� k9x1x6 þ k10x7; � k5x2x3 þ k6x5; k1x1 � k3x3 � k5x2x3 þ k6x5; k2x2 � k4x4

� 2k7x2
4
þ 2k8x6; k5x2x3 � k6x5; k7x2

4
� k8x6 � k9x1x6 þ k10x7; k9x1x6 � k10x7Þ:

We apply the algorithm to this network:

Step 1. Mass-action kinetics fulfills assumption in Eq (2) on the vanishing of reaction rate

functions. The function f(x) andW are given above. The matrixW is row reduced.

Step 2. The network is neither conservative nor strongly endotactic. Thus the algorithm ter-

minates inconclusive. We take a manual approach: we pick oc ¼ ð1; 1; 1; 1; 2; 2; 3Þ 2 R
7

>0
and
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observe

oc � f ðxÞ ¼ k1x1 þ k2x2 � k3x3 � k4x4:

Note that x1, x2 are bounded (due to the conservation relations) while x3, x4 can be arbitrarily

large. Then, for x3, x4 large enough, ωc � f(x)< 0 and the network is dissipative by Proposition

1 (as has been shown in [56] by other means).

Step 3. This network has two minimal siphons: {X1, X7} and {X2, X5}, which are the sup-

ports of the two conservation relations. Therefore, by Proposition 2, there are no boundary

steady states in stoichiometric compatibility class with non-empty positive part.

In section x5.1 in the S1 File we illustrate how to apply a simplification technique, based on

the removal of so-called intermediates and catalysts, to check whether Proposition 2 holds for

this network.

Step 4. Using that i1 = 1, i2 = 2 for our choice ofW, the function φc(x) is:

ðx1 þ x7 � c1; x2 þ x5 � c2; k1x1 � k3x3; � k5x2x3 þ k6x5k2x2 � k4x4

� 2k7x2
4
þ 2k8x6; k5x2x3 � k6x5; k7x2

4
� k8x6 � k9x1x6 þ k10x7; k9x1x6 � k10x7Þ:

The matrixM(x) and its determinant are:

MðxÞ ¼

1 0 0 0 0 0 1

0 1 0 0 1 0 0

k1 � k5x3 � k5x2 � k3 0 k6 0 0

0 k2 0 � 4k7x4 � k4 0 2k8 0

0 k5x3 k5x2 0 � k6 0 0

� k9x6 0 0 2 k7x4 0 � k9x1 � k8 k10

k9x6 0 0 0 0 k9x1 � k10

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

;

detðMðxÞÞ ¼ 2k1k2k5k7k9x1x2x4 � k3k4k5k8k9x3x6 � k3k4k5k8k10x3

� k3k4k6k8k9x6 � k3k4k6k8k10:

Step 5. One coefficient of det(M(x)) has sign (−1)s+1 = 1 for all values of κ. Thus we proceed

to the next step.

Step 6. There is not a set of non-interacting species nor reactant-non-interacting with s = 5

elements. Thus the algorithm terminates inconclusively.

We take a manual approach and solve the equilibrium equations f3 = f4 = f5 = f6 = f7 = 0 for

x1, x2, x3, x6, x7. This gives the following algebraic parameterization F: R2

>0
� ! R7

>0
of the set

of equilibria in terms of x̂ ¼ ðx4; x5Þ:

Fðx4; x5Þ ¼
k2k3k6x5

k1k4k5x4

;
k4x4

k2

;
k2k6x5

k4k5x4

; x4; x5;
k7x2

4

k8

;
k2k3k6k7k9x4x5

k1k4k5k8k10

� �

:

Evaluating det(M(x)) at F(x4, x5) we obtain the polynomial

aðx4; x5Þ ¼
k3k6

x4

ðk2k7k9x
2

4
x5 � k4k7k9x

3

4
� k2k8k10x5 � k4k8k10x4Þ:

Step 7. The coefficient of the monomial x2
4
x5 of the numerator of a(x4, x5) has sign (−1)s+1 =

(−1)6 = 1. Since the monomial x2
4
x5 is a vertex of the associated Newton polytope (see Fig 4),

there exists ðx4; x5Þ 2 R
2

>0
such that the sign of a(x4, x5) is 1. We conclude from Corollary 2(B)

that for all κi> 0 there exists c such that Pc contains at least two positive equilibria.
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Special classes of networks. There are several classes of networks for which some of the

steps of the procedure are automatically fulfilled. We review some of them here.

Post-Translational Modification (PTM) networks consist of enzymes (Ei), substrates (Si)
and intermediate species (Yi) [28]. Allowed reactions are of the form

Ei þ Sj � ! Yk; Yk � ! Ei þ Sj; Yj � ! Yi:

All intermediates are assumed to be the reactant, respectively, the product of some reaction.

These networks are conservative (hence dissipative) and boundary equilibria are precluded

provided the underlying substrate network obtained by ignoring enzymes and intermediates is

strongly connected [50], see also x5.1 in the S1 File. When equipped with mass-action kinetics,

these networks have a non-interacting set with d elements consisting of all enzymes and some

of the substrates, namely one per (minimal) conservation relation involving the substrates

[28]. Thus, a positive parameterization can always be found under the conditions stated above

in Step 6. The class of PTM networks is contained in the class of cascades of PTM networks.

Also this class admits a positive parameterization in terms of the concentrations of the

enzymes and some of the substrate forms [29].

Cascades of PTM networks might further be generalized to so-called MESSI networks [57].

These networks are all conservative. Easy-to-check conditions for the absence of boundary

equilibria and to decide whether the network admits toric steady states (and hence a positive

parameterization) are given in [57].

A class of networks that cannot have boundary equilibria in any stoichiometric compatibil-

ity class with non-empty interior is given in [58].

The two examples in Table 1 are both PTM networks. Hence they are conservative and pos-

itive parameterizations exist. The underlying substrate network is strongly connected (they

pass the criterion based on minimal siphons). For both networks the conditions shown in

Table 1 are obtained by the algorithm. See x6.1 and x6.2 in the S1 File. For illustration pur-

poses, we apply the algorithm in x6.3 of the S1 File to an additional network and show that it is

monostationary.

Computational issues

The computational complexity of some of the steps in the procedure are demanding. Some

conditions can be checked using linear algebra and do not depend on parameter values, others

depend on parameter values and require symbolic manipulations. In some situations, the cal-

culation can be done for even large networks at the cost of time, while in other situations sym-

bolic software (like Mathematica and Maple) have inherent limits to what it can process. We

offer here a few remarks about computational strategies and time complexity.

1. Dissipativity. There are efficient algorithms to check whether the network is conservative

and strongly endotactic, using linear algebra or mixed-integer linear programming [21, 47].

We are not aware of a systematic way to check if Proposition 1 is fulfilled or not.

2. Finding the minimal siphons of a network requires in general exponential time and there

might be exponentially many of these [59]. Different algorithms developed in Petri Net the-

ory can be applied to find the minimal siphons; see for example [48, 49, 59] and references

therein. The complexity of this computation can often be substantially reduced by remov-

ing so-called intermediates and catalysts from the network [50] (see x5.1 in the S1 File for

details).

3. Finding all non-interacting and reactant-non-interacting sets requires in general exponen-

tial time. One strategy is the following. We first remove all species Si for which αij> 1 or
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βij> 1 for some reaction Rj (the latter constraint is omitted if we are looking for reactant-

non-interacting sets only). Then we build non-interacting (reactant-non-interacting) sets

by adding new species recursively until no more species can be added without having an

interacting pair of species in the set.

4. Calculation of the symbolic determinant of the matrixM(x), and hence also of aðx̂Þ, often

fails in our experience for networks with more than 20 variables on common laptops [60].

However, this clearly depends on the sparsity of the matrixM(x), that is, on the number

and order of the reactions. Strategies to reduce the complexity of the computation by

expanding the determinant along the non-symbolic rows (conservation relations) were

inspected in [60]. Specialized software like Singular [61] and/or better hardware could

probably push what is possible to something closer to 50 variables. At this size, however,

what might best be called ‘cognitive limitations’ come into play: symbolic software typically

has problems with collecting and simplifying terms ‘the right way’ if there are many vari-

ables and/or parameters. And if terms are not collected appropriately it might be difficult, if

not impossible, to decide on the sign of the polynomial coefficients. Our approach is there-

fore best suited to systems of moderate size (say 20-30 variables). Furthermore, it is our

experience that large non-linear models tend to be multistationary because of the many

non-linear dependencies that typically are present [60].

5. Positive parameterizations: The worst case scenario involves checking
Pd

i¼1
n
i

� �
different

sets of variables, each with at most d variables.

6. Finding the vertices of the Newton polytope can be done with existing symbolic software,

for example Polymake [62] or Maple, as we demonstrate in the S1 File.

We stress that it is always beneficial to guide the procedure/algorithm whenever possible in

the sense that, if something is known for the network, there is no reason to go through many

possibilities.

Discussion

The main result of this paper, the procedure to identify parameter regions for unique and mul-

tiple equilibria, combines Brouwer degree theory and algebraic geometry. In particular, under

the assumptions of Corollary 2, we show that there exist stoichiometric compatibility classes

with at least two equilibria if, and only if, a certain multivariate polynomial can attain a specific

sign.

Discriminating regions of the parameter space where multistationarity occurs is a hard

mathematical problem, theoretically addressable by computationally expensive means [25].

Our approach beautifully overcomes these difficulties by building on a simple idea, the compu-

tation of the Brouwer degree of a function related to a dissipative network. Additionally, not

only closed-form expressions in the parameters are obtained, but, as illustrated in examples,

these expressions are often interpretable in biochemical terms, providing an explanation of

whymultistationarity occurs.

The procedure applies theoretically to any choice of algebraic reaction rate functions. How-

ever, in practice, the procedure works well with mass-action kinetics. For example, we have

considered the two-site phosphorylation cycle depicted in the second row of Table 1, but now

modelled with Michaelis-Menten kinetics instead of mass-action kinetics. This network is

known to be multistationary [63], and the conditions to apply Corollary 1 and Corollary 2 are

valid. However, a positive algebraic parameterization does not exist, and hence our approach

cannot be used to find parameter conditions for multistationarity.
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However, Corollary 1 might be used with rational reaction rate functions for monostation-

ary networks. This is the case for example for the one-site phosphorylation cycle SÐ Sp with

Michaelis-Menten kinetics [63]. This network has two species and rank one. The sign of det(M
(x)) is −1 for all parameter values and all x 2 R2

>0
. By Corollary 1, the network admits exactly

one positive equilibrium in every stoichiometric compatibility class Pc with Pþc 6¼ ; for all

parameter values.

If a reaction network does not have any conservation relation, then the set of equilibria con-

sists typically of a finite number of points. In this case an algebraic parameterization is an alge-

braic expression of the equilibria in terms of the parameters of the system. Sincem = 0, then

Rm consists of a single point and it follows directly that there is a unique equilibrium. Such an

expression rarely exists. Therefore the procedure applies mainly to reaction networks with

conservation relations. In particular, this rules out reaction networks where each species is

produced and degraded.

Several natural questions remain outside the reach of our procedure. Firstly one would like

to determine the particular stoichiometric compatibility classes for which there are multiple

equilibria. As stated in Corollary 2, if signðaðx̂ÞÞ ¼ ð� 1Þ
sþ1

, then c :¼WFðx̂Þ defines a stoi-

chiometric compatibility class with multiple equilibria. However, this only establishes c indi-

rectly through x̂. In some situations, it might be possible to find a positive parametrization that

uses some of the conservation relations (ideally, all but one) and the stoichiometric compatibil-

ity classes with multiple/single equilibria would be determined up to a single parameter.

Secondly, one could ask for parameter regions that differentiate between the precise num-

ber of equilibria (that is, 0, 1, 2, . . .). This question should be seen in conjunction with the pre-

vious question: in typical examples, when there are two equilibria in a particular

stoichiometric compatibility class, then there exists another class for which there are three.

Hence the number of equilibria cannot be separated from the stoichiometric compatibility

classes.

A third question concerns the stability of the equilibria, which cannot be obtained from our

procedure. It is, however, known that if the sign of the Jacobian evaluated at an equilibrium is

(−1)s+1, then it is unstable [34]. This is in particular the case for an equilibrium fulfilling the

condition in Corollary 2(B).

We have shown that for some reaction networks our procedure can be formulated as an

algorithm. We consider therefore our research a step in the direction of providing ‘black

box tools’ to analyse complex dynamical systems. Such tools would easily find their use in sys-

tems and synthetic biology, where it is commonplace to consider (many) competing models. A

particular problem is to exclude models that cannot explain observed qualitative features, such

as multistationarity.

Methods

We used Maple for the symbolic computations, such as finding det(M(x)), the positive param-

eterizations, aðx̂Þ and the vertices of the Newton polytope.

Supporting information

S1 File. Proof of mathematical statements and examples. In this document we first prove

the claims of the main text. Next, we provide details on how to check the steps of the proce-

dure. Finally, we give details of the examples in Table 1 and include an extra example which is

a PTM network.

(PDF)
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14. Pérez Millán M, Dickenstein A, Shiu A, Conradi C. Chemical reaction systems with toric steady states.

Bull Math Biol. 2012; 74:1027–1065. https://doi.org/10.1007/s11538-011-9685-x PMID: 21989565

15. Conradi C, Flockerzi D. Multistationarity in mass action networks with applications to ERK activation. J

Math Biol. 2012; 65(1):107–156. https://doi.org/10.1007/s00285-011-0453-1 PMID: 21744175

Identifying parameter regions for multistationarity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005751 October 03, 2017 23 / 25

https://doi.org/10.1038/msb.2013.7
https://doi.org/10.1016/S0968-0004(99)01473-5
https://doi.org/10.1016/S0968-0004(99)01473-5
https://doi.org/10.1038/nature02298
https://doi.org/10.1038/nature02298
http://www.ncbi.nlm.nih.gov/pubmed/14973486
https://doi.org/10.1038/nature02089
http://www.ncbi.nlm.nih.gov/pubmed/14647386
https://doi.org/10.1016/j.copbio.2009.08.007
https://doi.org/10.1063/1.1350439
https://doi.org/10.1063/1.1350439
http://www.ncbi.nlm.nih.gov/pubmed/12779451
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/j.cels.2017.03.008
https://doi.org/10.1016/j.cels.2017.03.008
http://www.ncbi.nlm.nih.gov/pubmed/28334571
https://doi.org/10.1038/35002131
http://www.ncbi.nlm.nih.gov/pubmed/10659857
https://doi.org/10.1038/msb.2011.13
https://doi.org/10.1007/BF00375614
https://doi.org/10.1098/rspa.2014.0530
https://doi.org/10.1137/120873388
https://doi.org/10.1137/120873388
https://doi.org/10.1007/s11538-011-9685-x
http://www.ncbi.nlm.nih.gov/pubmed/21989565
https://doi.org/10.1007/s00285-011-0453-1
http://www.ncbi.nlm.nih.gov/pubmed/21744175
https://doi.org/10.1371/journal.pcbi.1005751


16. Conradi C, Flockerzi D, Raisch J, Stelling J. Subnetwork analysis reveals dynamic features of complex

(bio)chemical networks. Proc Nat Acad Sci. 2007; 104(49):19175–80. https://doi.org/10.1073/pnas.

0705731104 PMID: 18042723

17. Mincheva M, Roussel MR. Graph-theoretic methods for the analysis of chemical and biochemical net-

works. I. Multistability and oscillations in ordinary differential equation models. J Math Biol. 2007; 55

(1):61–86. https://doi.org/10.1007/s00285-007-0098-2 PMID: 17541594

18. Otero-Muras I, Yordanov P, Stelling J. A method for inverse bifurcation of biochemical switches: infer-

ring parameters from dose response curves. BMC Sys Biol. 2014; 8:114. https://doi.org/10.1186/

s12918-014-0114-2

19. Otero-Muras I, Banga JR, Alonso AA. Exploring multiplicity conditions in enzymatic reaction networks.

Biotech Prog. 2009; 25(3):619–631. https://doi.org/10.1002/btpr.112

20. Craciun G, Helton JW, Williams RJ. Homotopy methods for counting reaction network equilibria. Mathe-

matical biosciences. 2008; 216(2):140–149. https://doi.org/10.1016/j.mbs.2008.09.001 PMID:

18824179

21. Donnell P, Banaji M, Marginean A, Pantea C. CoNtRol: an open source framework for the analysis of

chemical reaction networks. Bioinformatics. 2014; 30(11):1633–1634. https://doi.org/10.1093/

bioinformatics/btu063 PMID: 24489373

22. Ellison P, Feinberg M, Ji H, Knight D. Chemical Reaction Network Toolbox, Version 2.2; 2012. Available

online at http://www.crnt.osu.edu/CRNTWin

23. Otero-Muras I, Banga JR, Alonso AA. Characterizing multistationarity regimes in biochemical reaction

networks. PLoS ONE. 2012; 7(7):e39194. https://doi.org/10.1371/journal.pone.0039194 PMID:

22802936

24. Otero-Muras I SJ Yordanov P. Chemical Reaction Network Theory elucidates sources of multistability

in interferon signaling. PLoS Comput Biol. 2017; 13:e1005454. https://doi.org/10.1371/journal.pcbi.

1005454

25. Chaves M, Sengupta A, Sontag ED. Geometry and topology of parameter space: investigating mea-

sures of robustness in regulatory networks. J Math Biol. 2008; 59(3):315–358. https://doi.org/10.1007/

s00285-008-0230-y PMID: 18987858

26. Conradi C, Mincheva M. Catalytic constants enable the emergence of bistability in dual phosphoryla-

tion. J R S Interface. 2014; 11(95). https://doi.org/10.1098/rsif.2014.0158 PMID: 24647909

27. Conradi C, Mincheva M. Graph-theoretic analysis of multistationarity using degree theory. Math Comput

Simulation. 2017; 133:76–90. https://doi.org/10.1016/j.matcom.2015.08.010

28. Thomson M, Gunawardena J. The rational parameterization theorem for multisite post-translational

modification systems. J Theor Biol. 2009; 261:626–636. https://doi.org/10.1016/j.jtbi.2009.09.003

PMID: 19765594

29. Feliu E, Wiuf C. Variable elimination in post-translational modification reaction networks with mass-

action kinetics. J Math Biol. 2013; 66(1):281–310. https://doi.org/10.1007/s00285-012-0510-4 PMID:

22311196

30. Smirnov GV. Introduction to the theory of differential inclusions. vol. 41 of Graduate Studies in Mathe-

matics. American Mathematical Society, Providence, RI; 2002.

31. Amann H. Ordinary Differential Equations: An Introduction to Nonlinear Analysis. De Gruyter studies in

mathematics. de Gruyter; 1990. Available from: https://books.google.dk/books?id=DTZ5bVAsyvEC

32. Ben-Israel A. Notes on linear inequalities, I: The intersection of the nonnegative orthant with comple-

mentary orthogonal subspaces. J Math Anal Appl. 1964; 9:303–314. https://doi.org/10.1016/0022-247X

(64)90045-9

33. Helton JW, Klep I, Gomez R. Determinant expansions of signed matrices and of certain Jacobians.

SIAM J Matrix Anal A. 2009; 31(2):732–754. https://doi.org/10.1137/080718838

34. Feliu E, Wiuf C. Preclusion of switch behavior in networks with mass-action kinetics. Appl Math Comput.

2012; 219:449–1467. https://doi.org/10.1016/j.amc.2012.07.048G

35. Craciun G, Feinberg M. Multiple equilibria in complex chemical reaction networks: I. The injectivity prop-

erty. SIAM Appl Math. 2005; 65(5):1526–1546. https://doi.org/10.1137/S0036139904440278

36. Mincheva M, Craciun G. Multigraph conditions for multistability, oscillations and pattern formation in bio-

chemical reaction networks. Proceedings of the IEEE. 2008; 96(8):1281–1291. https://doi.org/10.1109/

JPROC.2008.925474

37. Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A. Sign conditions for injectivity of

generalized polynomial maps with applications to chemical reaction networks and real algebraic geome-

try. Found Comput Math. 2016; 16:69–97. https://doi.org/10.1007/s10208-014-9239-3

Identifying parameter regions for multistationarity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005751 October 03, 2017 24 / 25

https://doi.org/10.1073/pnas.0705731104
https://doi.org/10.1073/pnas.0705731104
http://www.ncbi.nlm.nih.gov/pubmed/18042723
https://doi.org/10.1007/s00285-007-0098-2
http://www.ncbi.nlm.nih.gov/pubmed/17541594
https://doi.org/10.1186/s12918-014-0114-2
https://doi.org/10.1186/s12918-014-0114-2
https://doi.org/10.1002/btpr.112
https://doi.org/10.1016/j.mbs.2008.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18824179
https://doi.org/10.1093/bioinformatics/btu063
https://doi.org/10.1093/bioinformatics/btu063
http://www.ncbi.nlm.nih.gov/pubmed/24489373
http://www.crnt.osu.edu/CRNTWin
https://doi.org/10.1371/journal.pone.0039194
http://www.ncbi.nlm.nih.gov/pubmed/22802936
https://doi.org/10.1371/journal.pcbi.1005454
https://doi.org/10.1371/journal.pcbi.1005454
https://doi.org/10.1007/s00285-008-0230-y
https://doi.org/10.1007/s00285-008-0230-y
http://www.ncbi.nlm.nih.gov/pubmed/18987858
https://doi.org/10.1098/rsif.2014.0158
http://www.ncbi.nlm.nih.gov/pubmed/24647909
https://doi.org/10.1016/j.matcom.2015.08.010
https://doi.org/10.1016/j.jtbi.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19765594
https://doi.org/10.1007/s00285-012-0510-4
http://www.ncbi.nlm.nih.gov/pubmed/22311196
https://books.google.dk/books?id=DTZ5bVAsyvEC
https://doi.org/10.1016/0022-247X(64)90045-9
https://doi.org/10.1016/0022-247X(64)90045-9
https://doi.org/10.1137/080718838
https://doi.org/10.1016/j.amc.2012.07.048G
https://doi.org/10.1137/S0036139904440278
https://doi.org/10.1109/JPROC.2008.925474
https://doi.org/10.1109/JPROC.2008.925474
https://doi.org/10.1007/s10208-014-9239-3
https://doi.org/10.1371/journal.pcbi.1005751


38. Banaji M, Craciun G. Graph-theoretic criteria for injectivity and unique equilibria in general chemical

reaction systems. Adv Appl Math. 2010; 44(2):168–184. https://doi.org/10.1016/j.aam.2009.07.003

PMID: 20161590

39. Pantea C, Koeppl H, Craciun G. Global injectivity and multiple equilibria in uni- and bi-molecular reaction

networks. Discrete Cont Dyn B. 2012; 17:2153–2170. https://doi.org/10.3934/dcdsb.2012.17.2153

40. Joshi B, Shiu A. Atoms of multistationarity in chemical reaction networks. J Math Chem. 2013; 51

(1):153–178. https://doi.org/10.1007/s10910-012-0072-0

41. Joshi B, Shiu A. A survey of methods for deciding whether a reaction network is multistationary. Mathe-

matical Modelling of Natural Phenomena. 2015; 10:47–67. https://doi.org/10.1051/mmnp/201510504

42. Craciun G, Feinberg M. Multiple equilibria in complex chemical reaction networks: extensions to entrapped

species models. Syst Biol (Stevenage). 2006; 153:179–186. https://doi.org/10.1049/ip-syb:20050093

43. Feliu E, Wiuf C. Simplifying biochemical models with intermediate species. J R S Interface. 2013;

10:20130484. https://doi.org/10.1098/rsif.2013.0484

44. Conradi C, Flockerzi D. Switching in mass action networks based on linear inequalities. SIAM J Appl

Dyn Syst. 2012; 11(1):110–134. https://doi.org/10.1137/10081722X

45. Craciun G, Nazarov F, Pantea C. Persistence and permanence of mass-action and power-law dynam-

ical systems. SIAM J Appl Math. 2013; 73(1):305–329. https://doi.org/10.1137/100812355

46. Gopalkrishnan M, Miller E, Shiu A. A projection argument for differential inclusions, with application to

mass-action kinetics. SIGMA. 2013; 9:025. https://doi.org/10.3842/SIGMA.2013.025

47. Johnston MD, Pantea C, Donnell P. A computational approach to persistence, permanence, and endo-

tacticity of biochemical reaction systems. J Math Biol. 2016; 72:467–498. https://doi.org/10.1007/

s00285-015-0892-1 PMID: 25986743

48. Angeli D, De Leenheer P, Sontag E. A Petri net approach to the study of persistence in chemical reac-

tion networks. Math Biosci. 2007; 210(2):598–618. https://doi.org/10.1016/j.mbs.2007.07.003 PMID:

17869313

49. Shiu A, Sturmfels B. Siphons in chemical reaction networks. Bull Math Biol. 2010; 72(6):1448–1463.

https://doi.org/10.1007/s11538-010-9502-y PMID: 20091352

50. Marcondes de Freitas M, Feliu E, Wiuf C. Intermediates, catalysts, persistence, and boundary steady

states. J Math Biol. 2017; 74:887–932. https://doi.org/10.1007/s00285-016-1046-9 PMID: 27480320

51. Gross E, Harrington HA, Rosen Z, Sturmfels B. Algebraic systems biology: A case study for the Wnt

pathway. Bull Math Biol. 2015; 78(1):21–51. https://doi.org/10.1007/s11538-015-0125-1 PMID:

26645985

52. Feliu E, Wiuf C. Variable elimination in chemical reaction networks with mass-action kinetics. SIAM J

Appl Math. 2012; 72:959–981. https://doi.org/10.1137/110847305
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