
 International Journal of 

Molecular Sciences

Review

Integrins in the Spotlight of Cancer

Daniela Bianconi, Matthias Unseld and Gerald W. Prager *

Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna,
A-1090 Vienna, Austria; daniela.bianconi@meduniwien.ac.at (D.B.); matthias.unseld@meduniwien.ac.at (M.U.)
* Correspondence: gerald.prager@meduniwien.ac.at; Tel.: +43-1-40400-4445; Fax: +43-1-40400-60880

Academic Editor: Anthony Lemarié
Received: 18 October 2016; Accepted: 28 November 2016; Published: 6 December 2016

Abstract: Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands
depending on their composition and regulate all processes which enable multicellular life. In cancer,
integrins trigger and play key roles in all the features that were once described as the Hallmarks of
Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including
uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis
and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings.
Further on, given the paramount role of integrins in cancer, we will present novel strategies for
integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.

Keywords: integrins; cancer; proliferation; invasion; apoptosis; telomerase; angiogenesis; apoptosis;
contact inhibition; locomotion

1. Introduction

Integrins are obligate heterodimeric cell surface receptors, which are present in all nucleated
cells of the human body. Each integrin consists of one of 18 α- and one of eight β-subunits, giving
rise to a repertoire of 24 different integrins in mammals [1]. Integrins function as bridges between
the extracellular matrix (ECM) and the cytoskeleton and work as radars that detect changes in the
environment, enabling cells to react according the external milieu. Moreover, intracellular signaling or
changes in the cytoskeleton can regulate the affinity of integrins to components of the ECM [2], enabling
integrins with the ability to signal in both directions: in an outside-in and in an inside-out manner.

Integrins are involved in key developmental processes such as cell differentiation, cell adhesion,
cell migration, cell proliferation and cell survival and are expressed in all metazoans. The diversity and
at some extent, promiscuity, of the mammalian integrin subunits arose during evolution as organism
complexity increased from genes that were already present in protozoa such as in the apusozoan
protest Amastigomonas sp. [3,4]. Each cell type exhibit a specific range of integrins and this repertoire
changes according to the cellular or environmental input. In cancer, malignant cells change this
repertoire in response to changes in the components or stiffness of the ECM, in response to growth
factors or due to intracellular alterations such as activation of oncogenes.

Over the past years, considerable progress has been made in describing integrin signaling
pathways and new interaction partners of integrins. The scientific literature regarding integrins
is overwhelming in such a manner, that the term data smog coined by the journalist David Shenk
almost 10 years ago would perfectly apply in this context. Therefore, in this review we will highlight
the crucial contributions of integrins in The Hallmarks of Cancer, which were proposed for the first
time in the seminal article of Hanahan and Weinberg in 2000 [5,6]. We believe that the broad acceptance
and the influential power of this article resides in the fact that the authors could group common
characteristics of all cancer types together and classify them in only six hallmarks. Therefore, we
will pinpoint the role of integrins in the hallmarks of cancer by discussing the recent advances on
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cancerous integrins, providing the reader with a clear and updated overview of the role of integrins
in carcinogenesis. It is beyond the scope of this article to discuss meticulously integrin-mediated
pathways and thus, we will summarize the principal signaling pathways to facilitate the reading of
this review. Readers are referred to several articles that describe these mechanisms in detail.

Giving Light to Life

When trying to understand the role of integrins, one should bear in mind that cells are per se
sentenced to death. This means that cells need to receive inputs in order to live, proliferate, migrate and
die in a controlled manner and that cells need integrin to sense these inputs; otherwise multicellular
life would not be viable.

The most studied integrin mediated pathway is probably the focal adhesion kinase (FAK) signaling
pathway (Figure 1). Upon binding to its specific ligand, integrins cluster together and the cytoplasmic
tail of the β-subunit interacts physically with the four-point-one, ezrin, radixin, moesin (FERM)
domain of FAK, displacing it and allowing autophosphorylation of the tyrosine residue 397, which
act as docking site for members of Src family of tyrosine kinases that phosphorylate further tyrosine
residues (Y576 and Y577) leading to maximal FAK activation [7–9]. All adherent cells exhibit increased
activation of FAK [8]. The FAK-Src complex has multiple downstream effectors as summarized below.

Activated FAK-Src complex promotes the activity of a GTPase which belongs to the Ras
superfamily of small GTP-binding protein known as Rac1 (Ras-related C3 botulinum toxin substrate 1)
that stimulates protrusion formation by stimulating actin polymerization [10,11]. Rac1 activation is
involved in spreading and in the early stages of migration. At the same time, Src can suppress the
activity of the RhoA GTPase upon binding to fibronectin via α5β1 [12]. This relieves cytoskeletal
tension, allows cell spreading and inhibits migration [12,13]. At later stages of cell spreading or for
instance, by constitutive activation of αvβ3 via ligand binding, RhoA activity leads to the formation of
stress fibers and promotes migration (Figure 1(1)) [12,14]. The reader can find an excellent explanation
of this interplay in [15] and a detailed description of integrin mediated cell migration here [16].

In addition, phosphorylation of FAK leads to the Ras-mediated activation of the mitogen-activated
protein (MAP) kinase pathway (MAPK/ERK pathway), which is associated with proliferation and
tumorigenic behavior (Figure 1(2)). Through this pathway several transcription factors such as the
oncogene c-myc and c-jun are activated via phosphorylation and therefore, the activation of the MAPK
pathway leads to the transcription of genes that are important for cell proliferation and cell cycle
progression [17,18]. This pathway can be activated by cell adhesion (e.g., binding of α5β1 to fibronectin)
or growth factors (such as epidermal growth factor (EGF)) [18].

Moreover, phosphorylated FAK acts as docking site for phosphatidylinositol 3-kinase (PI3K),
which leads to the activation of the serine/threonine protein kinase AKT (AKR mouse thymoma
kinase) via phosphoinositide-dependent kinase-1 (PDK1) [19,20]. In cancer, AKT signaling pathway
(Figure 1(3)) can be activated through αvβ3 integrin and promotes for example survival by targeting
the pro-apoptotic Bcl-2 related protein known as Bcl-2-antagonist of cell death (BAD) [21]. In addition,
if cells have sufficient nutrients, AKT activation leads to the activation of the mammalian target of
rapamycin (mTOR) pathway, which enhances mRNA translation of pro-proliferating, pro-migrating
and pro-survival genes (such as vascular endothelial growth factor (VEGF)) and lipid synthesis [22,23].
The AKT signaling pathway can also lead to the phosphorylation of Yes-associated protein (YAP)
which acts as an apoptotic suppressor [21]. The activation of YAP represents a cross-talk with a
newer signaling pathway known as Hippo pathway. This pathway controls organ size by regulating
cell proliferation and apoptosis [24]. It consists of more than 30 components which have two major
downstream effectors: YAP and TAZ (transcriptional coactivator with PDZ-binding motif) [24,25].
When these transcriptional coactivators translocate into the nucleus, they bind to TEA domain (TEAD)
transcription factor family and induce expression of genes that promote proliferation, survival and
migration (such as c-myc and survivin) [24,26].
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(ROCK) [28]; (2) Integrin mediated FAK activation triggers the mitogen-activated protein kinase 
(MAPK) pathway. Different transcription factors are phosphorylated, leading to the expression of 
pro-proliferation genes; (3) The PIP3K/AKT pathway activation leads to enhanced translation of  
pro-survival and pro-proliferation genes via the mammalian target of rapamycin (mTOR) pathway. 
The phosphatidylinositol-3-phosphate kinase/AKR mouse thymoma kinase (PIP3K/AKT) pathway 
cross-talk with the Hippo pathway via Yes-associated protein (YAP). YAP is a transcription factor 
that can induce for example expression of the anti-apoptotic proteins survivin and Bcl-xL [29].  
(Of note, there are a plethora of cross-talks between all these pathways that are not discussed here  
for simplication purposes). Arrows: interaction with another protein or promotion of a specific cell 
behavior; T-bar: inhibition; dotted boxes: effect/consequence from the signaling cascade; big ellipse in 
green: cell; small ellipse in white: nucleus. 

The cytoplasmic tails of β1 and β3 can also interact with the serine/threonine kinase ILK 
(integrin-linked kinase), which is activated by binding phosphatidylinositol-3-phosphate (PIP3) and 
leads to the activation of AKT, glycogen synthase kinase 3 (GSK3) and phosphatase holoenzyme 
inhibitor 1 (PHI-1) [30,31]. Under normal conditions, ILK signaling is involved in nerve growth 
factor-stimulated neurite outgrowth and as it was recently reported, in wound repair by regulating 
fibroblast migration and its differentiation to myofibroblasts [32,33]. 

Several lines of evidence suggest that cell spreading might occur primarily via the “inside-out” 
integrin signaling pathway as depicted in Figure 2. Unlike what happens in the outside-in pathway, 
integrins are not directly activated by extracellular ligands but by intracellular events, which activate 
or modulate integrin ligand affinity. In resting cells, integrins are present on the plasma membrane 
in a low-affinity state and when they are needed, they are activated (reviewed in [2,34,35]). Talin is 
the major intracellular activator of integrins [34]. Upon activation of talin, talin is recruited to domains 
of the plasma membrane rich in phosphatidylinositol 4,5-bisphosphate (PIP2) and pulls the 

Figure 1. Schematic representation of the integrin outside-in signaling. Through the activation
of focal adhesion kinase (FAK) via integrins, Src is activated (not shown). (1) Rac1 GTPase is
recruited to the plasma membrane, GDP-GTP exchange occurs and controls actin assembly in nascent
protrusions [11,27]. At later stages, RhoA activity increases, leading to the formation actin stress
fibers and stimulates actomyosin contractility via its downstream effector Rho-associated protein
kinase (ROCK) [28]; (2) Integrin mediated FAK activation triggers the mitogen-activated protein kinase
(MAPK) pathway. Different transcription factors are phosphorylated, leading to the expression of
pro-proliferation genes; (3) The PIP3K/AKT pathway activation leads to enhanced translation of
pro-survival and pro-proliferation genes via the mammalian target of rapamycin (mTOR) pathway.
The phosphatidylinositol-3-phosphate kinase/AKR mouse thymoma kinase (PIP3K/AKT) pathway
cross-talk with the Hippo pathway via Yes-associated protein (YAP). YAP is a transcription factor that
can induce for example expression of the anti-apoptotic proteins survivin and Bcl-xL [29]. (Of note,
there are a plethora of cross-talks between all these pathways that are not discussed here for simplication
purposes). Arrows: interaction with another protein or promotion of a specific cell behavior; T-bar:
inhibition; dotted boxes: effect/consequence from the signaling cascade; big ellipse in green: cell; small
ellipse in white: nucleus.

The cytoplasmic tails of β1 and β3 can also interact with the serine/threonine kinase ILK
(integrin-linked kinase), which is activated by binding phosphatidylinositol-3-phosphate (PIP3) and
leads to the activation of AKT, glycogen synthase kinase 3 (GSK3) and phosphatase holoenzyme
inhibitor 1 (PHI-1) [30,31]. Under normal conditions, ILK signaling is involved in nerve growth
factor-stimulated neurite outgrowth and as it was recently reported, in wound repair by regulating
fibroblast migration and its differentiation to myofibroblasts [32,33].

Several lines of evidence suggest that cell spreading might occur primarily via the “inside-out”
integrin signaling pathway as depicted in Figure 2. Unlike what happens in the outside-in pathway,
integrins are not directly activated by extracellular ligands but by intracellular events, which activate
or modulate integrin ligand affinity. In resting cells, integrins are present on the plasma membrane in
a low-affinity state and when they are needed, they are activated (reviewed in [2,34,35]). Talin is
the major intracellular activator of integrins [34]. Upon activation of talin, talin is recruited to
domains of the plasma membrane rich in phosphatidylinositol 4,5-bisphosphate (PIP2) and pulls
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the cytoplasmic β tail of integrins inducing a conformational change that allows ligand binding
(active form) (Figure 2(2)) [34]. Kindlins (kindlin-1, kindlin-2 and kindling-3) are other intracellular
proteins of primordial importance in the modulation of integrin affinity [36]. These proteins are located
at focal adhesion sites bound to the integrin cytoplasmic β tails and to the cytoskeleton and are essential
for integrin signaling [37]. Loss of kindlins leads to integrin signaling dysregulation. For instance,
it was reported that, knockout of kindlin-2 in mice leads to peri-implantation lethality caused by
detachment of cell from the basement membrane [38]. A paper recently published, demonstrated
that loss of kindlin-1 leads to the inhibition of keratinocyte electrotaxis (as it was also observed by
inhibition of β1 integrins) [39]. In leukocytes, kindlin-3 activates integrin α4β1 of resting cells to adhere
to vascular cell adhesion molecule-1 (VCAM-1) [40]. Studies in hemepatopoetic cells have previously
shown that PI3K activity modulates the conformational changes of β1-integrins upon stimulation
with pro-coagulation and pro-inflammatory factors [41–43] (Figure 2(1)). These observations were
confirmed in adherent cells [43].
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Figure 2. Inside-out Integrin mediated cell spreading. Cell spreading is described as the deformation
of the plasma membrane due to extensions of protusions, leading to the adhesion between cell and
substrate [44]. (1) Upon stimulation with cytokines, PI3K is activated. On the one side, PI3K activation
phorphorylates AKT and the downstream effectors Rac and Cdc42 are activated [45]. These are small
GTPases that are involved in the reorganization of the cytoskeleton which leads to the formation
of lamelipodia and filipodia. On the other side, it was shown that PI3K induces activity of the β2
integrin subunit via ARAP3 (Arf GAP and Rho GAP with ankyrin repeat and PH domain 3) [46].
ARAP3 is Rap-regulated GTPase-activating protein for RhoA and Arf6 which are resposible for actin
modulation [47–49]; (2) Accumulation of PIP2 leads to the recruitment of talin to the plasma membrane,
enabling a physical interaction between talin and the β1 and β3 integrin subunits which induces
a conformational change in the integrin heterodimers that increases integrin affinity to its ligand.
Kindlins are also essential for the inside-out activation of integrins [50]. In fibroblasts, kindlin-2 binds
and activates FAK, inducing formation of lamellipodia [51]. Arrows: interaction with another protein
or promotion of a specific cell behavior; T-bar: inhibition; dotted boxes: effect/consequence from the
signaling cascade; big ellipse in green: cell; small ellipse in white: nucleus.
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2. Hallmarking Cancer

The term cancer describes a variety of diseases that have one common feature: the loss of control.
Tumor cells stop performing their specific functions and start an independent behavior regardless
the signals they receive from the environment. Despite the infinite malignant cell behaviors and
disease heterogeneity, Hanahan and Weinberg proposed for the first time in 2000 a model consisting
of six essential acquired properties that are shared by all tumor cells [5]. These Hallmarks of Cancer
are sustained proliferation, self-sufficiency, invasion and metastasis, limitless replicative potential,
promotion of angiogenesis and evasion of apoptosis [5]. In this review, we will discuss how integrins
contribute to all these hallmarks, playing a paramount role in tumorigenesis.

2.1. Sustaining Proliferative Signaling

Mature differentiated epithelial cells are quiescent and anchored in the ECM via integrins.
Growth of postmitotic tissue resides mainly on growth of mass (hypertrophy) via the PI3K-Akt-mTOR
pathway and not on an increase in cell number [52,53]. A strict control of cell proliferation is essential
in multicellular organisms to ensure correct tissue function. In this context, integrins expressed in
normal tissue play an essential role by mediating firm adhesion to the ECM ensuring tissue integrity.

In cancer, the strict control of proliferation is lost due to extrinsic factors such as the presence of
mitogenic compounds (growth factors, cytokines or exogenous substances) or intrinsic factors such
as activation of oncogenes, converting cancer cells in a self-sufficient entity. In this context, integrins
play a crucial role by directly promoting proliferation or indirectly, by interacting with growth factor
receptors [54]. The contribution of integrins to the promotion of cell proliferation is illustrated in
Figure 3. The crosstalk between growth factors and integrins has been reviewed in detail in [55–58] and
therefore we will not discuss exhaustively these interactions here. Table 1 highlights some interactions
between growth factor receptors and integrins in cancer that are involved in proliferation. Three types
of interactions can be distinguished: (1) direct interaction; (2) modulation of expression levels and
(3) reciprocal activation. In the first type of interaction, there is a physical contact between a specific
integrin and a growth factor receptor (sometimes via another protein or growth factor), which leads to
the formation of a complex and a potentiation of the respective signaling pathway. The second type
refers to an indirect interaction, by which integrins modulate the expression level of the growth factor
receptor, for instance by modulating the turnover of the growth factor receptor. The third type implies
that the activation of the growth factor receptor leads to integrin activation and vice versa.

The two most prominent integrins involved in tumorigenesis are αvβ3 and αvβ5. Integrin αvβ3
is expressed at low levels on resting epithelial cells, however it is overexpressed in a wide variety of
cancers. In ovarian cancer, integrins αvβ1 and αvβ3 were shown to enhance proliferation via ILK and
blocking αv was sufficient to arrest cell cycle [59]. Further on, evidence suggest that αvβ3 also regulates
epidermal growth factor receptor (EGFR) promoter activity and influences co-clustering of the receptor
on the ovarian cancer cell surface [60]. In vitro experiments have shown that normal human gland
thyroid cells express αvβ3 upon treatment with hepatocyte growth factor/scatter factor (HGF/SF) [61].
In accordance with these findings, papillary thyroid carcinoma cells indeed express HGF and αvβ3,
leading to an autocrine loop that controls integrin activation and enhancing proliferation [61]. Loss of
salt bridge formation in the cytoplasmic tail of αvβ3 enhances adhesion to vitronectin, recruits talin
and induces proliferation [62].
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Table 1. Crosstalk between growth factor receptors and integrins.

Type of Interaction Interaction
Partner Integrin Cell Line Description and References

Direct interaction
between integrins and
growth factor receptors
and potentiation of
signaling pathways

IGF-1R α6β4 MCF-7 Integrin-IGF1-IGF1 receptor ternary complex
formation [63].

FGFR αvβ3 K562 FGFR1-FGF1-integrin αvβ3 ternary complex
formation [64].

c-Met α5β1 SKOV3ip1 and
HeyA8

Upon binding to fibronectin, α5β1-integrin
interacts directly with the receptor tyrosine kinase
c-Met and activates it in a ligand-independent
manner [65]. (Figure 3(1))

Regulation of
expression level of
growth factor receptors
by integrins

EGFR β1 A549
Downregulation of the β1 subunit leads to an
increased level of the EGFR at the plasma
membrane [66].

EGFR α6β4 AsPC1, Suit-2,
and Panc-1

Integrin α6β4 leads to the recruitment of the c-Cbl
ubiquitin ligase to the growth factor receptor and
this leads to a reduced EGFR degradation [67].

EGFR α6β4 MDA-MB-231 Crosslinking of integrin induces EGFR clustering
and promotes EGF-mediated signaling [68].

Activation of integrins
via growth factor
receptor signalling

EGFR αvβ5 FG EGFR ligand binding induces Rap1 activation and
this leads to the activation of αvβ5 [69].

IGF-1R: insulin-like growth factor 1; FGFR: fibroblast growth factor receptor; c-Met: met
proto-oncogene/hepatocyte growth factor receptor; EGFR: epidermal growth factor receptor; MCF-7:
breast cancer cell line Michigan Cancer Foundation-7; MDA-MB-231: breast cancer cell line; FG: pancreatic
carcinoma cell line.

We would like to underline that integrins have also other interaction partners that are essential
for integrin-mediated cell behavior (reviewed in [70–72]). One of them is the heterodimer amino
acid transporter CD98, which consists of one light and one heavy chain [73]. While the light chain is
responsible for the amino acid transport, the heavy chain (CD98hc) interacts with the cytoplasmic tails
of the β1 and β3 integrin subunits [74] and confers integrins with “stiffness” that allows them to trigger
their signaling pathway [75] (Figure 3(4)). Noteworthy, the interaction between CD98hc and integrins
and subsequent activation of PI3K was found to be necessary for malignant transformation [76,77].
In line with these findings, we and others identify CD98hc as marker of different tumor types, such as
pancreatic [78], prostata, gastric, tongue and renal cancer (see [79–86]).

It is well known that the activation of proto-oncogenes leads to carcinogenesis. To date, there
is only one oncogene known that directly leads to an enhanced transcription of cancerous integrins.
It was recently shown that the oncogene MYC (v-myc avian myelocytomatosis viral oncogene homolog)
leads to an upregulation of α1β1 integrin by binding to two promoter elements [87] (Figure 3(3)).
Integrin α1β1 can regulate collagen synthesis and might confer cells with the unique ability to adhere
and migrate on collagen IV [88]. In addition, β1- and αv-ligand binding can induce activation of the
EGF-receptor in the absence of ligands, leading to the activation of the MAP pathway and facilitating
proliferation [89]. Noteworthy, α1β1 integrin negatively regulates EGFR under normal conditions.
However, deletion of α1 in mesangial cells leads to reduced levels of calveolin-1, a protein that controls
EGFR inactivation via receptor internalization [90]. This downregulation of calveolin-1 impairs EGFR
internalization enabling EGFR activation [90]. Bartolomé et al. have recently reported that α2β1
can interact with cadherin-17 (CDH17) and that this binding leads to an increase in cyclin D1 and
proliferation in colon cancer cells that metastasize to the liver [91].

The most well described cytokine involved in the expression of pro-proliferating integrins in
cancer is tumor necrosis factor-α (TNF-α), which is a pro-inflammatory cytokine that is involved in
tumor associated inflammation [92]. TNF-α induces the expression of the β1 integrin subunit and
specially, α2β1 integrin via the MAP kinase pathway (Figure 3(2)) [93]. It is broadly accepted that
β1 integrin plays an important role in promoting proliferation and transformation. For instance,
β1 expression regulates type 1 insulin-like growth factor receptor (IGF-IR) via Grb2-associated
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binder-1 (Gab1), which is responsible for the inhibition of phosphorylation of IGF-IR, leading to
anchorage-independent growth of prostate cancer [94]. Further on, downregulation of β1 inhibits
IGF-IR and AKT activation [95].

Although alterations in integrin expression are found in different types of cancer, there is not
much evidence about exogenous compounds that induce alterations in integrin expression and that
affect directly cell proliferation. The most prominent example might be the cell treatment with
the plant- derived compound phorbol ester. Upon treatment with this substance, promonocytic
cell lines induced cellular adherence and growth inhibition via upregulation of the β2 integrin
subunit [96]. Fish oil fatty acids (e.g., ω3 and ω6 polyunsaturated fatty acids) were shown to
inhibit in vitro integrin-mediated proliferation by repressing ILK in human lung cancer [97]. Of note,
regarding endogenous components that modulate integrin-mediated proliferation, it was found
that cell treatment with calcitriol (vitamin D) inhibited cell proliferation and downregulated α1
integrin subunit in colon cancer cells and cultured hepatic stellate cells [98,99]. In prostate cancer cells,
treatment with calcitriol downregulated α6β4 via downregulation of parathyroid hormone-related
protein (PTHrP) [100]. These components should be further explored and might represent interesting
supplements for cancer therapies.
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Figure 3. Role of integrins in tumor cell proliferation. (1) The crosstalk between integrins and
growth factor receptors (summarized in Table 1) promotes cancer cell proliferation. For instance,
in ovarian cancer cells c-Met is activated via phosphorylation upon binding of α5β1 to fibronectin [65].
This activation leads to activation of Src and FAK and promotes proliferation and invasion [65];
(2) Tumor necrosis factor α (TNF-α) leads to an increased expression of integrins such as α2β1 and
αvβ3 [93,101]; (3) The oncogene MYC (v-myc avian myelocytomatosis viral oncogene homolog) can
bind to promoter elements of α1β1 and leads to enhanced transcription of this integrin [87]; (4) Integrins
can interact with transmembrane receptors such as CD98hc. CD98hc modulates integrin signaling by o
conferring integrins with “stiffness” that allows them to trigger their signaling pathway [75]. (Of note,
the DNA cartoon was designed by Freepik). Big ellipse in green: cell; small ellipse in white: nucleus.



Int. J. Mol. Sci. 2016, 17, 2037 8 of 27

2.2. Evading Growth Suppressors

In order to be able to tightly control tissue architecture and function, cells do not only need
to receive signals to start proliferation and progress through the cell cycle, but also to respond to
anti-growth signals such as contact inhibition or activation of tumor suppressors [5].

Almost a half century ago, it was already known that cells stop proliferation and movement
if they get in touch with other cells [102]. The extracellular proteins nectin-3 and nectin-like
molecule-5 (Necl-5) are involved in a phenomenon known as contact inhibition of locomotion. Necl-5
interacts heterophilically with nectin-3 when proliferating cells collide to another [103]. Necl-5 is then
downregulated and nectin-3 trans-interacts with nectin-1, leading to the inactivation of αvβ3 integrin,
recruitment of cadherins and formation of adherent junctions [103]. In cancer, Necl-5 can interact
in cis with αvβ3 integrin and induce clustering at the leading edge of a moving cell, thus enhancing
migration [104]. Additionally, Necl-5, integrin αvβ3 and platelet-derived growth factor receptors
(PDGFR) formed a complex that inhibits RhoA in an Src-dependent manner upon platelet-derived
growth factor (PDGF) stimulation, allowing cells to migrate [105]. Dysregulation of contact inhibition
of locomotion was found in vitro in prostate cancer cells via activation of EphB3 and EphB4 and
in vivo, this was observed in embryonic fibroblasts and neural crest [106,107].

Cells also exhibit another mechanism of control known as contact inhibition of proliferation.
The tumor suppressor Merlin, encoded by the gene neurofibromatosis type 2 (NF2) is responsible for
the regulation of EGFR in response to cell contact [108]. The mechanism of this occurrence is not yet
understood but it was observed that Merlin binds to EGFR, blocking its internalization and this might
immobilize the EGFR on the plasma membrane and stabilize cell junctions [108]. NF2 mutations are
found in different pathologies, especially in malignant mesothelioma and Neurofibromatosis type 2.
In Neurofibromatosis type 2, Merlin was found to co-localize with β1 integrin [109]. However, recent
in vitro experiments showed that integrin-mediated adhesion to fibronectin was sufficient to inactivate
Merlin and activate mTORC1 signaling pathway [110]. Further on, Merlin might also regulate integrin
activity by binding to paxilin bound to β1 and HER1 at the plasma membrane [111]. Merlin was
also shown to interact with another protein known as Kibra and to activate the Hippo pathway,
which is involved in cell contact inhibition and tissue growth control [112]. The final goal of this
signaling pathway is to achieve the translocation of a transcription factor known as YAP into the
cytoplasm, so that it cannot bind to the DNA and promote transcription of growth promoting
genes [113,114]. Additionally, it was found that integrin α6β1-mediated binding to the extracellular
matrix component laminin-511 produced by breast cancer stem cells activates the Hippo transducer
TAZ [115]. Further on, it was found that integrin α5 subunit is a target gene of TAZ. TAZ promotes
formation of laminin-511 [115]. In this case, expression and ligand binding of integrin α6β1 might be
a crucial step to initiate an uncontrolled and self-sustaining mechanism of growth of breast cancer
stem cells.

The most commonly mutated tumor suppressor gene in cancer is TP53. Not only do wildtype
and mutated p53 lose the ability to inhibit cell cycle progression but also they can acquire the ability to
promote tumorigenesis [116]. Several groups have reported that there is a crosstalk between integrins
and p53 that determines cell fate. In epithelial cells, apoptosis is induced if cells detach from the
ECM (“ligand-free integrins”) or if DNA damage occurs when cells are attached to the ECM via
integrins and wildtype p53 is present in the cell [117]. However, in some melanoma and sarcoma cell
lines, wildtype p53 levels decrease upon cell detachment, leading to less sensitivity to DNA-damage
and promoting cell survival [117]. Supporting these observations, Bachelder et al. demonstrated that
ectopic expression of integrin α6β4 in colon and breast cancer cell lines triggers wildtype p53-mediated
apoptosis, suggesting that ligand-free α6β4 might activate p53 [118]. Moreover, mutations in the
TP53 gene also lead to an altered interaction with integrins. For instance, Muller et al. have showed
that mutant p53 leads to an increased recycling of α5β1 and EGFR by indirectly promoting the
interaction between α5β1 and the Rab11 effector Rab-coupling protein (RCP), which is necessary for
the EGFR-α5β1 recycling to the plasma membrane [119]. This faster recycling leads to an increased
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cancer cell invasion and random migration [119]. In glioblastoma multiforme, another interplay
between α5β1 and p53 was observed [120]. Tumors with wildtype p53 and high expression of
α5 integrin are resistant to temozolomide chemotherapy [120]. However, inhibition of the mouse
double minute homolog (MDM)-p53 complex by the small inhibitor Nutlin-3 restores sensitivity to
temozolomide chemotherapy and reduces α5 expression [120]. In ovarian cancer, mutated p53 enables
α5β1 integrin-mediated anchorage independent growth [121].

2.3. Activating Invasion and Metastasis

Unlike mesenchymal cells, epithelial cells have the ability to migrate only during development
or tissue renewal, such in the gut or wound repair [122]. To be able to migrate, tumor cells have to
acquire the ability to get rid of the cell-cell contacts, cross the basal membrane, cross the stroma, enter
the circulatory system, invade a new distal site and colonize the new organ. Many excellent reviews on
these issues have recently been published [123–127] and thus, we will present here some mechanisms
which lead to integrin expression and which might initiate tumor invasion.

The first step involved in cell invasion is known as epithelial-mesenchymal transition (EMT) [128].
One of the major EMT inducers is the cytokine TGF-β1 [128]. TGF-β1 resides in the ECM in an
inactive form bound to two peptides known as latency-associated peptide (LAP) and one of four latent
TGFβ-binding protein (LTBP) [126]. Integrins αvβ3, αvβ5, αvβ6, αvβ8 and an unidentified β1 can
bind to the tripeptide Arg-Gly-Asp (RGD)-motif of the LAP protein, inducing a conformational change
and exposing TGF-β1 to the adjacent cells [126,129,130]. Upon binding to the receptor, TGF-β induces
downregulation of epithelial proteins such as E-cadherin and upregulation of mesenchymal proteins
such as N-cadherin. TGF-β1 upregulation leads not only to an upregulation of several integrins, such
as the αv and β6 integrin subunits [131], but also to an alteration of components of the ECM, which
in turn are integrin ligands [132]. In vitro, TGF-β1 was found to increased levels of αvβ3 integrin,
PI3K, Akt and NF-kappaB-dependent pathway [133]. Further on, TGF-β signaling upregulates EGFR,
which enhances malignancy, as it was demonstrated that elevated EGFR levels were sufficient to
transform breast cells in vitro [134]. Moreover, during EMT and the reverse mechanism known as
mesenchymal-epithelial transition (MET), FGFR1 was found to be upregulated upon stimulation with
TGF-β1 in a breast cancer cell model [135]. A novel study showed that FGFR is associated to E-cadherin,
but under expression of β3 integrin subunit, which is upregulated upon TGF-β stimulation [136],
FGFR dissociates from E-cadherin and associates with β3 integrin, leading to Erk1/2 phosphorylation
in response to FGF2 [137,138]. Bone morphogenic protein 7 (BMP-7) is a cytokine that belongs to the
TGF-β superfamily [139] and was shown to induce invasion in hepatocellular carcinoma cells [140],
breast cancer cells [141] and chondrosarcoma cells [142]. In chondrosarcoma cells, BMP-7 enhances
αvβ3 integrin expression through the c-Src/PI3K/Akt/IKK/NF-κB signaling pathway [142]. In breast
cancer cells however, αvβ3 expression depends on TGF-β2 induction and its expression was shown to
be sufficient and necessary to activate Slug, a transcription factor that induces EMT [143].

Cantor et al. analyzed the proteome of colorectal cancer cell lines after overexpression of the β6
integrin subunit [144]. They found that this overexpression was sufficient to enhance proliferation and
decrease cell adhesion to the ECM [144]. Of note, TGF-βR1 was upregulated (and not TGF-β1) [144].
Additionally, the downregulation of IGF2R and upregulation of glutathione-S-transferase pi 1 might
contribute to the proliferative phenotype [144].

Recently, a novel mechanism for regulation of EMT-MET was reported. RAD21 is a subunit of the
cohesion complex which is responsible for maintaining the correct structure of chromatids during the
S-phase, mitosis and meiosis [131]. Yun et al. reported that RAD21 is expressed in epithelial breast
cancer cells but not in mesenchymal cancer cells and showed that depletion of RAD21 in epithelial
cancer cells created a permissive transcriptional environment within the TGFB1 and ITGA5 loci, leading
to a higher expression of these integrins [145]. Shibue et al. demonstrated that metastatic cells in
the lung proliferation are mediated by β1-mediated signaling [146]. After successfully achieving a
mesenchymal phenotype, tumor cells can initiate migration. In this context, the microenvironment
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plays an essential role. Carcinoma associated fibroblasts (CAFs) contributes to migration by secreting
growth factors (such as HGF and PDGF) that induce survival, proliferation and motility in tumor cells,
by inducing angiogenesis via VEGF and altering the ECM [147]. Recently, it was shown that CAFs led
migration of colon cancer cells via surface associated FGF-2, which binds to the FGFR located on the
surface of cancer cells, activating SRC and inducing integrin αvβ5 expression which leads to adhesion
of colon cancer cells to fibroblasts [147].

Tumor cells per se are also able to modify the ECM so that they can migrate through it.
Ovarian cancer cells with elevated levels of αvβ6 showed in vitro a higher expression of urokinase-type
plasminogen activator (uPA), uPA-receptor (uPAR) and matrix metalloproteinases (MMP) such as
MMP-2 and MMP-9 [148]. Upregulation of MMP-2 and MMP-9 caused by overexpression of αvβ6
was also observed in squamous carcinoma cells [149]. Recently, Dutta et al. showed that αvβ6 is
necessary to express TGFβ1-mediated MMP-2 by binding to TGFβRII and activating Smad3 [150].
In line with these results, it was shown in an in vivo prostate cancer model that αvβ6 induces MMP2
which contributes to osteolysis in prostate cancer bone metastasis [151].

Not only does uPA-uPAR cascade play a crucial role in ECM degradation and tumor invasion
but also in angiogenesis, inflammation, immunity and coagulation [152–155]. In tumor cells, uPAR
modulates β1 and β3 integrin signaling by binding to these integrins in a vitronectin-dependant
manner [156]. uPA-mediated ECM degradation confers the invasive cells a mesenchymal phenotype.
However, a recent study reported that uPAR-integrin interactions are necessary to confer malignant
cells with the so-called amoeboid invasion, which enables malignant cells to move fast through the
tissue [157]. Furthermore, uPAR interacts with the α5β1-fibronectin complex, leading to a constitutive
ERK1/2 activation [158]. Downregulation of uPAR was shown to be sufficient to induce a cancer cell
dormant state [158].

2.4. Limitless Replicative Potential

Another characteristic of cancer cells is that they can proliferate indefinitely, while normal cells
have limited proliferation capacity [159]. This phenomenon has already been observed by Hayflick et al.
in 1961 [159] and to date, it is common accepted that cells can enter senescence or crisis [5,6]. This brake
in proliferation can be induced upon DNA damage or aging [160]. Further on, normal cells have an
internal biological clock in form of repetitive DNA sequences at the end of chromosomes which are
known as telomeres [161]. The telomeres act as protecting cap and because the replication machinery of
the cell, can not copy this ends, they get shorter with each cell division [162]. When telomeres achieve
a critical length, cells recognize them as DNA damage, activate the tumor suppressor p53 and cells
enter senescence or apoptosis [160]. Telomere sequences can be prolonged via a reverse transcriptase
known as telomerase [163]. It is generally accepted that only few normal cell types such as male
germ-line spermatocytes and around 90% of all cancers exhibit telomerase activity [164,165]. In adult
mice, telomerase was detected in a positive α6-integrin subpopulation containing spermatogonia and
enriched in spermatogonial stem cells [166].

Regarding the role of integrins in the limitless replicative potential of cancer cells, Ponnala et al.
made a significant contribution. This group showed that downregulation of MMP-9 in glioblastoma
cells leads to a downregulation of hTERT and that this is mediated by β1 integrin [167]. What is more,
downregulation of hTERT via siRNA in cancer cell lines leads to the inhibition of cell growth and
proliferation [168]. In this study, silencing of hTERT lead to the downregulation of the integrin αV,
among other genes [168].

2.5. Sustained Angiogenesis

Cancer cells as well as normal cells need a constant supply of nutrients and oxygen to be able
to live. It is widely accepted that tumors lack the ability to exceed a diameter of 2 mm in the
absence of functional blood vessels. They overcome this limitation by inducing the formation of
new vessels from pre-existing ones [160]. The formation of new vessels facilitates tumor survival,
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tumor invasion, and metastasis. Endothelial cells that are in the surroundings of the tumor are
in a quiescent state. However, when tumor cells start secreting pro-angiogenic molecules, there
is an imbalance of pro-angiogenic and anti-angiogenic molecules which leads to an angiogenic
switch [169,170]. VEGF and FGF2 and their receptors are the most potent activators of angiogenesis
and these signaling axes promote several mechanisms that contribute to the formation of new vessels,
such as the remodeling of the ECM via MMPs and uPA and migration and proliferation of endothelial
cells [171]. In this context, three endothelial integrins play crucial roles: αvβ3, αvβ5 and α5β1 [172,173].
VEGF-mediated angiogenesis occurs via αvβ5, while FGF-mediated angiogenesis occurs via αvβ3
and α5β1 [174]. The integrin-mediated processes involved in tumor angiogenesis are reviewed
somewhere else [172,173,175]. Most of the articles related to tumor angiogenesis focused on the
integrins being upregulated on the endothelium, which promote migration and proliferation of
endothelial cells. The role of integrins on endothelial cells and/or promising therapies targeting these
pro-angiogenic integrins have already been discussed by us as well as by other authors in several
publications [161–165,176]. For this reason, in this review, we will further analyze the opposite side of
the coin and will only pinpoint which integrins have their expression altered in tumor cells during
processes that trigger tumor angiogenesis.

In cancer, hypoxia might be the major initiator of tumor angiogenesis. When cells are exposed to a
low oxygen partial pressure, the hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α) are stabilized
and translocate into the nucleus [177,178]. Once in the nucleus, these factors can bind to hypoxia
response elements (HREs) and regulate at least transcription of 70 different genes [179]. On one side,
this leads to an upregulation of specific integrins such as αvβ3 and the β1 and α6 integrin subunits,
which mediate the invasive phenotype of tumor cells [180–182]. Moreover, a recent study revealed that
HIF-1α activates ILK transcription and that the activation of this kinase stimulates HIF-1α expression
via the mTOR pathway, creating a sustained feedback loop that promotes EMT [183]. Another feedback
loop was reported in glioblastoma cells [184]. Under hypoxic conditions, αvβ3 or αvβ5 integrins are
recruited to the plasma membrane and regulate HIF-1α cellular levels through inhibition of GSK3-β
mediated by a small GTPase known as RhoB, which is activated by FAK [184].

Regarding the activation of tumor angiogenesis, the most prominent targets of HIF-1α are vascular
endothelial growth factor (VEGF), calcitonin receptor-like receptor (CRLR), stem cell factor (SCF) and
angiopoietin 2 (ANGPT2) [185–188]. Of note, VEGF does not only exert its effect on endothelial cells but
also on tumor cells. There is an autocrine and paracrine signaling loop that promotes tumorigenicity
(reviewed in [189]). In this context, specific integrins such as α6β1, αvβ3 and α9β1 cooperate with
growth receptors and activate several integrin-mediated pathways [189,190].

2.6. Evading Apoptosis

Under normal conditions, non-activated epithelial cells need a substrate to attach to ensure cell
polarity and cell survival. Per default, the apoptotic cell program must be suppressed and survival
signals are required to ensure cell viability [191]. Herein, we will focus on anoikis, which is the process
by which cells undergo a controlled death upon loosing contact with the ECM. Integrins are the
key protagonists of this process. When cells adhere to the ECM via integrins, the FAK-PI3K-AKT
and FAK-MAP kinase pathway are activated, preventing cells from death [192]. Benoit et al. clearly
explained this phenomenon in a recent review [193]. Integrin α8β1 is expressed in intestinal crypt
epithelial cells and upon ligand binding, it recruits vinculin to the focal adhesion complex forming a
complex with paxilin [193,194]. FAK is activated and turns on the PI3K/AKT pathway, leading to cell
survival. If there is no ligand, α8β1 has a different conformation and FAK can not be activated and the
PI3K-AKT pathway is switched off [193,194]. Further on, if there is no ligand, the integrin subunits
β1and β3 expressed in adherent cells recruit a protein involved in apoptosis known as caspase-8 to
the plasma membrane and activate it, leading to integrin-mediated cell death [195]. In keratinocytes,
caspase-8/β1 interaction leads to an internalization and progressive degradation of β1, leading to cell
death [196].



Int. J. Mol. Sci. 2016, 17, 2037 12 of 27

Cancer cells develop different strategies to overcome controlled cell death, such as upregulation
of receptor tyrosine kinases or small GTPases [197]. Cancer cells that detach from the substrate can
avoid anoikis by downregulating caspase 8 via promoter methylation [198]. This feature was found in
childhood neuroblastomas with amplification of the oncogene MYCN [198]. However, mutations are
very rare and other studies revealed that caspase-8 has a non-canonical function by promoting cell
migration [199,200]. Another mechanism exhibited by cancer cells is the phosphorylation of caspase-8
induced by EGF that enables interaction with PI3K, promoting cell migration (Figure 4(1)) [200].
A novel study revealed recently that cells can overcome anoikis via endocytosed active integrins that
continue signaling in endosomes [201] (Figure 4(2)). In this work, Alanko et al. demonstrated that
phosphorylated FAK localizes to Rab21-dependant endosomes containing active β1-integrin bound to
its ligand [201,202]. Another mechanism to evade cell death is the alteration of the integrin repertoire,
such as overexpression of the β1 integrin subunit [203]. Early studies showed that oncogenic signaling
leads to changes in the integrin heterodimers, as we described before in the case c-myc-mediated
expression of α1β1 integrin in colon cancer [204,205]. External stimuli can also alter the integrin
expression patterns. For instance, human melanocytes express αvβ3 at low levels and can not attach
to the collagen-rich dermis. This promotes apoptosis. However, melanoma cells upregulate αvβ3
expression after ultraviolet B(UVB) exposure enhancing melanoma cell adhesion and migration
(Figure 4(3)) [206]. In brain capillaries, hypoxia leads to overexpression of α5β1 and mechanical stress
leads to upregulation of β1 in gliomas and breast cancer cells [207,208].
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3. Hotspots for Anticancer Treatment

In this review, we discuss some advanced mechanisms that envision how integrins contribute
to all the Hallmarks of Cancer once proposed by Hanahan and Weinberg [5] (Table 2). In cancer,
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integrins are deregulated in part by enhanced transcription induced by oncogenes, alterations in the
chromatin structure, overexpression of growth factors and growth factor receptors or changes in the
ECM. The indispensable role of integrins in carcinogenesis is also exposed by the fact that integrin
single-nucleotide polymorphisms (SNP) seem to have a great impact in tumor agressiveness, survival
and suceptibility to thrombus formation in cancer [209–212]. It is, therefore, unquestionable that
integrins are promising targets for cancer treatment.

Table 2. Summary of the contributions of integrins in the Hallmark of Cancer. (The reader will find all
the references in the main text).

Hallmark of
Cancer Integrin’s Contribution

Sustaining
proliferative
signalling

• Integrins can potentiate growth factor signalling pathways that promote proliferation via (1) direct
binding and synergy; (2) modulation of expression levels of growth factor receptors or (3) by direct
activation of growth factor receptors.

• The oncogene MYC and cytokines such as TNF-α can upregulate pro-proliferating integrins.
• Integrin interactions with other proteins such as CD98hc and transmembrane CDH17 that

promote proliferation.
• Exogenous and endogenous compounds (e.g., phorbol ester, fish oil fatty acids and vitamin D) can alter

integrin expression and modulate cell proliferation.

Evading
growth
repressors

• Dysregulation of contact inhibition of locomotion: Necl-5 interacts with αvβ3 (and not with nectin-3 in
trans), promoting cell migration.

• Dysregulation of contact inhibition of proliferation: Engagement of integrins in fibronectin binding is
sufficient to inactivate Merlin, the protein responsible for stabilizing cell junctions. In turn, Merlin might
also modulate β1 integrin located at the plasma membrane.

• Crosstalk with p53:

- Integrin-mediated ECM detachment can lead to a decreased level of wildtype p53.
This promotes cell survival beyond DNA-damage.

- Restoration of normal wildtype p53 levels decreases α5 levels and sensitizes glioblastoma cancer
cells to a specific chemotherapeutic agent.

- Mutated p53 alters integrin recycling and promotes cancer cell migration and invasion.

Invasion and
metastasis

• Role of integrins during EMT:

- Specific integrins can initiate a paracrine loop of TGF-β1, one of the major EMT inducers.
In turns, TGF-β1 induces an upregulation of specific integrins that promote a
malignant phenotype.

- Some integrins subunits can upregulate TGF-βR1 and Slug, both inducers of the EMT.

• Role of integrins during migration/invasion:

- FGF-2 bound to CAFs activates the FGFR signalling pathway in colon cancer cells and leads to
an upregulation of integrins that can adhere to fibroblasts and migrate.

- αvβ6 enhances expression of uPAR and MMP-2 and MMP-9 that are responsible for ECM
degradation, enabling migration as a result.

- uPAR-integrin interaction is necessary to acquire an invasive amoeboid phenotype.

Limitless
replicative
potential

• Downregulation of hTERT leads to downregulation of the αv integrin subunit.
• MMP-9 decreases β1 integrin and the subsequent FAK activation decreases hTERT expression.

Sustained
angiogenesis

• Hypoxia initiates a signaling cascade that upregulates specific integrins and pro-angiogenic factors such
as VEGF and ANGPT2. The upregulated integrins mediate tumor cell invasion and regulate also HIF-1α
cellular levels. VEGF is also involved in an autocrine and paracrine loop which is mediated by integrins.

• The secreted compounds by the tumor cells induce an angiogenic switch and upregulate integrins
which are involved in endothelial cell migration and proliferation.

Evasion of
apoptosis

• Promoter methylation of caspase-8.
• Phosphorylated caspase-8 (induced by EGF) leads to PI3K activation.
• Expression of new integrins so that cells can bind to other ligands via integrins.

Several efforts have been made to develop integrin antagonists so that one or all hallmarks of
cancer are inhibited. Table 3 summarizes the results from the clinical trials performed so far using
antibodies targeting integrins in cancer. Of note, we found a patented chitosan polymer covalently
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linked with small molecule integrin αvβ3 and αvβ4 antagonist for targeted delivery of drugs, nucleic
acids or other compounds to cells expressing these integrins (patent: EP2806896) [213]. However, we
were not aware if this compound is currently being clinical evaluated for cancer treatment. The most
prominent compound targeting integrins might be cilengitide, a cyclic RGD peptide that targets
integrins αvβ3 and αvβ5 [214]. We and other groups could show in vitro and in vivo that this peptide
inhibits attachment and invasion of different tumor cells [215–221]. However, cilengitide failed to
provide benefit in a clinical trial phase III (CENTRIC study) [222]. The work of Reynolds et al. presented
a novel mechanism by which integrin are regulated that might explain at some extent the failure of
cilengitide in the late-stage clinical trial CENTRIC [223]. This group elucidated that low concentrations
of cilengitide alter αvβ3 integrin and VEGFR-2 trafficking, leading to enhanced angiogenesis [223].
This discovery highlights the crucial role of integrin trafficking (reviewed in [224]) and might explain
why targeting integrins in cancer has not met the clinical expectations yet. In accordance to the vital
role that integrins fulfill in the organisms, it seems evident that cells have developed strategies to
compensate integrin inhibition to ensure cell survival, as we discussed above regarding the interplay
between α1β1/calveolin-1/EGFR [90]. Although α1β1 could be prima facie an interesting target in
cancer, the aforementioned evidence shows that targeting this integrin could have the opposite effect.

Table 3. Results of clinical trials targeting integrins in cancer.

Compound Target Stage Result Reference

Vitaxin
(Etaracizumab) αvβ3 Phase II No clinically meaningful improvement

in survival. [225]

CTNO 95
(Intetumumab) αv (αvβ3 and αvβ5) Phase II No clinically meaningful improvement

in survival. [226]

Volociximab α5β1 Phase II Insufficient clinical activity. [227]

ATN-161 α5β1 Phase I
1/3 of patients manifested stable disease.

[228]Two Phase II trials were discontinued in
February 2016.

PF-04605412 α5β1 Phase I Trial was prematurely terminated. [229]

IMGN388
αv integrin-targeting

antibody conjugated to
a cytotoxic agent

Phase I Well tolerated but it was discontinued. [230]

GLP0187 Several αv integrins Phase I No signs of monotherapy efficacy. [231]

Besides antibodies and peptides antagonizing integrins, other integrin-targeted strategies, such
as oncolytic virus, are starting to emerge. Recently, Tian et al. presented a tobacco mosaic virus
conjugated with a cyclic RGD and the chemotherapeutic agent doxorubicin [232]. The virus entry is
mediated by integrins through binding to the RGD motif and this shows antitumor efficiency in vitro
and in vivo [232]. The adenovirus DNX-2401 (former name: ∆-24-RGD-4C) is an oncolytic virus that
is competent in cells with defects in the tumor suppressors Rb and p16 and uses an RGD-motif that
mediates entry via integrins into the tumor cells [233,234]. At the moment, there are two clinical trials
testing its efficacy. The TARGET-I study (NCT02197169) is a phase Ib study to evaluate the combination
treatment of DNX-2401 (DNAtrix) with interferon gamma (IFN-γ) for recurrent glioblastoma and
gliosarcoma and the CAPTIVE study (NCT02798406) is a phase II trial which evaluate the effects of the
combination of DNX-2401 and Pembrolizumab in gliosarcomas and glioblastomas. Another oncolytic
virus that is now being investigated in clinical trials is CAVATAK (Viralytics, Sydney, Australia).
CAVATAK targets cells with high levels of ICAM-1 and its anti-tumor effects resides in triggering an
anticancer immune response. CAVATAK efficacy is being evalatued in clinical trials to treat stage IIIc
and IV malignant melanoma (NCT01227551), to treat non-small cell lung cancer and bladder cancer in
combination with Pembrolizumab (STORM/KEYNOTE-200) (NCT02043665) and to treat advanced
melanoma in combination with ipilimumab (NCT02307149).
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4. Concluding Remarks

The evidence presented in this review clearly shows that integrins are hot targets for anticancer
therapies. However, the crucial role of integrins seems to be supported by a plethora of mechanisms
that counteracts integrin inhibition. Currently, it might be evident that targeting one or more integrins
alone will not have curative effects, but it will do it in combination with other agents. Furthermore,
the therapeutic strategies discussed above with oncolytic virus using integrins as “cell openers” of
tumor cells might circumvent the complexity of integrin-mediated signaling and promise a hopeful
future regarding cancer treatment.
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Abbreviations

ECM Extracellular matrix
FAK Focal adhesion kinase
Rac1 Ras-related C3 botulinum toxin substrate 1
MAPK MAP kinase pathway
EGF Epidermal growth factor
PI3K Phosphatidylinositol 3-kinase
PDK1 Phosphoinositide-dependent kinase-1
mTOR Mammalian target of rapamycin
VEGF Vascular endothelial growth factor
YAP Yes-associated protein
PIP3 Phosphatidylinositol-3-phosphate
GSK3 Glycogen synthase kinase 3
PHI-1 Phosphatase holoenzyme inhibitor 1
PIP2 Phosphatidylinositol 4,5-bisphosphate
CDH17 Cadherin-17
TNF-α Tumor necrosis factor-α
IGF-IR Insulin-like growth factor receptor
Gab1 Grb2-associated binder-1
HGF/SF Hepatocyte growth factor/scatter factor
Necl-5 Nectin-like molecule-5
NF2 Neurofibromatosis type 2
PAK p21-activated kinase
EMT Epithelial-mesenchymal transition
LAP Latency-associated peptide
LTBP TGFβ-binding protein
BMP-7 Bone morphogenic protein 7
CAF Carcinoma associated fibroblasts
HREs Hypoxia response elements
CRLR Calcitonin receptor-like receptor
SCF Stem cell factor
ANGPT2 Angiopoietin 2
uPA Urokinase plasminogen activator
uPAR Urokinase plasminogen activator receptor
MMP Matrix metalloproteinases
SNP Single-nucleotide polymorphisms
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