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BACKGROUND & AIMS: We investigate interrelationships be-
tween gut microbes, metabolites, and cytokines that charac-
terize COVID-19 and its complications, and we validate the
results with follow-up, a Japanese Disease, Drug, Diet, Daily Life
microbiome cohort, and non-Japanese data sets.METHODS:We
performed shotgun metagenomic sequencing and metab-
olomics on stools and cytokine measurements on plasma from
112 hospitalized patients with SARS-CoV-2 infection and 112
FLA 5.6.0 DTD � YGAST65345_proof �
non–COVID-19 control individuals matched by important con-
founders. RESULTS: Multiple correlations were found between
COVID-19–related microbes (eg, oral microbes and short-chain
fatty acid producers) and gut metabolites (eg, branched-chain
and aromatic amino acids, short-chain fatty acids, carbohy-
drates, neurotransmitters, and vitamin B6). Both were also
linked to inflammatory cytokine dynamics (eg, interferon g,
interferon l3, interleukin 6, CXCL-9, and CXCL-10). Such
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Limited evidence exists linking specific gut microbiota–
mediated host inflammatory responses to COVID-19
pathophysiology. Validation of microbial signatures with
other disease cohorts and geographically distinct
cohorts has not been performed.

NEW FINDINGS

Gut microbiota-mediated amino acids, sugar metabolites,
and neurotransmitters are involved in multiple cytokine
dynamics in COVID-19. COVID-19–related microbes
overlap with rheumatoid arthritis and are robust
independent of geography.

LIMITATIONS

No animal experimental models were used to validate the
detailed functions of the altered gut microbiota relating to
COVID-19 pathogenesis.
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interrelationships were detected highly in severe disease and
pneumonia; moderately in the high D-dimer level, kidney
dysfunction, and liver dysfunction groups; but rarely in the
diarrhea group. We confirmed concordances of altered metab-
olites (eg, branched-chain amino acids, spermidine, putrescine,
and vitamin B6) in COVID-19 with their corresponding micro-
bial functional genes. Results in microbial and metabolomic
alterations with severe disease from the cross-sectional data set
were partly concordant with those from the follow-up data set.
Microbial signatures for COVID-19 were distinct from diabetes,
inflammatory bowel disease, and proton-pump inhibitors but
overlapping for rheumatoid arthritis. Random forest classifier
models using microbiomes can highly predict COVID-19 and
severe disease. The microbial signatures for COVID-19
showed moderate concordance between Hong Kong and
Japan. CONCLUSIONS: Multiomics analysis revealed multiple
gut microbe-metabolite-cytokine interrelationships in COVID-
19 and COVID-19related complications but few in gastrointes-
tinal complications, suggesting microbiota-mediated immune
responses distinct between the organ sites. Our results un-
derscore the existence of a gut-lung axis in COVID-19.
The substantial number of participants and microbes,
metabolites, and cytokines investigated here reveal a
gut-lung axis in COVID-19. Numerous distinct microbe-
metabolite-cytokine interrelationships in COVID-19 and
its complications are identified.
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Keywords: Gut Microbiome; Fecal Metabolome; Cytokine Storm;
Gut-Lung Axis.

he cytokine storm, an excessive inflammatory
Abbreviations used in this paper: 4D, Disease, Drug, Diet, Daily Life; AUC,
area under the curve; BCAA, branched chain amino acid; BMI, body mass
index; bp, base pairs; COPD, chronic obstructive pulmonary disease; DM,
diabetes mellitus; FDR, false discovery rate; IBD, inflammatory bowel
disease; IL, interleukin; KEGG, Kyoto Encyclopedia of Genes and Ge-
nomes; KO, Kyoto Encyclopedia of Genes and Genomes orthology;
NCGM, National Center for Global Health and Medicine; PPI, proton pump
inhibitor; RA, rheumatoid arthritis; SCFA, short-chain fatty acid; SpO2,
saturation of peripheral oxygen; WBC, white blood cell.
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Tresponse initiated when SARS-CoV-2 enters alveolar
epithelial cells through angiotensin-converting enzyme 2
receptors, is a major driver of COVID-19 pathogenesis.1,2

Gut microbiota involved in the development and func-
tioning of the innate and adaptive immune systems3

potentially play a significant role in COVID-19 pathogen-
esis. Previous studies have suggested that short-chain fatty
acid (SCFA)–producing microbiota are depleted in COVID-
19 or severe disease4–7 and are also linked to cytokine
alterations.6–8 However, in part because of the small num-
ber of previously evaluated cytokines (�7),6–8 our under-
standing of the microbe-host immune response landscape is
still limited. Moreover, fecal metabolites provide a func-
tional readout of microbial activity,9,10 and a few studies
have shown some metabolites to be altered in COVID-19.6–8

Thus, comprehensive investigation of the interrelationships
of gut microbes, metabolites, and cytokines, as they impact
COVID-19, should expand our knowledge of disease patho-
genesis. Furthermore, the host immune response and
excessive inflammation may be implicated in coagulopathy,
kidney dysfunction, liver dysfunction, and diarrhea, given
the expression of angiotensin-converting enzyme 2 in these
tissues.2 However, microbiome-metabolome-cytokine re-
lationships in such extrapulmonary complications remain
uninvestigated. Identification of these interrelationships in
COVID-19 and its complications can provide novel bio-
markers and microbiome- or cytokine-based therapeutic
targets for COVID-19.

Several issues for prior microbiome studies in COVID-
194–8 remain to be overcome.11 First, patients’ backgrounds
are confounders, affecting both microbiota and COVID-19
disease12,13; COVID-19 and control groups with balanced
FLA 5.6.0 DTD � YGAST65345_proof �
backgrounds are needed to identify the true associations
between COVID-19 and the microbiome.14 Second, these
backgrounds may influence microbiome-mediated host re-
sponses; thus, an examination of the interaction effects of
backgrounds on COVID-19–related microbes is needed.
Third, COVID-19–related microbes, including SCFA pro-
ducers and oral microbes in the gut,4–8 are similar to those
identified in other diseases and have not yet been validated
among diseases. Finally, whether COVID-19–related mi-
crobes vary across countries remains unknown. If COVID-
19–related microbes discriminate from other diseases and
can be shared with other countries, this could be a useful
screening tool.

To address these issues, we extensively investigated in-
terrelationships among the gut microbes, metabolites, and
cytokines that characterize COVID-19 and its complications,
and we further validated the results with follow-up, other
disease, and non-Japanese data sets.
14 October 2022 � 7:41 pm � ce
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Materials and Methods
Participant Recruitment and Sample Collection

The Japanese COVID-19 multiomics project, conducted with
a cross-sectional and cohort study design, was constructed and
participated in by Tokyo Medical University, the National
Center for Global Health and Medicine (NCGM), the RIKEN
Center, and the Institute of Health Sciences, Ezaki Glico Co, Ltd,
whose medical ethics committees approved this project. The
study was conducted in accordance with the declaration of
Helsinki. All patients provided written informed consent. Be-
tween March and December 2020, 112 COVID-19 adult (>20
years) patients who tested positive for SARS-CoV-2 RNA and
were hospitalized in the NCGM hospital were recruited. This is
a part of the prospective sample collection conducted in the
COVID-19 NCGM project, as previously described.15 All COVID-
19 patients were Japanese and had not received a vaccine
against COVID-19. Non–COVID-19 adult participants were
recruited before the COVID-19 pandemic in Japan as a part of
the Japanese Disease, Drug, Diet, Daily Life (4D) microbiome
project, which commenced in January 2015 and is ongoing.16–18

This project prospectively collected metadata and fecal samples
from both healthy and diseased participants. Metadata include
anthropometrics, smoking, alcohol, dietary habits, physical ac-
tivities, diseases, and medications using self-reported ques-
tionnaires, face-to-face interviews, and physicians’ electronic
medical records. Of these, we selected control individuals by
matching (1:1 case/control ratio) for possible confounders for
COVID-19 severity and gut microbiota,12,13 such as age, sex,
body mass index (BMI), alcohol, smoking, comorbidities (eg,
diabetes mellitus [DM], dyslipidemia, cardiovascular disease,
etc), and drugs (antibiotics, proton-pump inhibitors [PPIs],
aspirin, etc). A total of 112 COVID-19 patients and 112 non–
COVID-19 control individuals matched by baseline factors were
included for analysis (Supplementary Table 1).

The clinical outcome of interest was COVID-19 severity.
Severity was categorized into mild, moderate, severe, and
critical as previously reported.15 Briefly, mild was defined as
lack of respiratory symptoms, no pulmonary radiologic mani-
festations, and oxygen saturation (SpO2) levels of �96%. Mod-
erate was defined as mild respiratory symptoms, radiologic
evidence of pneumonia, and 93% < SpO2 < 96%. Severe dis-
ease were defined as SpO2 of �93% and requiring oxygen
support. Critical was defined as requiring heart-lung machine
or extracorporeal membrane oxygenation support. Other
COVID-19–related extrapulmonary complications2 were also
evaluated, such as high D-dimer levels (>1.0 mg/mL), kidney
dysfunction (estimated glomerular filtration rate of <60 mL/
min/1.73 m2), liver dysfunction (all of the following are met:
glutamic oxaloacetic transaminase of >38 U/L, glutamic pyru-
vic transaminase of >44 U/L, g-GTP of >80 U/L in men and g-
GTP of >30 U/L in women, and alkaline phosphatase of >113
U/L), and diarrhea defined as loose stools (Bristol scale of 6 or
7) or more than 3 loose or soft stools per day since onset.

The association between COVID-19 and its complications
and gut microbiota, metabolites, and cytokines was analyzed in
a cross-sectional data set (N ¼ 224) in which information
gathered up to the date of fecal collection was evaluated. The
mean times to fecal and plasma collection after admission were
2.4 and 3.2 days, respectively (Supplementary Table 1). We also
examined clinical outcomes after fecal collection using the
FLA 5.6.0 DTD � YGAST65345_proof �
COVID-19 follow-up data set (N ¼ 112) to test whether patients
with altered abundances in gut microbes and metabolites at
baseline were at risk for developing disease status, such as
pulmonary complications (any of the following are met: wors-
ening SpO2 of �93%, newly required oxygen support, or
pneumonia development on imaging tests), cardiovascular/
thrombotic events, and worsening laboratory data of white
blood cell (WBC Q) count and D-dimer (defined by the difference
between before and after fecal collection).

Because bowel-cleansing agents for colonoscopy and samples
left over 24 hours can have profound effects on the gut micro-
biome and metabolome,19,20 feces were collected before bowel
preparation for colonoscopy and were stored in the hospital at
–80 Q�C within 24 hours of defecation. We used feces without pre-
servative media for metagenomic and metabolomic analysis
because the media potentially affect metabolomic alterations.

Preparation of Fecal Samples and Fecal DNA
Extraction

Aliquots (200 mg) of feces were mixed with 1200 mL
methanol and filtered. The filtrate was centrifuged, and the
supernatant (methanol extract) was used for metabolomics
analysis. Fecal DNA was extracted from the pellet as previously
described10 with slight modifications. The pellet of feces was
subjected to cell lysis with lysozyme (Wako, 10 mg per sample),
achromopeptidase (Wako, 1333 units per sample), sodium Q

dodecyl sulfate (1%), and proteinase K (Merck, 0.67 mg per
sample). DNA was collected using phenol/chloroform/isoamyl
alcohol Qand 2-propanol (Wako).

Fecal Metagenomic Analysis
After purification, DNA was prepared as a metagenomic

shotgun library (insert size: 350 base Qpairs by using the
ThruPLEX DNA-Seq kit (Takara). After quantifying the prepared
DNA library by quantitative polymerase chain reaction, the
DNA library was sequenced by using a NovaSeq 6000
sequencing system (150–base pair paired-end mode) (Illu-
mina). We excluded 19 metagenomic samples because of a
shortage of sequence of <10 million reads (n ¼ 12) or library
preparation failure (n ¼ 7). In total, 273 metagenome samples
were included in the analysis (Supplementary Table 2). Quality
control of the metagenomic data was performed. Taxonomic
profiles of the metagenomic samples were obtained with
mOTUs2 version 2.6.1.21 MEGAHIT Qwas used to assemble the
quality-controlled reads, and Prodigal and CD-HIT were used to
construct nonredundant gene sets. Functional profiles for the
genes were performed using DIAMOND.

Fecal Metabolomic Analysis
We followed the hydrophilic and SCFA metabolite extrac-

tion and measurement methods as previously described10,22

with minor modifications. The fecal hydrophilic metabolites
were measured using both gas Qchromatography/tandem mass
spectrometry and liquid chromatography/tandem mass spec-
trometry platforms (Shimadzu). SCFAs were measured using a
gas chromatography/tandem mass spectrometry platform. The
spectral data were processed by LabSolutions Insight (Shi-
madzu). In the following functional analyses, the metabolites
detected in more than 10% of participants were used.
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Blood Cytokine/Chemokine/Growth Factor
Analysis

A total of 70 humoral factors in plasma (Supplementary
Table 3) were quantified by the Bio-Plex 3D system (Bio-Rad)
and an HISCL-5000 immunoassay analyzer (Sysmex Corp) ac-
cording to the manufacturers’ instructions.15

Validation Disease Cohorts and a Distinct
Geography Cohort

External metagenomic data sets from the Japanese 4D
microbiome project16 were used. We created pairs of healthy
FLA 5.6.0 DTD � YGAST65345_proof �
groups with 7 diseases (rheumatoid arthritis [RA], collagen
disease, PPIs, DM, corticosteroids, inflammatory bowel dis-
ease [IBD], and chronic obstructive pulmonary disease
[COPD] while matching age, sex, and BMI factors between
disease and heathy groups (Supplementary Table 4). We also
used Hong Kong and US metagenomic data sets.6,23 To
ensure similarity to the Japanese cohort, we used initial fecal
data in COVID-19 (n ¼ 100) and control participants (n ¼
78) and excluded patients younger than 15 years (n ¼ 3) or
those having fewer than 10 million reads (n ¼ 19). A total of
88 COVID-19 patients and 68 control individuals were
analyzed from the Hong Kong data set.6 We also used initial
14 October 2022 � 7:41 pm � ce
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fecal data in mild (n ¼ 5) and severe COVID-19 (n ¼ 23)
from the US data set.23
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Correlation Analysis Between Multiomics Data
and Statistical Analysis

In a cross-sectional study data set (N ¼ 224), significant gut
species and microbial functional genes were selected with
MaAsLin2, and significant fecal metabolites and plasma cyto-
kines were selected by the Wilcoxon rank sum test. COVID-19–
related markers were considered significant if the false dis-
covery rate (FDR) values were below 0.05; otherwise, P values
below .05 were considered significant. Pairwise Spearman
correlations were calculated with the function corr.test of the R
package psych, version 2.1.6 (R Foundation for Statistical
Computing). Heatmaps were drawn using the R package
pheatmap, version 1.0.12. The metagenomic operational taxo-
nomic units, fecal metabolites, and plasma cytokines were or-
dered by the number of significant correlations in the given
column or row, and the metabolites were colored according to
Kyoto Encyclopedia of Genes and Genomes (KEGG) Brite
categories.

In a prospective cohort study data set (N ¼ 112), we fol-
lowed up COVID-19 patients from the index date (fecal collec-
tion) to the development of pulmonary complications,
cardiovascular/thrombotic events, or worsening WBC or D-
dimer level, and we censored patients at the time of discharge
or death. The Kaplan-Meier method was used to estimate the
cumulative incidence of each disease status. The relationship
between gut species and metabolites at baseline and the
development of disease status were selected with the log-rank
test and Cox proportional hazards models.
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Transcript Profiling
All fecal metagenomic and metabolomic data in the COVID-

19 patients and control individuals were deposited and are
available in the DDBJ/GenBank/EMBL (accession number:
DRA013706) and RIKEN Drop Met (accession number:
DM0042), respectively.

Additional detailed methods are provided in the online
Supplementary Methods.
=
Figure 1. Distinct gut microbial variations in COVID-19 and ba
COVID-19 patients (n ¼ 103) and control individuals (n ¼ 105). R
and depleted between COVID-19 and control individuals (FDR <
comparative analysis for COVID-19–related microbes between
crobes significantly interacting in the presence or absence of th
ficient in the interaction term is greater than 0 (orange), the mic
value less than 0 (green) means the microbe’s abundance dec
shows the gut species significantly altered between mild a
heatmap represent species enriched and depleted in the severe
heatmap displays comparative analysis for severe-disease–rela
indicates microbes significantly interacting in the presence or ab
Association between gut microbiota and COVID-19 complication
each complication (P < .05, MaAsLin2) (Supplementary Table
between 2 or more complications. Red and blue in the heatmap r
respectively. Bar plots attached to the right side of the heatma
enriched (red)/depleted (blue) between COVID-19 patients who
values estimated by correlation analysis for coefficient values fo
Red and purple indicate positive and negative correlations betw

FLA 5.6.0 DTD � YGAST65345_proof �
Results
Distinct Gut Microbial Variations in COVID-19
and Background Factors

Baseline characteristics of anthropometrics, alcohol,
smoking, comorbidities (eg, DM and dyslipidemia), and
medication (eg, antibiotics and PPIs) were well balanced
between the 112 COVID-19 patients and 112 control in-
dividuals (Supplementary Table 1). Between COVID-19 and
control participants, Shannon diversity showed no signifi-
cant differences, whereas Bray-Curtis dissimilarity dis-
played significant differences (Supplementary Figure 1A
and B). Although various metadata, such as smoking, sex,
hypertension, age, BMI, and PPIs were significantly asso-
ciated with microbial variations, COVID-19 had the largest
explanatory power at the genus and species levels
(Supplementary Figure 1C). Between COVID-19 and con-
trol individuals, 156 species were significantly changed (P
< .05, FDR < 0.16) (Supplementary Table 5), including
marked enrichment of Ruminococcus torques and depletion
of SCFA producers,24 including Bifidobacterium, Dorea,
Roseburia, and Butyricicoccus species (FDR < 0.05)
(Figure 1A). Next, we sought to identify the effects of pa-
tient backgrounds on COVID-19–related microbes. Inter-
action term analyses revealed that only up to 9.1% (5
species) of 55 COVID-19–related microbes had interactions
with background factors Q(Figure 1A and Supplementary
Table 6). Of these, smoking, antibiotics, and dyslipidemia
significantly increase the abundances of some of the
COVID-19–related microbes compared to those without
them (Figure 1A, orange), whereas PPI relative to non-PPI
use significantly decreased the abundance of COVID-19–
related microbes (Figure 1A, green).
Distinct Microbial Variations for COVID-19
Complications

Between mild and severe COVID-19 groups, we
observed no significant differences in a-diversity but
significant differences in b-diversity (Supplementary
ckground factors. (A) Metagenomic data were obtained from
ed and blue in the lower heatmap represent species enriched
0.05, MaAsLin2), respectively. The upper heatmap displays

patients’ background factors, and an asterisk indicates mi-
e factors (P < .05, MaAsLin2 interaction model). If the coef-
robe’s abundance increases in the presence of the factor. A
reases in the presence of the factor. (B) The lower heatmap
nd severe COVID-19 patients. Red and blue in the lower
COVID-19 group (P < .05, MaAsLin2), respectively. The upper
ted microbes between ‘background factors, and an asterisk
sence of the factors (P < .05, MaAsLin2 interaction model). (C)
s. We first identified gut microbes that significantly varied with
7) and then created a heatmap of the microbes that overlap
epresent species enriched and depleted in each complication,
p represent the number of gut species that were significantly
had complications and those who did not. (D) Spearman rho
r gut species between 2 complications, shown as a heatmap.
een complications, respectively.
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Figure 2A and B), with 40 species significantly altered
(Figure 1B and Supplementary Table 7). Interaction term
analyses indicate that drinking, diabetes, and sex affect
severe-disease–related microbes to some extent, but
antibiotics and PPI use have little impact (Figure 1B and
Supplementary Table 8). Between COVID-19 complica-
tions, we found differences of a- and b-diversity and
microbial alterations (Supplementary Figure 2A and B
and Supplementary Table 7). The number and types of
FLA 5.6.0 DTD � YGAST65345_proof �
gut microbes significantly associated with each compli-
cation varied, with the highest number for severe dis-
ease and the lowest for the diarrhea group (Figure 1C,
bar plot). Between complications, overlapping microbes
were limited, but some were detected (Figure 1C), such
as Methanobrevibacter smithii depleted in the severe
disease and pneumonia groups. Distinct concordances of
microbial signatures were observed between complica-
tions (Figure 1D).
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Relationships Between Gut Microbes, Microbial
Functional Genes, and Metabolites in COVID-19
and Its Complications

A combination of target gas and liquid chromatography/
mass spectrometry techniques identified 169 fecal metab-
olites, of which 87 metabolites were significantly altered
between COVID-19 and control individuals (FDR < 0.05)
(Figure 2A and B and Supplementary Table 9). Notably, of
COVID-19–related enriched metabolites, 53% (16/30) were
amino acids. Of these, glutamine, threonine, proline, glycine,
tryptophan, phenylalanine, tyrosine, aspartic acid, leucine,
and valine showed high numbers of significant correlations
with gut microbes in this order (Figure 2B). Importantly,
amino acids were significantly associated positively with
COVID-19–enriched microbes, primarily oral commensals25

such as Streptococcus, Rothia, and Actinomyces species, and
negatively with COVID-19–depleted microbes, mainly SCFA
producers24 (Figure 2B). In contrast, COVID-19–related
depleted metabolites included maltose, isomaltose, sucrose,
glyoxylic acid, xylobiose, N-acetylmannosamine, glutaric
acid, and SCFAs (acetate and butyrate), which are related to
carbohydrate metabolism (Figure 2A and B). Importantly,
these carbohydrates were significantly associated positively
with COVID-19–depleted microbes, mainly SCFA pro-
ducers,24 and negatively with COVID-19–enriched microbes
(Figure 2B). Of note, neurotransmitters (eg, g-aminobutyric
acid, dopamine, and serotonin)26 and cofactors necessary
for neurotransmitter synthesis (eg, pyridoxine and pyri-
doxal 50-phosphate [vitamin B6]) were also significantly
depleted in COVID-19 (Figure 2A and B), all of which were
associated positively with COVID-19–depleted microbes and
negatively with COVID-19–enriched microbes (Figure 2B).
Collectively, microbiome and metabolome shifts were
apparent between COVID-19 and control individuals, spe-
cifically distinct microbial patterns connected to specific
=
Figure 2. Gut microbe and metabolite relationships in COVID-1
tained from COVID-19 patients (n ¼ 112) and control individ
significantly altered between COVID-19 patients and control in
high– and low–D-dimer groups (n ¼ 94), pneumonia and nonpne
dysfunction groups (n ¼ 111), liver dysfunction and non–liver
groups (n ¼ 112). Associations found significant by Wilcoxon ra
other complications) are colored in red (increased in median) o
according to KEGG Brite categories. (B) The heatmap shows Sp
abundance and fecal metabolite concentrations associated with
cases) and fecal metabolites (n ¼ 224 cases) for this analysis w
sum test, respectively. The vertical heatmap on the left display
significant correlations to gut metabolites, and the horizontal h
shows the number of gut metabolites with significant correlation
by their numbers of significant correlations. (C) The heatma
microbiota relative abundance and fecal metabolite concentra
19. Species (n ¼ 103 cases) and fecal metabolites (n ¼ 112 ca
ysis (P < .05) and Wilcoxon rank sum test (P < .05), respe
Figure 4A. Of these, we selected and showed correlations betw
vere COVID-19 cases. The vertical heatmap on the left display
significant correlations to gut metabolites, and the horizontal h
shows the number of gut metabolites with significant correlation
numbers of significant correlations. (D) The heatmap shows sign
in representative KEGG pathways. We selected KEGG pathways
associated with COVID-19. Among selected pathways, those
shown in this heatmap. Num, number; sp, species.

FLA 5.6.0 DTD � YGAST65345_proof �
metabolites such as amino acids, carbohydrates, and
neurotransmitters.

Between COVID-19 complications, we found concor-
dances and differences in metabolomic variations
(Figure 2A and Supplementary Figure 3). Importantly,
SCFAs including acetate, butyrate, and propionate were
significantly depleted in both severe and high–D-dimer
groups as well as COVID-19. We confirmed that SCFAs were
positively correlated with SCFA-producing bacteria24 such
as Blautia species, Dorea species, Eubacterium species, and
Faecalibacterium prausnitzii (Figure 2B and C). Moreover,
serotonin, nicotinic acid, 3-hydroxybutyric acid, lactulose,
homoserine, and glucosamine were significantly reduced in
both severe disease and COVID-19 (Figure 2A and B). We
found certain microbes significantly correlated with specific
metabolites that differed according to organ disorder
(Supplementary Material and Supplementary Figure 4).

Next, we examined whether altered gut metabolites
translated into differences at functional levels, such as KEGG
orthologies (KOs) and their corresponding pathways, by
comprehensively profiling the functional capacity of the gut
microbiome. Of 7664 KOs we profiled, 2248 KOs were
significantly (P < .05) altered between COVID-19 and con-
trol individuals (Supplementary Table 10). In a branched-
chain amino acid (BCAA) degradation pathway, we found
that BCAAs in the gut and their corresponding KOs were
positively associated with COVID-19 (Figure 2D). In the
glutathione metabolism pathway, concordance of depleted
spermidine, putrescine, ornithine, and glycine and their
corresponding KOs in COVID-19 were observed. In vitamin
B6 metabolism, pyridoxal 50-phosphate and pyridoxine in
the gut and their corresponding KOs were commonly
depleted in COVID-19. This result indicates that some gut
metabolite variations detected in COVID-19 result from
altered microbiome metabolism.
9 and severe disease. (A) Fecal metabolomic data were ob-
uals (n ¼ 112). The heatmap shows the fecal metabolites
dividuals, patients with mild and severe COVID-19 (n ¼ 112),
umonia groups (n ¼ 112), kidney dysfunction and non–kidney
dysfunction groups (n ¼ 112), and diarrhea and nondiarrhea
nk sum test (FDR < 0.05 in COVID-19 cases and P < .05 in
r blue (decreased in median). Fecal metabolites are colored
earman correlations between species-level microbiota relative
COVID-19 patients and control individuals. Species (n ¼ 208
ere selected through the MaAsLin2 model and Wilcoxon rank
ing shades of green shows the number of gut species with
eatmap at the top of the figure displaying shades of green
s to gut species. The gut species and metabolites are ordered
p shows Spearman correlations between the species-level
tions altered between patients with mild and severe COVID-
ses) for this analysis were selected through MaAsLin2 anal-
ctively. Overall correlations are displayed in Supplementary
een depleted species and depleted fecal metabolites in se-
ing shades of green shows the number of gut species with
eatmap at the top of the figure displaying shades of green
s to gut species. Species and metabolites are ordered by their
ificantly altered gut metabolites and their corresponding KOs
belonging to the metabolites and KOs that were significantly

with consistent signatures in KO genes and metabolites are
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Interrelationships Between Microbiota,
Metabolites, and Cytokines Are Associated With
COVID-19 and Its Complications

We investigated 70 blood cytokine/chemokine/growth
factors (Supplementary Table 3) and found that COVID-19
presented significant elevation in 30 cytokines and deple-
tion in 26 compared to control samples (FDR < 0.05)
FLA 5.6.0 DTD � YGAST65345_proof �
(Figure 3A and Supplementary Figure 5). Of note, interleukin
(IL) 6, IL18, CXCL9, CXCL10, CXCL-13, CCL3, and GM-CSF Q,
which are implicated in the cytokine storm,1 were elevated in
COVID-19 and also significantly elevated in the severe group
(Figure 3A), whereas CCL22, involved in T-regulatory cell

Qmigration,27 decreased along with disease progression from
control individuals to patients with mild and severe disease.
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First, we sought to determine whether observed COVID-
19–related microbes (40 enriched and 15 depleted
[Figure 1A]) were linked to the cytokine dynamics of the
disease. Strikingly, of the enriched microbes, all (40/40)
were significantly correlated positively with all of the cy-
tokines significantly elevated in COVID-19 (Figure 3B). In
contrast, of the depleted microbes, 93.3% (14/15) were
significantly correlated positively with all of the cytokines
decreased in COVID-19 (Figure 3B). These data strongly
indicate that multiple unidirectional signatures of cytokines
corresponding to gut microbial alterations can clearly
discern COVID-19 vs control samples.

Next, we sought to identify whether the gut microbiota-
metabolite relationships were also linked to cytokine dy-
namics of COVID-19. We have shown that fecal amino acids
elevated in COVID-19 were positively associated with
COVID-19–enriched oral commensals (Figure 2B). Impor-
tantly, both the oral commensals and amino acids also
showed significant positive correlations with inflammatory
cytokines elevated in COVID-19 (eg, interferon g, IL6,
CXCL9, and CXCL10), and negative correlations with cyto-
kines decreased in COVID-19 (Figures 3B and 4A). Intrigu-
ingly, BCAAs, threonine, proline, and glutamine were all
associated with the same gut microbial signatures (concor-
dance rate > 72.7%) (Figure 2B) and also exhibited the
same inflammatory cytokine variation patterns (concor-
dance rate > 80%) (Figure 4A), implying the presence of
specific metabolites involved with the same microbes and
altering the same inflammatory response. These findings
suggest that microbe-mediated amino acids may serve as
drivers of inflammatory response in COVID-19
(Supplementary Materials).

In contrast, we have shown that fecal carbohydrate
metabolites (eg, maltose, sucrose, and SCFAs) and neuro-
transmitters (eg, vitamin B6, g-aminobutyric acid, dopa-
mine, and serotonin),26 both of which were reduced in
COVID-19, were positively associated with COVID-19–
depleted SCFA-producing bacteria (Figure 2B). Importantly,
both microbes and metabolites also showed negative cor-
relation with inflammatory cytokines elevated in COVID-19
and positive correlations with cytokines decreased in
COVID-19 (eg, IL12, IL13, and CCL22) (Figures 3B and 4A).
=
Figure 3.Gut microbiota and blood cytokine relationships in CO
performed in COVID-19 patients (n ¼ 70) and control individu
significantly altered between COVID-19 and control individuals,
low–D-dimer level groups (n ¼ 60), pneumonia and nonpneum
dysfunction groups (n ¼ 69), liver dysfunction and non–liver
groups (n ¼ 70). Associations found significant by Wilcoxon rank
complications) are colored in red (increased in median) or blu
correlations between the species-level microbiota relative abun
COVID-19 patients and control individuals. Species (n ¼ 208
selected through the MaAsLin2 model and Wilcoxon rank sum
0.05). The vertical heatmap on the left displaying shades of green
to cytokines, and the vertical heatmap at the top of the figure di
significant correlations to gut species. Species and cytokines ar
heatmap shows Spearman correlations between the species-le
centrations altered between mild and severe COVID-19 cases. S
analysis were selected through the MaAsLin2 model (P < .05) an
cytokines are ordered by their numbers of significant correlatio

FLA 5.6.0 DTD � YGAST65345_proof �
Prior evidence and our results suggest that microbiota-
mediated carbohydrates or neurotransmitters are potential
regulators of COVID-19 (Supplementary Material). In addi-
tion, microbiota-metabolite-cytokine interrelationships
were found in COVID-19 complications. Reflecting the
cytokine alterations in each complication (Figure 3A), the
number of microbe- and metabolite-cytokine correlations
were markedly high for the severe and pneumonia groups,
moderate for the high–D-dimer, kidney dysfunction, and
liver dysfunction groups, and extremely low in the diarrhea
group (Figures 3C and 4B; and Supplementary Figures 4, 6,
7; and Supplementary Material). Overall, these data suggest
that microbiota-metabolite-cytokine interrelationships are
involved in COVID-19 and its complications, particularly in
the lungs, but not the gastrointestinal tract.
Follow-Up Data Analysis and Validation of Cross-
Sectional Analysis in COVID-19

Follow-up (cohort study design) data could help differ-
entiate whether COVID-19–altered gut microbiota and me-
tabolites are secondary to outcomes or contribute to the
development of the outcomes. Thus, we sought to examine
whether patients with altered gut microbes and metabolites
at baseline were at risk to develop disease status or
worsened conditions after fecal collection and to confirm
consistency with the association results from the cross-
sectional data set up to the date of fecal collection.
Kaplan-Meier curves showed the cumulative incidence of
pulmonary complications, cardiovascular/thrombotic
events, and worsening D-dimer and WBC levels (Figure 5A).
We confirmed the concordance of some gut microbial sig-
natures between severe disease in the cross-sectional study
(Figure 1B) and pulmonary complication development or
worsening WBC level in the cohort study (Figure 5B and C).
For example, the log-rank test revealed that Eggerthellaceae
species (identification: 16295) showed higher abundance in
severe disease compared to mild, whereas those with high
abundance of the microbe at baseline were at significantly
higher risk of subsequent pulmonary complication devel-
opment (Figure 5C). Similarly, microbial signatures in
pneumonia and D-dimer levels in the cross-sectional study
VID-19 and severe disease. (A) Plasma cytokine analysis was
als (n ¼ 109). The heatmap shows the cytokines that were
patients with mild and severe COVID-19 (n ¼ 70), high– and
onia groups (n ¼ 70), kidney dysfunction and non–kidney
dysfunction groups (n¼70), and diarrhea and nondiarrhea
sum test (FDR < 0.05 in COVID-19 cases and P < .05 in other
e (decreased in median). (B) The heatmap shows Spearman
dance and plasma cytokine concentrations associated with
cases) and cytokines (n ¼ 179 cases) for this analysis were
test, respectively, with multiple testing corrections (FDR <
shows the number of gut species with significant correlations

splaying shades of green shows the number of cytokines with
e ordered by their numbers of significant correlations. (C) The
vel microbiota relative abundance and plasma cytokine con-
pecies (n ¼ 103 cases) and cytokines (n ¼ 70 cases) for this
d Wilcoxon rank sum test (P < .05), respectively. Species and
ns.
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Figure 4.Gut metabolite and blood cytokine relationships in COVID-19 and severe disease. (A) The heatmap shows Spearman
correlations between the plasma cytokine and fecal metabolite concentrations associated with COVID-19 patients and control
individuals. Cytokines (n ¼ 179 cases) and fecal metabolites (n ¼ 224 cases) for this analysis were selected through Wilcoxon
rank sum test with multiple testing corrections (FDR < 0.05). The vertical heatmap on the left displaying shades of green shows
the number of gut metabolites with significant correlations to cytokines, and the horizontal heatmap at the top of the figure
displaying shades of green shows the number of cytokines with significant correlations to gut metabolites. The vertical
heatmap on the left displaying shades of purple shows the number of gut species with significant correlations to cytokines,
and the horizontal heatmap at the top of the figure displaying shades of purple shows the number of gut species with sig-
nificant correlations to gut metabolites. The cytokines and metabolites are ordered by their numbers of significant correlations
in the given column or row, and metabolites are colored according to KEGG Brite categories. (B) The heatmap shows
Spearman correlations between the plasma cytokine and fecal metabolite concentrations altered between mild and severe
cases. Cytokines (n ¼ 70 cases) and fecal metabolites (n ¼ 112 cases) for this analysis were selected through Wilcoxon rank
sum test (P < .05). The vertical heatmap on the left displaying shades of green shows the number of gut metabolites with
significant correlations to cytokines, and the horizontal heatmap at the top of the figure displaying shades of green shows the
number of cytokines with significant correlations to gut metabolites. The vertical heatmap on the left displaying shades of
purple shows the number of gut species with significant correlations to cytokines, and the horizontal heatmap at the top of the
figure displaying shades of purple shows the number of gut species with significant correlations to gut metabolites. Metab,
metabolites; cyto, cytokines. Q30

10 Nagata et al Gastroenterology Vol. -, No. -

FLA 5.6.0 DTD � YGAST65345_proof � 14 October 2022 � 7:41 pm � ce

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200



p
ri
n
t
&
w
e
b
4
C
=
F
P
O

- 2022 Microbe-Metabolite-Cytokine Interrelationships in COVID-19 11

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267
(Supplementary Table 7) were in agreement with the re-
sults from the cohort study, showing that patients with the
same microbes were at risk of subsequent development of
pulmonary complications, vascular/thrombotic events, and
worsening D-dimer (Figure 5C).

Altered gut metabolites (eg, glucose, glucosamine,
galactose, and catechol) in severe disease from the cross-
FLA 5.6.0 DTD � YGAST65345_proof �
sectional study (Figure 2A) were in concordance with the
cohort study, revealing that patients with the same metab-
olites were at higher risk of pulmonary complication
development (Figure 5B and D). Similarly, cross-sectional
study findings indicating that gut metabolites were altered
in pneumonia and D-dimer level (Figure 2A) were in
concordance with those from the cohort study showing that
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patients with altered metabolite abundances were at risk of
subsequent development of pulmonary complications,
vascular/thrombotic events, and worsening D-dimer level
(Figure 5D). Collectively, some of the findings regarding
microbial and metabolomic alterations associated with dis-
ease status seen in the cross-sectional study suggest that the
altered microbes and metabolites may have contributed to
the development of disease.
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Microbial Signatures in Metagenomics Predicting
COVID-19 and Their Specificity

Next, we sought to examine whether fecal microbiomes
can serve as biomarkers to stratify patients at high risk of
SARS-CoV-2 infection and severe COVID-19. Microbes
associated with COVID-19 may be partially overlapping
among different diseases and medications, such as depleted
SCFA producers with immune diseases (eg, RA and IBD)1,28

and enriched oral microbes with PPIs.16 Thus, we developed
machine-learning–based prediction models for COVID-19
and severe disease and examined whether the models can
discriminate COVID-19 from other diseases using external
Japanese 4D microbiome disease data sets (Supplementary
Table 4).

Strengths of correlations (Spearman rho) in microbial
signatures between COVID-19 and other diseases were low
to moderate (Figure 6A) for COVID-19 and collagen disease,
PPIs, DM, corticosteroids, IBD, and COPD, but a high corre-
lation existed with RA. RA had the most microbes shared
with COVID-19, with 12 elevated and 5 decreased
(Figure 6B). Moreover, microbes that increased in both
diseases were positively correlated with cytokines, which
are all involved in RA disease activity and disease course,
potentially inducing an inflammatory response
(Supplementary Figure 8) (eg, CXCL8-11 and IL6),28

whereas those that decreased in both diseases were
=
Figure 5. Survival analysis and its concordance with cross-secti
method was used to estimate the cumulative incidence of pu
events (n ¼ 111), worsening D-dimer level (n ¼ 91), and worsen
criteria, and follow-up of each cohort are described in the Suppl
The heatmaps show the concordance of gut microbial signatures
(green). The left heatmap depicts 7 microbes enriched in sev
Figure 1B). In the cohort study, patients with high abundances
and id26664) showed higher hazard ratios (HRs) for pulmonary
(orange). Patients with high abundances of a microbe (id11382
cohort study. The right heatmap displays 3 metabolites (glucose
the cross-sectional study (purple, Wilcoxon rank sum test) (Figur
metabolites showed higher HRs for pulmonary complication de
concordance of gut microbial signatures between the cross-sec
bar represents the differences in abundances of gut microbes
severe disease, pneumonia on CT negative vs positive, and D-d
selected through MaAlsin2 (Figure 1B and Supplementary Table
low abundances of the microbes were at higher risk of develop
events, worsening D-dimer level, and worsening WBC level. Com
concordance of gut metabolite alterations between the cross-se
bar chart represents the differences in abundances of gut metab
vs severe disease, pneumonia on CT negative vs positive, and D
selected through the Wilcoxon rank sum test (Figure 2A). Kap
abundances of the metabolites were at higher risk of develop
events, and worsening D-dimer level. Comparison analysis was
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negatively correlated. Epidemiologic data indicate that RA
was associated with a high risk of developing COVID-19 and
severe disease.29 These parallels suggest that further
studies may be warranted to determine whether RA and
COVID-19 have similar pathogenesis through gut
microbiota.

Next, we built random forest classifier–based COVID-19
prediction models and determined the possibility of mis-
classifying COVID-19 by applying COVID-19 models to 7
disease data sets. The classifiers reached high values of area
under the curve (AUC) for the prediction of COVID-19
(Figure 6C). AUC in COVID-19 showed higher values than
for other diseases but not different for RA, suggesting that
RA can be misclassified as COVID-19. To improve the
specificity, we next focused only on species enriched in
COVID-19. The AUC in COVID-19 was lower in RA and other
diseases (Figure 6D). The AUC in severe COVID-19 was
relatively high and significantly increased when adding
known clinical risk factors (Figure 6E). Moreover, the AUC
in severe COVID-19 was higher than for the other 7 diseases
(Figure 6F). These data indicate that our microbial models
can serve as diagnostic tools for predicting COVID-19 and
severe disease and can also discriminate COVID-19 from
other diseases.
Validation of Japanese Results with Hong Kong
and US data

To confirm the validity of the microbial alterations
identified in this study (Japanese cohort), we employed
external metagenomic data sets from a Hong Kong cohort
(N ¼ 88)6 and a US cohort (N ¼ 28)23 analyzed with the
same pipeline used for the Japanese cohort. Strength of
correlation in microbial signatures for COVID-19 between
the Japanese and Hong Kong cohorts was moderate (r ¼
0.51) (Figure 7A). Of the microbes significantly changed
onal analysis in patients with COVID-19. (A) The Kaplan-Meier
lmonary complications (n ¼ 41), cardiovascular/thrombotic
ing WBC level (n ¼ 112). Definitions, inclusion and exclusion
ementary Methods, Methods, and Supplementary Table 1. (B)
between the cross-sectional study (red) and the cohort study
ere COVID-19 in the cross-sectional study (red, MaAslin2,
of 6 microbes (id06538, id07726, id11256, id12286, id16295,
complication development than those with low abundances
) showed higher HRs for worsening WBC level (green) in the
, glucosamine, and galactose) depleted in severe COVID-19 in
e 2A). In the cohort study, patients with low abundances of the
velopment than those with low abundances (green). (C) The
tional study (left bar) and the cohort study (right bar). The left
between COVID-19–related complications such as mild vs

Q31imer level < 1.0 (mg/mL) vs � 1.0. Comparison analysis was
7). Kaplan-Meier curves (right) show that patients with high or
ment of pulmonary complications, cardiovascular/thrombotic
parison analysis was selected through log-rank tests. (D) The
ctional study (left bar) and the cohort study (right bar). The left
olites between COVID-19–related complications such as mild
-dimer level < 1.0 (mg/mL) vs � 1.0. Comparison analysis was
lan-Meier curves (right) show that patients with high or low
ment of pulmonary complication, cardiovascular/thrombotic
selected through log-rank tests.
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between COVID-19 and control individuals, the severe
group also showed 10 microbial alterations (8 enriched and
2 depleted) (Figure 1B). Between COVID-19 and control
individuals, 164 microbes changed significantly
(Supplementary Table 11). When focusing on the 47 COVID-
19–related species (P < .05) identified in both the Japanese
and Hong Kong cohorts, strength of correlation was higher
(r ¼ 0.86) (Figure 7B). Of these, 43 species (18 enriched
and 25 depleted) had the same directional signature be-
tween the countries and also had high numbers of
FLA 5.6.0 DTD � YGAST65345_proof �
correlations with gut metabolites and cytokines (Figure 7D).
We hypothesized that

Q
the concordance of gut microbial

signatures for COVID-19 is due to the similarity of gut
commensals between individuals from the Japanese and
Hong Kong cohorts. However, significant differences in the
gut microbiomes of healthy participants were observed
between the countries (Supplementary Figure 9). However,
severe-COVID-19–related microbial signatures between the
Japanese and US cohorts were extremely poor in agreement
(Figure 7C and Supplementary Figure 10). Collectively, our
14 October 2022 � 7:41 pm � ce

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560



Q29

14 Nagata et al Gastroenterology Vol. -, No. -

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623
data highlighted that overlapping microbial signatures for
COVID-19 exist between the Asian countries, independent of
geographic microbial differences.
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Discussion
In our study, the numbers of participants (n ¼ 224) and

phenotype markers (2186 species, 7664 KO genes, 169 gut
metabolites, and 70 blood cytokines) analyzed were sub-
stantially larger than those of previous studies.4–7 Owing to
this, we identified multiple correlations between COVID-19–
related gut microbes (eg, oral microbes, SCFA producers,
and Bifidobacterium and Oscillibacter species) and gut me-
tabolites (eg, branched-chain and aromatic amino acids,
carbohydrates, neurotransmitters, and vitamin B6)
(Figures 1 and 2). Importantly, both were linked to marked
dynamics of inflammatory cytokines, demonstrating an
intimate triangular relationship existing in COVID-19
(Figures 3 and 4). Such relationships were highly visible
in severe disease and pneumonia; partly detected in groups
with high D-dimer levels, kidney dysfunction, and liver
dysfunction; but little present in the diarrhea group.
Furthermore, observed associations of microbes and me-
tabolites with severe disease in the cross-sectional data
were in concordance with follow-up data showing that
altered microbial and metabolomic abundances at baseline
indicated risk of pulmonary complications (Figure 5).
Overall, these data highlighted the existence of a gut-lung
axis in COVID-19 and distinct microbiota-mediated im-
mune responses between the organ sites.

Clinically, fecal microbiomes could serve as noninvasive
biomarkers to stratify patients at high risk for SARS-CoV-2
infection and severe COVID-19. Making use of 3 validation
scenarios, to our knowledge, we are the first to develop
machine-learning–based prediction models for COVID-19
=
Figure 6.Microbial signatures predicting COVID-19 and their
COVID-19 and 6 other disease data sets were calculated by Spe
included (1) patients with RA (n ¼ 62) and healthy individuals (n
individuals (n ¼ 80), (3) patients using PPIs (n ¼ 387) and heal
healthy individuals (n ¼ 200), (5) patients using corticosteroids (
(n ¼ 124) and healthy individuals (n ¼ 124), and (7) patients w
percentage of those aged �65 years, male, and with a BMI of �2
pairs (Supplementary Table 4). Coefficient values for each mic
(MaAsLin2, x-axis) and between each disease and healthy cont
(B) Characteristics of gut microbial signatures for COVID-19 a
species (red) and 25 depleted ones (blue) significantly altere
(Figure 1A). The right heatmap shows species significantly (P <
tween 7 disease patients and healthy control individuals . (C) Ra
using all species (501 species) predicting COVID-19 and their
dictive model was compared to models predicting 7 diseases
COVID-19 model, respectively. The AUC was estimated by rand
microbial models trained on species significantly enriched (101
application to non–COVID-19 diseases. (E) Random forest class
The AUC was estimated by random forest classifier. The predict
vs severe COVID-19 (P < .05, MaAsLin2). The basic severe COV
using microbiomes and known clinical risk factors for severe d
number of comorbidities, and the number of drugs taken, as
admission. (F) The basic severe COVID-19 predictive model com
microbes identified in the severe COVID-19 model. ROC, receiv
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using microbiomes. First, random forest classifiers
revealed that gut microbiomes can predict COVID-19 and
severe COVID-19 with relatively high accuracy (Figure 6).
Moreover, the addition of known clinical risk factors to the
model for severe COVID-19 further increases its accuracy
(Figure 6E). SARS-CoV-2 infection risk is thought to be
determined by individual behavioral factors. The use of
microbiome models for COVID-19 may be a useful tool to
assess susceptibility to the infection. Second, the models can
clearly distinguish COVID-19 or severe COVID-19 from other
diseases, suggesting that the models are specific to COVID-
19. This microbiome approach to determine disease speci-
ficity, incorporating a variety of diseases, has been used in
the prediction of cancer17,30 but not for COVID-19. Third, we
propose geographic applicability of this model. Moderate
concordance of the COVID-19–related microbial signatures
between the Hong Kong and Japanese cohorts suggests that
this model could be used in Asia; however, poor concor-
dance of severe-COVID-19–related microbial signatures be-
tween the Japanese and US cohorts was observed (Figure 7).
Epidemiologic data indicate significant differences in
COVID-19–related deaths between Japan and the United
States (Supplementary Figure 10), and microbial differences
might be among the reasons for this.

Because COVID-19 is characterized by hyperproduction
of proinflammatory cytokines, which is closely associated
with poor prognosis,1,31 a comprehensive understanding of
cytokine dynamics and its link to the gut microbiome in
COVID-19 can help us develop better strategies to effec-
tively control immunopathology in infectious and inflam-
matory diseases.31 Therapies inhibiting cytokines have been
used in clinical practice, but an approach that controls
biomarkers upstream in cytokine alterations has not been
developed. Our analyses revealed specific gut microbiota
that were apparently linked to cytokine dynamics (Figures 3
specificity. (A) Concordance values for gut species between
arman rank correlation coefficient. Non–COVID-19 conditions
¼ 62), (2) patients with collagen disease (n ¼ 80) and healthy
thy individuals (n ¼ 387), (4) patients with DM (n ¼ 200) and
n ¼ 23) and healthy individuals (n ¼ 23), (6) patients with IBD
ith COPD (n ¼ 124) and healthy individuals (n ¼ 124). The
5 kg/m2 were equal between the 7 disease and healthy group
robial signature between COVID-19 and control individuals
rol individuals (MaAsLin2, y-axis) are represented in a scatter.
nd several diseases. The left heatmap depicts 30 enriched
d between COVID-19 and control individuals (FDR < 0.05)

.05, MaAsLin2) enriched (orange) and depleted (green) be-
ndom forest classifiers constructing microbial models trained
application to non–COVID-19 diseases. The COVID-19 pre-
that were applied using the same microbes identified in the
om forest classifier. (D) Random forest classifiers constructing
species, P < .05, MaAsLin2) predicting COVID-19 and their

ifiers construct microbial models predicting severe COVID-19.
ion models were trained using all species (488 species) in mild
ID-19 predictive microbial model was compared to the model
isease, such as age >65 years, sex, BMI of >25 kg/m2, the
well as the laboratory data of LDH Q32(U/L) and WBC/mm3 at
pared to models predicting 7 diseases applied using the same
er operating characteristic.

14 October 2022 � 7:41 pm � ce

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680



p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 7. Validation of microbial signatures for COVID-19 in Japan with Hong Kong and the United States. (A) A scatterplot
showing coefficient values for gut microbial signatures for COVID-19 identified in Japan (JP) (x-axis) and Hong Kong (HK) (y-
axis), respectively. Coefficient values of 501 gut microbial alterations were estimated from MaAsLin2 between COVID-19 and
control individuals. Concordance values for gut species for COVID-19 between Japan and Hong Kong were calculated by
Spearman rank correlation coefficient. (B) A scatterplot depicting 47 species significantly (P < .05) altered in COVID-19 in both
the and Hong Kong cohorts. (C) A scatterplot showing coefficient values for gut microbial signatures for severe COVID-19
identified in Japan (x-axis) and the United States (y-axis), respectively. (D) The left heatmap depicts 43 microbes, 18
enriched (red) and 25 depleted (blue), in COVID-19 that overlapped between Japan and Hong Kong among the 156 species
characterized in COVID-19 in the Japanese cohort (P < .05, FDR < 0.16, MaAsLin2). The bar plot represents the number of
cytokines and metabolites in the Japanese cohort that were significantly (P < .05, Spearman) correlated with the 43 species.
The number of positive and negative correlations is represented in red and blue, respectively.
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and 4), suggesting that therapies that inhibit or enhance
certain microbiota, such as probiotics, prebiotics, and bac-
teriophages,17,18 can play adjunctive roles in the treatment
FLA 5.6.0 DTD � YGAST65345_proof �
of COVID-19 through inflammatory cytokine inhibition. Our
study provided detailed fundamental data for future
research in immunomodulator therapy for COVID-19.
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This study has some limitations. First, we could not
identify causal relationships betweenCOVID-19pathogenesis
and gutmarkers using functional ormechanistic data. Second,
to control for all the confounders of severe illness, a non–
COVID-19 control group, such as hospitalized patients with
severe pneumonia, is needed, but we could not include one.

In summary, gut microbiota-mediated metabolites, spe-
cifically amino acids, sugar metabolites, and neurotransmit-
ters, were associated with immune response to COVID-19.
Their identification can provide new insights into pathogen-
esis along the gut-lung axis and extrapulmonary complica-
tions. Our deep analyses have unveiled extensive microbe-
metabolite-cytokine relationships that could serve as a cata-
log for understanding the pathogenesis of COVID-19 as well
as other immune-related or infectious disorders.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2022.09.024.
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