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Abstract

Bovine respiratory disease is a common health problem in beef production. The primary bac-
terial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk
for associated antimicrobial resistance development. The role of M. haemolytica in pathogen-
esis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions
and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we
sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and
performed comparative genomics analysis to identify genetic features that may contribute to
pathogenesis. Possible virulence associated genes were identified within 14 distinct pro-
phage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase
and a stress response protein. Prophage content ranged from 2—8 per genome, but was
higherin S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with
spacer diversity and organization conserved among serotypes. The majority of spacers occur
in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be
more resistant to phage predation. However, two spacers complementary to the host chromo-
some targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group
1 gene are present in S1 and S6 strains only indicating these serotypes may employ
CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhe-
sion during infection. Integrative conjugative elements are present in nine of the eleven
genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resis-
tance against the majority of drugs used to combat infection in beef cattle, including macro-
lides and tetracyclines used in human medicine. The findings here identify key features that
are likely contributing to serotype related pathogenesis and specific targets for vaccine design
intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
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Introduction

Mannheimia haemolytica is an important bacterial pathogen of ruminants and the principal
agent of bovine respiratory disease (BRD) in feedlot cattle, a condition responsible for an
annual loss of over 3 billion US$ to beef producers worldwide [1]. The virulence and etiology
of M. haemolytica is strongly associated with serotype. Of the 12 capsular serotypes identified,
serotype 1 (S1) and serotype 6 (S6) are the most prevalent in bovine infection [2,3]. Serotype 2
(S2) is found frequently as a commensal in the upper respiratory tract of healthy cattle [4], but
can produce pneumonia in ovines, frequently causing high mortality rates that have devastated
wild and domestic sheep populations [5]. Little is understood about how genetic differences
among serotypes contribute to pathogenesis in this species. Until recently, whole genome
sequences were only available for one strain of S1 from a beef calf and two strains of S2, one of
bovine and the other of ovine origin [6,7]. Although S1 is the principal serotype identified in
North America, the prevalence of S6 in cattle suffering from BRD has been increasing [8].

Treatment of BRD in feedlot cattle relies heavily on antibiotics, and M. haemolytica is the
primary target for many of these therapies. As a result, there is high risk for selection of antimi-
crobial resistant M. haemolytica within this setting. The recent isolation of pan-resistant M.
haemolytica from beef calves [9,10] is of concern in terms of maintaining the therapeutic effi-
cacy of antimicrobials for beef as well as the risk of transfer of antimicrobial resistance genes to
zoonotic pathogens that can impact human health. Consequently, there is a need to develop
less drug dependant strategies to control BRD. Veterinary vaccines can play a major role in the
management of disease and in conferring protection against pathogens. However, the efficacy
of currently available BRD vaccines is questionable [11].

Analysis of the genomic content of pathogenic bacteria can be used to identify novel protein
targets in the aim towards developing more efficacious vaccines. The use of comparative geno-
mic analyses can also highlight genetic features that contribute to pathogenicity, identify resis-
tance mechanisms and help elucidate the evolution of pathogens at the genome level. Pan-
genome analysis identifies the full complement of genes represented in a group of genome
sequences and can provide important insights into the evolution of a species while identifying
potentially important novel genes [12]. Extrapolation of pan-genome analyses can also high-
light the global complexity of a bacterial species by allowing for prediction of the number of
new genes that will be found with sequencing of additional strains [13]. Examination of
genome architecture and prophage content can be used to identify genetic diversity and fea-
tures like the CRISPR-Cas phage defence mechanism, self-transmissible integrative conjugative
elements (ICEs) as well as genes that contribute to pathogenicity and survivability.

This study presents a comparative analysis of 11 M. haemolytica strains representing sero-
types 1, 2 and 6 from cattle that were healthy, morbid or succumbed to BRD. Whole genome
comparison of multiple serotypes allowed for the identification of multiple virulence factors
that likely contribute to the pathogenesis of this species. The identification of ICEs that confer
resistance to an array of antimicrobials illustrates the ability of this bacterium to circumvent
current antimicrobial therapies. Multiple gene targets were identified that hold promise for fur-
ther exploration as vaccine candidates.

Results and Discussion
Sequencing Statistics

Sequencing of the 11 M. haemolytica strains resulted in high-quality draft genomes ranging
from 2.43Mb to 2.60Mb, with assemblies containing 69-158 contigs (Table 1). Genomes of S1
and S6 strains are on average 100kb larger that S2 strains, a difference attributed to the
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Table 1. Features of 11 sequenced strains of Mannheimia haemolytica.

Strain

M. haemolytica LO24A
M. haemolytica LO44A
M. haemolytica 157-4-1
M. haemolytica 535A

M. haemolytica T2

M. haemolytica LO33A
M. haemolytica 587A
M. haemolytica LO38A
M. haemolytica T14
M. haemolytica H23
M. haemolytica 3927A

Accession No. Serotype

LFXX00000000
LFXY00000000
LFYDO00000000
LFYB00000000
LFXW00000000
LFXZ00000000
LFYC00000000
LFYA00000000
LFXV00000000
AOGP00000000
LFYE00000000

doi:10.1371/journal.pone.0149520.t001

Sample Animal Sampling Genomes No. CDS No. No. ICE size
type status location size Mb contigs prophage CRISPR kb (%GC)
(% of spacers
genome)

1 lung Deceased Texas 2.64 116 2768 8(11.3) 14 70.6 (40.2)
1 lung Deceased Nebraska 2.6 122 2714 5(6.9) 15 81.1 (41.6)
1 nasopharynx Healthy Alberta 2.6 116 2715 7 (11.6) 14 48.6 (39.3)
1 nasopharynx  Morbid Alberta 2.58 158 2730 6 (10.5) 13 47.1 (39.3)
2 lung Morbid France 2.43 107 2448 2 (4.1) 8 n/a
2 lung Deceased Nebraska 2.57 128 2639 4 (8.2) 7 66.3 (40.2)
2 nasopharynx Healthy Alberta 25 111 2547 5(8.3) 4 n/a
6 lung Deceased Alberta 2.6 134 2724 6(10.9) 16 50.4 (39.1)
6 trachea Morbid France 2.56 101 2647 5(9.2) 17 49.9 (39.1)
6 nasopharynx  Morbid Alberta 2.6 69 2628 4 (7.6) 14 48.6 (39.3)
6 nasopharynx Healthy Alberta 2.52 105 2602 5 (7.4) 16 46.6 (39.4)

presence of integrative conjugative elements and prophage. The percent nucleotide identity
among the genomes ranges from 79.0% to 97.8% (Fig 1). Sequence diversity is highest amongst
the three S2 genomes, ranging from 87.0% to 96.2% nucleotide identity.

Core, Dispensable and Pan-genome Analysis

Pan-genome analysis defines all coding sequences within a set of genomes and identifies core
genes common to all strains, dispensable genes present in two or more strains, and strain spe-
cific genes that are unique to each isolate. Analysis of the different genome subsets can provide
important insights into the evolution of a species and identify potentially important novel
genes [12]. Pan-genome analysis can also determine the number of sequences in a genomic
dataset that are sufficient to characterize the species as a whole [14]. The pan-genome can be
defined as open, where the addition of new strains to the analysis results in the accumulation of
additional unidentified genes, or as closed where sequencing of additional strains fails to iden-
tify additional strain specific genes. As a result, pan-genome analysis can be used to predict the
number of whole genome sequences required to fully characterize a species [13,15].

For the pan-genome analysis, the eleven isolates sequenced here were combined with an
additional 10 present in public databases (S1 Table). Analysis of the resulting 21 M. haemoly-
tica strains identified 9,507 orthologous groups, 1,333 belonging to the core genome (Fig 2),
accounting for approximately 50% of coding sequences in each strain. As expected the core
genome was comprised largely (76.5%) of coding sequences essential for cell function and sur-
vival (S1 Fig)[12]. The dispensable genome usually represents the bulk of the diversity in a spe-
cies [14] and although here it contains genes associated with survival, maintenance, and
defense, the majority (66.8%) are uncharacterized or hypothetical (SI Fig). Genes that were
found to be strain-specific are also largely (81.8%) uncharacterized, but many are associated
with integrated prophage. Approximately 300 unique genes are present in each of the 11 strains
(ranging from 219 to 434; Fig 2).

The pan-genome of all 21 M. haemolytica strains is open, continuing to increase by approxi-
mately 286 genes with each strain added to the analysis (Figs 3 and 4). Extrapolation predicts
that even after the addition of 100 genomes, 123 unique genes would be added with each new
genome. Classification by serotype showed that both S1 (n = 8), S6 (n =7) and S2 (n = 6) pan-
genomes remained open (Fig 5A, 5B and 5C). The pan-genomes of S1 and S6 strains are
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Fig 1. UPGMA phylogenetic tree based on whole genome sequence alignment of 11 Mannheimia haemolytica strains. The tree was generated from
full genome alignment produced using Mauve in Geneious version 6.1.8 using Tamura-Nei distance correction with no specified outgroup. The scale length
is equal to 0.001 nucleotide substitutions per site.

doi:10.1371/journal.pone.0149520.g001

expected to increase with each new strain by 305 and 295 genes, respectively. Unfortunately,
the number of S2 strains available for analysis was too low to predict the number of new genes
with each additional strain.

Open pan-genomes are frequently observed in bacterial species that inhabit diverse ecologi-
cal niches, have complex lifestyles and are prone to horizontal gene transfer (HGT) [13,16]. In
contrast, closed pan-genomes exist in bacterial species that occupy isolated niches or where
recent divergence has led to limited genetic diversity within the gene pool [13]. The genome of
Bacillus anthracis is an excellent example of a closed pan-genome as sequencing of four strains
fully characterizes this species [14]. Mannheimia haemolytica inhabits a complex niche, can
exhibit both commensal and pathogenic phenotypes, and contains many serotypes with vari-
able amounts of mobile genetic elements (MGE) [5,7, 17]. Thus, it was anticipated that the
pan-genome of this species would be open.
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Fig 2. Size of the core genome and dispensable genome and number of strain unique CDS in 21 Mannheimia haemolytica genomes. Petals contain
number of unique CDS per strain. Petals a-h represent the serotype 1 strains M. haemolytica L024A, M. haemolytica 157-4-1, M. haemolytica L044A, M.
haemolytica 535A, M. haemolytica D153, M. haemolytica MhBrain2012, M. haemolytica D193, and M. haemolytica USDA-ARS-USMARC-183 respectively.
Petals i-o represent the serotype 6 strains M. haemolytica T14, M. haemolytica H23, M. haemolytica 3927A, M. haemolytica LO38A, M. haemolytica D174,
D38, and M. haemolytica USDA-ARS-USMARC-185 respectively. Petals p-u represent the serotype 2 strains M. haemolytica 587A, M. haemolytica LO33A,
M. haemolytica T2, M. haemolytica D171, M. haemolytica D35 and M. haemolytica Bovine A2, respectively. Analysis based on 85% sequence identity across
90% length.

doi:10.1371/journal.pone.0149520.9002

Virulence Factors

Mannheimia haemolytica has multiple virulence factors that have been extensively studied and
reviewed [18]. These include multiple fimbriae, adhesions, outer membrane proteins [19],
neuraminidases [20], transferrin-binding proteins and a capsular polysaccharide [2]. One of
the most important elements of M. haemolytica pathogenesis is a secreted leukotoxin of the
RTX repeat family that exhibits cytolytic activity against bovine leukocytes [21]. We compared
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Fig 3. Pan-genome and core genome of 21 M. haemolytica isolates. For both the pan-genome and the core genome, the number of genes is plotted as a
function of the number n of strains sequential added. The curve for the pan-genome represents the least-squares fit for the function y = Ax® + C with the best
fit obtained with a correlation r? = 0.999 for A = 613.27 + 1.08, B = 0.81, C = 2050.92 + 10.41. The curve for the core genome represents the least-squares fit
for the functiony = AeB* + C with the best fit obtained with a correlation r? = 0.948 for A = 1444.89 + 118.98, B =-0.32, C = 1409.54 + 1.2.

doi:10.1371/journal.pone.0149520.9003

72 genes with a known role in virulence, with the vast majority exhibiting >95% sequence
identity among all 11 M. haemolytica genomes (S2 Table). Genes with sequence identities
<95% included components of the transferrin-iron uptake system tbpA and tbpB, lktA, IktC, a
surface antigen serotype-specific antigen 1 ssal, the heme sequestering hemophore huxA, the
S-ribosylhomocysteinase [uxS, the outer membrane protein plpE, and wecC associated with
lipopolysaccharide (LPS) synthesis. Sequence variations between serotypes for tbpA and tbpB
[22], IktA and IktC [17,23,24] and pIpE [25] have been documented previously. In all of these
cases, sequence diversity was observed largely within the S2 strains, with genes in S1 and S6
strains being nearly identical.

Mobile Genetic Elements

Horizontal gene transfer (HGT) through transduction, transformation and conjugation is the
primary means for prokaryotic organisms to obtain new genetic material [26]. Mobile genetic
elements (MGE) including plasmids, phages, genomic islands or genomic modules can transfer
DNA that may alter the pathogenicity of an organism through the provision of toxins and
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Fig 4. New gene discovery plot for pan-genome analysis of 21 Mannheimia haemolytica genomes. Bars represent the number of new genes as the
function of the number n or strains sequentially added. The curve represents the least-squares fit for the function y = AxE with the best fit obtained with a
correlation r? = 0.875 for A = 566.17 + 3.16, B = -0.22. The extrapolated number of new genes expected after the number of genomes increases to 100 is 123

new genes.

doi:10.1371/journal.pone.0149520.g004

antimicrobial resistance genes. They may also provide factors that regulate virulence gene
expression, influence adhesion or enhance immune evasion [27]. As a result HGT plays an
important role in the evolution, maintenance and transmission of virulence genes and the
development and spread of antimicrobial resistance [28]. Two types of MGE, prophage and
integrative conjugative elements (ICEs) were identified in M. haemolytica genomes.

Prophage

Prophage contribute to genetic diversity in bacterial genomes and act as vectors for virulence fac-
tors including extracellular toxins, adhesions, modulators of host activity, mitogenic factors and
proteins that alter antigenicity [29,30]. Prophages account for 4.1-11% of the M. haemolytica
genomes, with a total of 57 intact prophages present across the 11 strains. These cluster into 14

profiles based on nucleotide similarity (Fig 6; Table 2). Overall, S2 genomes contain fewer intact
prophages (2-5) than S1 (5-8) or S6 (4-6) genomes. Clusters P1, P2, P3, P4, P7, P8, P13 and P14
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Fig 5. Pan-genome and core genome of 21 M. haemolytica isolates. For both the pan-genome (grey) and
the core genome (black), the number of genes is plotted as a function of the number n of strains sequentially
added. Panel A: serotype 1 strains, n = 8. Panel B: serotype 6 strains, n = 7. Panel C: serotype 2 strains,

n = 6. The curve for the S1 pan-genome represents the least-squares fit for the functiony = AxB + C with the
best fit obtained with a correlation r* = 0.999 for A = 572.81 + 4.45, B=0.79, C =2104.32 + 19.12. The curve
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for the S1 core genome represents the least-squares fit for the function y = Ae®* + C with the best fit obtained
with a correlation r> = 0.976 for A = 1549.09 + 90.55, B = -0.81, C = 1964.34 + 14.87. The curve for the S6
pan-genome represents the least-squares fit for the functiony = AXE + C with the best fit obtained with a
correlation r = 0.999 for A = 652.62 + 8.5, B=0.73, C = 1942.33 + 25.16. The curve for the S6 core genome
represents the least-squares fit for the function y = Ae®* + C with the best fit obtained with a correlation r =
0.983 for A=1601.51+92.41, B =-0.74, C = 1806.86 + 19.97. The curve for the S2 pan-genome represents
the least-squares fit for the function y = Ax® + C with the best fit obtained with a correlation r* = 0.999 for
A=944.93+10.83,B =0.65, C =1527.44 + 23.12. The curve for the S2 core genome represents the least-
squares fit for the function y = Ae®* + C with the best fit obtained with a correlation r? = 0.988 for
A=2123.13+68.56, B=-0.88,C =1579.86 + 5.88.

doi:10.1371/journal.pone.0149520.g005

resemble phage from the Siphoviridae family whereas P6, P9, P10, P11, and P12 clusters resemble
the Myoviridae family. Prophages vB_Mha-L024AP10 and vB_Mha-157-4-1P6 cluster indepen-
dently, and while these elements contained phage components they are comprised of multiple
contigs and their lack of alignment to the reference strain suggest they may not be true prophages.

Complete (P1, P3, P5, P6, P7, P13) or partial (P8, P10, P11, P14) toxin-antitoxin systems
occur in 10 of the 14 phage clusters identified (data not shown). Toxin anti-toxin systems are
small genetic modules that consist of an operon coding for a stable toxin that inhibits cell
growth and an unstable antitoxin that protects against the toxin’s effects [31,32]. Toxin-anti-
toxin systems are frequently carried on MGE such as phages and plasmids, contributing to
maintenance of the element once it has integrated into the host [33]. When co-expressed, these
components form a stable complex inhibiting the toxin’s activity. Free antitoxin is highly unsta-
ble and degrades quickly requiring its continued synthesis to inhibit the toxin’s function [33].

During phage infection, protein expression in the host can be slowed or arrested. If the
infected host bacterium codes for a toxin-antitoxin system the liable antitoxin it produces is
degraded, leaving the toxin to kill the cell, ultimately preventing the phage from replicating and
spreading. In bacteria this phage defence mechanism is known as abortive infection. The
toxin-antitoxin systems identified here are mainly associated with Siphoviridae-like prophages,
although two Myoviridae-like prophages (P10 and P11) contain HipB antitoxin without its
corresponding HipA toxin (Table 2). It is possible these are remnants of previously functioning
systems or that the antitoxin component is being used by the prophage as a means to avoid
abortive infection in the host given that both strains of M. haemolytica that contain P10 and
P11 prophage code for the HipA toxin in other regions of their chromosome.

Multiple virulence associated genes were identified in the prophages, including a periplas-
mic chaperone lolA (P5), involved in outer membrane localization of lipoproteins, and plp4
(P4), a lipoprotein with homology to OmpA. A peptidoglycan glycosyltransferase, mtgA (P5)
with homology to penicillin binding protein is also present. A mutation within mtgA (P5) in
Brucella abortus has previously been shown to attenuate virulence in this species [34]. The
sanA (P2) gene was also detected, a gene coding for a protein that functions in murein synthe-
sis but that has also has been implicated in vancomycin resistance [35]. The gene for a cyto-
plasmic protein UspA (P4, P14) was also identified which has been predicted to enhance cell
survival during exposure to environmental stress [36].

CRISPR-Cas

Nearly half of all bacterial species encode an adaptive immune system known as CRISPR/Cas
(clustered regularly interspaced short palindromic repeats/CRSIPR associated proteins)
[37,38], that protects against invading genetic elements like phages and plasmids [38]. Three
major types and ten subtypes of CRISPR-Cas systems have been identified [38] all containing a
CRISPR array localized near 4 to 20 CRISPR associated (Cas) genes. The CRISPR array consists
of aleader sequence followed by numerous conserved direct repeat (DR) sequences,

PLOS ONE | DOI:10.1371/journal.pone.0149520 February 29, 2016 9/283
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Fig 6. Phylogenetic analysis of prophage found in M. haemolytica. The tree was constructed by neighbour-joining method with the MAFFT program.
Bootstrap values (>50) representing 100 sampling replicates are in grey located below branches with the phage cluster numbers adjacent to corresponding

nodes above the branches. The scale length is equal to 0.1 nucleotide substitutions per site.

doi:10.1371/journal.pone.0149520.9006

interspersed with variable spacer sequences [37]. Spacers are typically derived from viral or
phage DNA [37,39] and are used by a suite of Cas proteins to prevent reinfection by these ele-
ments through a process called interference [38]. Cas proteins support the integration of spac-
ers into the CRISPR array, the processing of the transcribed CRISPR array into mature crRNA
that contain a spacer and a partial DR, and the targeting and cleavage of reinvading nucleic
acids complementary to the spacer sequences [38]. The selection of protospacers (spacer pre-
cursors) from the invading nucleic acid is dependent on the presence of a protospacer adjacent
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Table 2. Metadata for prophage identified within the genomes of 11 strains of Mannheimia haemolytica.
Host strain of Mannheimia haemolytica and prophage length in kb (No. CDS):
Cluster Max Percent Spacer® Toxin- Prophage 587A LO033A T2 LO38A H23 Ti14 3927A 154- LO044A L024A 535A

length  similarity antitoxin family 7-1
(kb)
P1 42.7 95.3 - RelB/E  Siphoviridae - - - 38.5 41 389 39 309 315 399 347
(36) (39) (38) (38) (36) (36) (39) (35
P2 56.1 92.2 31 - Siphoviridae - - - 51.1 - - - 429 421 38.7 539
(64) (62) (61) (59) (64)
P3 43.3 84 8,28,29, HigA/B Siphoviridae 52.1 104.1 - - - - - - - - -
30, 31 (81) (148)
P4 97.9 60.7 11,12, - Siphoviridae  38.8 446 761 775 769 276 761 652 762 75.1
15 (45) (52) (82) (83) (82) (29) (81) (82) (82) (84)
P5 54 - - HigA/B  Siphoviridae - - 53.9 - - - - - - - -
(62)
P6 20.5 - - HipA/B  Myoviridae - - - - - - - 20.4 - - -
(26)
P7 54 67.1 3,6,17, HicB/C Siphoviridae 30.3 354 - - - - 372 488 255 27.6 31
25 (51)  (48) (52) (52) (43) (48)  (46)
P8 39.1 59.7 3,6, 16, HigA Siphoviridae - - - 325 374 344 - - 22.3 -
25 (51) (51) (46) (24)
P9 471 94.5 - - Myoviridae - - - 46.3 418 419 42 46 462 452 409
(60) (51) (57) (57) (60) (61) (61) (56)
P10 141 - - HipB Myoviridae - - - - - - - - - 14 -
(21)
P11 47.5 85.1 26, 27 HipB Myoviridae - - - 38.3 - 434 401 348 - 35 35
(51) (57) (54) (48) (49) (49)
P12 43.3 84 - - Myoviridae 41.9  41.1 - - - - - - - - -
(58)  (56)
P13 29.3 - - HicB/C  Siphoviridae - 29.3 - - - - - - - - -
(39)
P14 44.7 2 = HigA Siphoviridae 44.7 2 = = = = 2 2 2 = =
(47)

2CRISPR spacer found with >90% sequence identity to phage sequence

doi:10.1371/journal.pone.0149520.t002

motif (PAM), a short nucleic acid sequence located either downstream or upstream of the pro-
tospacer. Protospacer adjacent motifs are not incorporated into the spacer itself, enabling the
CRISPR-Cas system to distinguish between target protospacer and the host CRISPR array [37].
In addition to its role in defence, CRISPR-Cas has also been implicated in gene expression and
regulation of cellular processes including biofilm formation, lysogenization, spore formation,
replicon maintenance and segregation, and DNA repair-recombination [37].

All of the genomes sequenced here contain a single type I-C/Dvulg CRISPR-Cas system (Fig
7A), similar in structure to the those first described by Lawrence et al [5] in M. haemolytica S2
strains. These are highly conserved within serotype (>98% nucleotide identity) with the most
sequence variation occurring between S2 and S1/S6 genomes, although overall pairwise identity
across all strains is >95% (S2 Table). The leader and trailer sequences flanking the CRISPR
arrays are highly conserved with >98% pairwise identify among strains (Fig 7B), a result not
unexpected as these regions are usually highly conserved within a species [40]. There are six
unique DR sequences of 32 nucleotides represented among the arrays; these varying at posi-
tions 1, 11, 22, 24 and/or 32(Fig 7C). The DR sequences are organized into two blocks in S1
and S6 genomes, each consisting of a unique DR sequence followed by a string of 4-8 identical
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Fig 7. Schematic of CRISPR-Cas systems identified in whole genome sequence analysis of 11 Mannheimia haemolytica genomes. Panel A: Cas
loci present in serotype 1, 6 and 2 genomes. Panel B: consensus sequence for leader and trailer regions of CRISPR arrays. Underlined regions are
complementary to psi-tag. Panel C: Sequences of the 6 unique direct repeats detected in CRISPR arrays. Panel D: CRISPR array spacer and direct repeat
organization. Diamonds represent direct repeat sequences while numbered tiles represent spacer sequences. Panel E: 3D structure of direct repeats found
in CRISPR arrays. Psi-tag indicated by grey shaded regions. Panel F: sequence alignment of protospacers with suspected protospacer adjacent motif (PAM)
highlighted in grey (TTC).

doi:10.1371/journal.pone.0149520.9007

DR sequences (Fig 7D). In S2 strains only one block of DRs occur, with them being identical to
those seen in the first block of S1/56 arrays. It is unclear why this pattern is present in S1 and
S6 strains but not S2. It is possible that similar blocks occur in S2 strains that have larger arrays.
Those identified here contain half of the number of spacers observed in S1 and S6 CRISPR
arrays.

Direct repeat sequences are target sites for Cas proteins [41] and sequence variation in these
regions could affect the regulation of crRNA maturation among these strains. Regulatory ele-
ments such as scaRNA and tracrRNAs are described in the Type II CRIPSR system [39], but lit-
tle has been documented regarding cis or trans elements that may regulate the activates of
Type I CRISPR systems. A conserved terminal eight nucleotide motif ((T/A)ATTGAAA) or
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Table 3. Spacer sequences identified in CRISPR arrays from 11 Mannheimia haemolytica genomes.

Spacer No. of genomes with CRISPR

spacer

0 N O b~ WON =
[oe]

N 00 00 W o N O 0 0w oo oo,

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

n/a, target for spacer sequence not identified

doi:10.1371/journal.pone.0149520.t003

No. of genomes with sequence outside of Spacer
spacer target®

o
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n/a
prophage
n/a
prophage
prophage
n/a
prophage
n/a
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prophage
prophage
bacterial

W U1l ©® O O N O W A O O O

bacterial
prophage
prophage
prophage
prophage
n/a
n/a
n/a
n/a
n/a
n/a
prophage
prophage
prophage
prophage
prophage
prophage
prophage
n/a

W O N O O O O O O ™ N &N O

-
[¢;] o o

o

Gene target

hypothetical

hypothetical

putative tail
regulatory protein Rha

hypothetical
hypothetical

UDP-N-acetylglucosamine
2-epimerase

glycosyl transferases group 1
tail sheath protein FI
Mu protein F
hypothetical
hypothetical

DNA helicase
hypothetical
head morphogenesis protein
hypothetical
hypothetical
pyruvate kinase
hypothetical

psi-tag, implicated in Cas protein binding [42] and self-discrimination [43], was identified in
the DR sequences and in the leader (in reverse orientation) and the trailer of all CRISPR arrays
(Fig 7E). Sequence variability occurs in the region of the DRs, where this motif aligns. It is pos-
sible that this psi-tag plays a role in regulation of CRISPR activity in association with altered
binding affinity at these locations. The DRs in the arrays examined are homologous (90-100%
nucleotide identify) to those occurring in arrays in other Pasteurellaceae members including
Bibersteinia trehalosi USDA-ARS-USMARC-190, Mannheimia varigena USDA-ARS-US-
MARC-1312 and Aggregatibacter actinomycetemcomitans D7S-1 and possessed a secondary
structure consistent with those from the CRISPR-Cas I-C/Dvulg subtype [44].
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Thirty-two unique spacer sequences (35-37 nt) are present in the CRISPR arrays, with S2
genomes containing fewer spacers (4-8) than S1 (13-15) and S6 (14-17) (Fig 7D). A duplicate
spacer was identified in the array of M. haemolytica 535A and although not common, spacer
duplication has been previously identified [45]. The majority of the spacers in the arrays are
associated with prophages within the host chromosomes (Table 3). It is possible that these
CRISPR spacers are regulating lysogeny, a function of CRIPSR-Cas previously observed in E.
coli [46]. Bacteriophages have developed multiple strategies to avoid CRISPR regulation
including mutations within either the protospacer or PAM or through phage encoded anti-
CRISPR systems [47,48]. As a result, it is not surprising to see multiple prophages integrated
into the S1 and S6 genomes even though these strains contain large CRISPR arrays. Homology
searches of the genes present in prophage regions failed to identify previously described phage
encoded anti- CRISPR systems [47,48]. Consistent with other type I-C CRSIPR-Cas [49],
examination of the upstream sequences of the protospacers revealed a 3nt PAM of GAA con-
served in all but one target protospacer sequence (Fig 7F).

Two spacers present in S1 and/or S6 strains, but absent in S2 CRISPR arrays, are comple-
mentary to motifs found in genes present within the host chromosome. Approximately 18% of
organisms containing CRISPR arrays display self-targeting spacers [41]. However, these are
poorly conserved often only being found in a single strain and in association with CRISPR sys-
tems that have partial or no activity [41]. An exception to this has been documented in Franci-
sella novicida, where a self-targeting CRISPR-Cas system has been found to facilitate immune
evasion during infection [50]. In this species the CRISPR system suppresses expression of an
immune stimulatory lipoprotein (BLP) that would otherwise trigger the activation of Toll-like
Receptor 2-dependant proinflammatory response in the host. Absence of this regulation
completely attenuates the bacteria during infection making CRISPR-Cas critical for F. novicida
pathogenesis [50].

The self-targeting spacers here are found in more than one strain and are in association
with complete CRISPR systems. Further they are only present in serotypes commonly associ-
ated with disease. One spacer targets a glycosyl transferase (F388_04799), the other a UDP-N-
acetylglucosamine 2-epimerase (F388_04774). It is likely that these genes code for proteins
associated with display of sugar moieties on the cell surface as glycosyl transferases transfer
activated sugars to a variety of substrates and UDP-N-acetylglucosamine 2-epimerase is a rate-
limiting enzyme in the sialic acid biosynthetic pathway. Sialic acids are prevalent on the surface
of vertebrate cells and serve a variety of biological, biophysical and immunological functions
[51]. As a result many pathogens, including Neisseria meningitidis, Campylobacter jejuni,
Group B Streptococcus, Pseudomonas aeruginosa and Haemophilus influenzae [52] incorporate
sialic acid on their cell surface as a form of molecular mimicry to avoid host immune detection
or to aid in adhesion [51,53]. Although it is possible that M. haemolytica, like F. novicida is
employing CRISPR-Cas to regulate gene expression to avoid host immune responses or to
enhance colonization during infection.

Integrative Conjugative Elements

Putative ICEs were identified in 9 of the 11 genomes sequenced, ranging in size from 46.6 to
81.1 kb (Fig 8A). These elements encode all of the necessary machinery for replication and con-
jugative transfer, three of which, like ICEMAh1 previously identified in M. haemolytica [10], are
active and mobile [54]. Although ICEs integrate into the host genome, under certain conditions
they can excise, circularize and replicate. Transfer of ICEs in Gram-negative bacteria typically
occurs via conjugation machinery coded for by a type 4 secretion system (T4SS) consisting of a
membrane spanning secretion channel and extracellular pilus [26]. After an element has
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excised from the chromosome, a relaxosome formed by several proteins assembles at the origin
of transfer. A relaxase nicks the double stranded circular element and then while maintaining a
complex with the single stranded DNA, it is recognized by a coupling protein and is recruited
to the T4SS translocation channel. After the DNA is translocated, the relaxase detaches and the
element is circularized. Complementary DNA is synthesized and the double stranded element
is integrated into the chromosome by an integrase [55]. A copy of the original ICE remaining
in the donor undergoes complementary strand synthesis and reintegrates back into the host
genome [26]. All of the ICEs identified in the present study are integrated into similar location,
in a copy of the tRNA™" gene and contained a type IV secretion system (T4SS), a coupling pro-
tein, an integrase and a relaxase (Fig 8A; S2 Table).
All T4SSs identified belonged to the MPF family, originally described in ICEHin1056 from
Haemophilus influenzae [56], but based on public databases prevalent in Pasteurellaceae spp.
(Gallibacterium anatis, Pasteurella multocida and Histophilus somni) and various
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Gammaproteobacteria (Vibrio cholera, E. coli, Pseudomonas aeruginosa, Klebsiella pneumonia
and Salmonella enterica). Three distinct sequence profiles for the T4SS region occur with over-
all nucleotide similarity of 85.8%. However, 6 of the 9 ICEs have a nucleotide similarity of
95.5% across the entire array. This, coupled with their prevalence across genetically diverse iso-
lates suggests that ICEs may have an ancient lineage within this species. None of these ‘com-
mon’ ICE profiles contained accessory gene cassettes but contig alignment against previously
identified ICEMh1 suggested that they may contain a HipA/B toxin-antitoxin system. Closure
of these genomes will be required to conclusively determine if this system is contained within
these elements, but the presence of toxin-antitoxin systems could explain why ICEs are being
maintained at high abundance within the species even though these elements lack selective
antimicrobial resistance (AMR) gene determinants.

Entry exclusion is a trait common to conjugative plasmids [57] that prevents conjugative
transfer of MGE into bacterial cells that already contain an element with a closely related trans-
fer apparatus [58]. Two mechanisms for entry exclusion in F plasmids have been presented,
one that alters the cell’s outer surface making it less receptive to pilus attachment, with the
other mediated by proteins that reside in the inner membrane and prevent DNA entry [58,59].
An exclusion system has been well characterized in the SXT/R391 family of ICEs, mediated by
small inner membrane proteins expressed by both the donor (TraG) and recipient cells (Eex)
[59]. A TraG homolog (F388_01689) was annotated in the T4SSs here with >80% nucleotide
similarity to a similar gene found in ICEs from other Pasteurellaceae species (Mannheimia var-
igena USDA-ARS-USMARC-1388:CP006953, Bibersteinia trehalosi USDA-ARS-USMARC-
190:CP006956, Pasteurella multocida 36590:CP003022, Actinobacillus pleuropneumoniae;
NZ_ADX001000031, Actinobacillus suis ATCC 33415:Ga0057047_gi672591300.1, Haemophi-
lus parasuis D74:Ga0040714_123, Haemophilus somnus 2336:NC_010519). A potential analog
to Eex, which is also present in these bacteria, was also identified (F388_01694) that exhibited
characteristics similar to the Eex in SXT/R391. These included being localized to the cytoplasm,
located in the opposite orientation but adjacent to the traG gene and exhibiting amino acid
similarity in the N terminal region, but high diversity in the C-terminal region of this protein.
An active entry exclusion system in these ICEs has significant implications for the spread of
these MGE and is discussed further below.

Only three of the ICEs, ICEMhL024A, ICEMhL044A and ICEMhL033A, contain cassettes
with accessory genes, but those that do coded for AMR. These cassettes have high similarity to
those previously identified in Pasteurella multocida (PRINA86887) and Bibersteinia trehalosi
190 (PRJNA182313) with cassette sections or individual genes also present in strains of E. coli,
Klebsiella pnuemoniae, Salmonella, Actinobacter baumannii, Serratia marcescens and Neisseria
meningitides (Fig 8B). In addition to multiple AMR genes including aphA1, strB, strA, sul2,

floR, erm42, tetH, aadB, aaA25, msrE, and mhpE, a blarop.1 gene was identified in
ICEMhLO033A with a single nucleotide substitution from C to T at position 370. This single
base change generates a premature stop codon rendering this gene non-functional resulting in
this strain being sensitive to ampicillin [54].

Although only one of the three S2 strains examined here contained an ICE, it harbours an
extensive AMR profile. As S2 strains are prevalent commensals among healthy cattle, the
spread of AMR ICEs among these populations may be more significant to the environmental
resistome than AMR ICEs in S1 and S6 strains that may be removed from the population
through effective antimicrobial therapies or if the host succumbs to disease. All of the AMR
containing ICEs here originate from cattle in the USA. Phylogenetic analysis of a larger popula-
tion incorporating different Pasteurellaceae species from different cattle production systems
may shed insight as to the origin of these elements. Source tracking of isolates is a common
practice to gain insight into AMR development and spread, but with the mobility of these
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elements among species it may become just as important in the future to track ICEs between
and within production systems rather than focusing on AMR at the species or strain level.

The potential for entry exclusion in ICEs from M. haemolytica may affect AMR dissemina-
tion. If ICEs that lack resistance cassettes are widespread among M. haemolytica populations,
entry exclusion could render these strains resistant to the uptake of other ICEs that may har-
bour AMR genes. This would limit the spread of ICEs in M. haemolytica populations primarily
to clonal dissemination or to those cases where the entry exclusion system was ineffective. If
non-AMR ICE:s are as prevalent in the Pasteurellaceae family as they appear based on this data-
set, entry exclusion by these elements could explain why there is relatively low overall occur-
rence of AMR observed in members the Pasteurellaceae family [1,60].

A D-lactate dehydrogenase gene was also identified in ICEMhL024A that is also present
within the genome of various Pasteurellaceae species (Bibersteinia trehalosi: USDA-ARS-US-
MARC-190, USDA-ARS-USMARC-192, USDA-ARS-USMARC-188; Haemophilus parasuis:
84-17975, KL0318; Haemophilus somni 129PT; Actinobacillus pleuropneumoniae: JL03, AP76,
SHO0165; Mannheimia haemolytica: M4258, USDA-ARS-USMARC-185, USDA-ARS-US-
MARC-185, D153). Lactate is a by-product of bacterial fermentation and the L-form of this
carboxylic acid is readily metabolized in the liver and tissues of mammals. High levels of the D
form lactate can accumulate in the blood of cattle during acidosis; a condition common in feed-
lot calves fed high grain based finishing diets [61]. It is possible that D-lactate dehydrogenase is
being used by M. haemolytica to detoxify D lactate and use it as an energy source.

A multicopper oxidase is present in a resistance region of all three ICEs exhibiting AMR
(Fig 8B). Multiple roles have been proposed for multicopper oxidases that include iron trans-
port and copper resistance [62]. Copper is a trace element added to cattle feed [63], the vast
majority of which, with all other heavy metals, is excreted in faeces and urine [64]. It is possible
the multicopper oxidase is playing a role in copper resistance as a result of environmental expo-
sure. It is also conceivable that the gene is functioning in iron sequestration, a function linked
with pathogenesis in M. haemolytica [65].

Conclusion

Multiple factors contribute to the virulence in M. haemolytica. Comparative analysis of whole
genome sequences of pathogenic and non-pathogenic serotypes has highlighted sequence
diversity and functional differences in key virulence factors, in particular iron acquisition and
outer membrane proteins. Overall, S2 genomes contained fewer intact prophages than S1 and
S6 strains, possibly affecting virulence profiles as some phage were shown to harbour genes
associated with virulence. It is also possible that CRISPR-Cas is playing a role in the surface
expression of sialic acid residues on the surface of SI and S6 strains contributing to immune
evasion or adhesion during infection. Integrative conjugative elements were found in all but 2
strains and are likely playing a role in enhancing host survival in strains through the generation
of multidrug resistant cassettes. It is possible that these elements are regulating their dissemina-
tion within populations through toxin-antitoxin and entry exclusion systems. This holds impli-
cations for the spread of AMR within M. haemolytica populations. Multiple targets for vaccine
design against M. haemolytica were identified that hold promise towards developing a less anti-
microbial dependant strategy to manage this pathogen in agricultural settings.

Methods
Isolates

Eleven isolates of M. haemolytica representing serotypes 1, 2 or 6, from healthy, pneumonic or
cattle that succumbed to BRD were subject to whole genome sequencing (Table 1). These were
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selected from an archive of 532 isolates collected between 2007 and 2012 [4,18,65]. Candidates
were selected based on genotypic diversity, antimicrobial resistance profile, and geographical
location (i.e., Alberta, Canada; Nebraska, Texas, USA; and Nantes, France. Isolates collected

from lung tissue, nasopharyngeal swabs samples or tracheal aspirations were all represented
(Table 1).

DNA Extraction and Sequencing

Phenol: chloroform extraction was used to isolate genomic DNA from overnight cultures
grown on Tryptic Soy Agar with blood at 37°C. Briefly, M. haemolytica culture was suspended
in 700 uL of T1oE,5 (10mM Tris-HCl pH7.5; 25mM EDTA) and 175 pL of 5M NaCl, 35 uL of
10 mg/mL Proteinase K and 44 pL of 20% SDS were added and the mixture was incubated at
65°C for2 h until cells lysed. The lysed mixture was extracted once with phenol, once with phe-
nol:chloroform:isoamylalcohol (25:24:1) and twice with chloroform. Ammonium acetate (10
M) was added to the final aqueous fraction to achieve a final concentration of 0.5 M, followed
by 1 volume of isopropanol to precipitate the DNA. The DNA was gently spooled out, added
to a new tube containing ice-chilled 70% ethanol and centrifuged at 10,000 x g for 10 min to
obtain a DNA pellet. The supernatant was decanted and the tube was left open to allow the pel-
let to air-dry. The pellet was suspended in 100 pL of nuclease free deionized water.

Genomic library construction and sequencing for M. haemolytica H23 was performed by
Cofactor Genomics (St Louis, MO). A high-quality draft genome was generated using combined
assemblies of Roche 454 single-reads and paired-end reads generated using Illumina Genome
Analyzer IIx, with sequencing quality and assembly statistics previously described [66]. Library
construction and paired-end sequencing of the remaining10 M. haemolytica isolates was per-
formed using Roche-454 GS FLX Titanium platform by Genome Québec (McGill University,
QC) with draft genomes assembled using Newbler software. Details of the sequencing quality
and assembly of these 10 isolates is presented in supplemental material (S3 Table). All 11
genomes were annotated through the NCBI Prokaryotic Genome Annotation Pipeline [67].

Comparative analysis

Percent sequence identity between strains was determined using sequence alignment of the 11
genomes using Mugsy [68] The UPGMA phylogentic analysis was performed in Geneious v
6.1.8 (created by Bomatters, available from http://www.geneious.com/) using whole genome
alignments produced in Mauve [69]. The core, accessory and pan-genomes were calculated
using the pan-genomes analysis pipeline (PGAP)[70] with cluster analysis cut-off values set at
85% sequence identity over 90% of the sequence length. The PanGP program [71] was used to
analyze the pan-genome profile of the 11 M. haemolytica genomes with the inclusion of an
additional 10 M. haemolytica strains from public databases (S1 Table). For prophage analysis,
contigs were ordered based on alignment against M. haemolytica strain M42548 using progres-
sive Mauve [69], with concatenated contigs analyzed for prophage using PHAST [72]. Full
length prophage sequences were aligned and the Neighbour-Joining tree constructed using
MAFFT [73]. The resulting tree was rendered using PHYLIP v. 3.68 as part of the Phylemon?2
suite of tools [74]. Genes not annotated by PHAST were examined using PSI BLAST [75] and
the integrated microbial genomes system (IMG) [76]. Proposed arrangements for ICEs were
constructed by pairwise alignments against ICEPmul from P. multocida [77] and ICEMh1
from M. haemolytica [10] (GenBank accession numbers: CP003022, CP005383, respectively).
Where possible, in-house scripts were used to BLAST unassembled reads against previously
assembled ICEs to verify gaps. CRISPR/Cas regions were compiled using the CRISPRdD [78]
and alignments of individual prophage, CRISPR-Cas, ICEs and virulence genes were
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performed using Geneious v 6.1.8. When indicated, reference locus ID originate from
sequences in either M. haemolytica serotype 6 H23 (AOGP00000000), M. haemolytica M42548
(CP005383) or M. haemolytica M42548 (NC_021082).
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