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Abstract: The high affinity and specificity of peptides towards biological targets, in addition to their
favorable pharmacological properties, has encouraged the development of many peptide-based
pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals.
However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge
that must be overcome, as it can result in an impractically short in vivo biological half-life and
a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently,
many biologically and pharmacologically interesting peptide-based drugs may never see application.
A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore
of a native peptide while also containing unnatural modifications that act to maintain or improve
the pharmacological properties. This review explores strategies that have been developed to
increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the
C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification,
PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where
those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.

Keywords: radiopharmaceuticals; peptides; positron emission tomography; proteolysis; metabolic
stability

1. Introduction

Positron emission tomography (PET) is a nuclear medicine imaging technique for the non-invasive
quantitative measurement of specific biochemical, physiological, and pharmacological processes
in vivo [1]. PET is useful in the diagnosis and staging of neurological, cardiovascular, and various
oncology-based diseases [2]. PET imaging is achieved by administering a patient with a PET
radiopharmaceutical which will localize into organs and/or tissues that express the desired biological
target. Once localized, the distribution of the PET radiopharmaceutical throughout the body can be
imaged with a PET scanner and a diagnosis can be made. PET radiopharmaceuticals are biologically
active molecules that are labeled with positron-emitting radionuclides such as fluorine-18, gallium-68,
or copper-64. A key component of a PET radiopharmaceutical is the targeting entity, which is
designed to possess a pharmacophore that has high affinity and specificity towards a desired biological
target present in an organ and/or tissue that is associated with a specific disease or malignancy [3].
The targeting entities of radiopharmaceuticals were initially developed as biologically active small
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molecules, as is the case for the most widely used PET radiopharmaceutical [18F]fluorodeoxyglucose [4].
However, in recent years there has been a rapid development in the use of targeting entities developed
from biologics, such as peptides, proteins, antibodies, and antibody fragments for the use as PET
radiopharmaceuticals [5–7].

Peptides as Radiopharmaceuticals

The structure of a peptide-based radiopharmaceutical (Figure 1) typically contains the following
components: a peptide to act as the targeting entity, a linker, a radionuclide bearing moiety, and a PET
radionuclide. The linker is sometimes an optional component of a radiopharmaceutical that is
incorporated to facilitate the conjugation of the targeting peptide and the radionuclide bearing moiety,
and/or improve its pharmacokinetics such as by increasing metabolic stability or manipulating
biodistribution [8–11]. The linker can also be used as a spacer to distance bulky portions of
a radiopharmaceutical, such as chelators from the bioactive portions, to reduce steric interference and
maintain high binding affinity [12].
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Figure 1. The structural components of a peptide-based positron emission tomography (PET)
radiopharmaceuticals.

There are many advantages offered by utilizing peptides as the targeting entity in radiopharmaceuticals,
especially in the field of oncology. These peptide-based radiopharmaceuticals can take the form of
radiopharmaceuticals for the diagnosis of diseases by imaging the biological target associated with the
disease in specific tissues, or as radiotherapeutics for the treatment of cancers by subjecting the tissue to
localized ionizing radiation. Furthermore, the opportunity to exploit the same targeting agent with either
an imaging or therapeutic radionuclide has given rise to the field of ‘Theranostics’ in nuclear medicine [13].

A key advantage of peptide-receptor targeting peptide-based radiopharmaceuticals is the
higher density of peptide receptors expressed on tumor cells than in normal tissues, thus specific
receptor-binding radiolabeled peptides can be designed to enable the efficient visualization and
treatment of various tumors [14]. Due to the relatively small size of peptides compared to other
biologics, such as proteins and antibodies, peptides often exhibit rapid pharmacokinetics, with the
ability to efficiently penetrate tumors, fast clearance from the bloodstream and non-target tissues,
and are not immunogenic [5,14–16]. Peptides can also be readily synthesized using conventional
peptide synthesizers, and any desired modifications to the structure can be easily engineered by
making the appropriate changes to the peptide sequence during synthesis and/or by adding other
structural modifications after synthesis [9,17,18].

Consequently, the last 20 years have seen an explosive growth in the development of radiolabeled
peptides for targeted diagnostic imaging and therapy. While radiolabeled peptides have been applied to
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various molecular imaging modalities that use nuclear probes, such as scintigraphy and single-photon
emission computed tomography (SPECT), the superior image quality and quantitative data available
from PET have resulted in a significant amount of research being devoted to the development of PET
radiolabeled peptides [19]. Recently, [68Ga]DOTATATE, also known as NETSPOT® (Figure 2), was the
first radiolabeled peptide for PET imaging to receive regulatory approval from the Food and Drug
Administration (FDA) [20].
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Despite the advantages offered by peptides, there are several challenges inherent to the use of
peptides in drug design and development, including for imaging and therapy. The most significant
of these is that unmodified peptides often possess prohibitively short half-lives in vivo, primarily
due to rapid proteolytic degradation in the blood, liver, and kidneys by endogenous proteases [21].
This liability results in a short duration of in vivo activity, poor bioavailability, and has significantly
limited their application in drug development [22].

2. Challenges Faced by Peptide-Based Radiopharmaceuticals In Vivo

The rate at which a drug is metabolized and removed from the body determines its biological
half-life [23]. In the case of radioactive drugs, such as PET radiopharmaceuticals, the physical half-life
is determined by the incorporated radionuclide [23]. Thus, to achieve optimal results, the localization
process of a radiopharmaceutical has to be fast relative to its biological and physical half-lives, such that
the drug will localize to the target with adequate time for imaging or therapy before degrading below
an effective activity and/or concentration [24]. In the case of peptide-based radiopharmaceuticals,
the two most significant forms of degradation in vivo that impact the efficacy of the drug are loss of the
radionuclide and degradation of the conjugated peptide. The premature degradation of peptide-based
radiopharmaceuticals in vivo is of pressing concern since these drugs are typically administered in
doses that are significantly smaller than conventional drugs and are therefore especially vulnerable to
having their efficacy significantly disrupted by any amount of degradation in vivo.

2.1. Loss of the Radionuclide

Many radiopharmaceuticals are labeled with radiometals (e.g., technetium-99m, gallium-68,
and copper-64). Ensuring that the radiometal is not lost from the radiopharmaceutical in vivo is of
critical concern when developing these drugs as the free radiometal may exhibit high toxicity and
cause significant damage to the body [25]. In the case of fluorine-18 labeled radiopharmaceuticals,
in vivo radiodefluorination results in the release of free [18F]fluoride ions that can readily accumulate
into the calcium-rich fluorophilic bones of the body [26]. Radiodefluorination and in vivo metabolism
of [18F]radiopharmaceuticals also present major challenges to imaging studies as non-specific uptake
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of free [18F]fluoride ions and [18F]metabolites can lead to a degradation of the signal to noise ratio [27].
Further information on the radiodemetallation and radiodefluorination of radiopharmaceuticals,
and the strategies that have been applied to mitigate these issues, are beyond the scope of this review
but have been thoroughly reviewed elsewhere [28–30].

2.2. Degradation of the Peptide

The major challenge of using peptides in the active component of a pharmaceutical is that naturally
occurring peptides are usually rapidly degraded in vivo [21,22]. Compared to other biologics, such
as proteins and antibodies, peptides are generally more susceptible to enzymatic and/or chemical
degradation. One of the key reasons a peptide sequence can also be susceptible to proteolytic
degradation is due to its backbone containing a recognition motif for an endogenous protease [31].
In addition to proteolytic degradation, peptide bonds can also undergo spontaneous degradation
under physiological conditions when particularly labile sequence motifs are present [32].

In peptide-based radiopharmaceuticals, degradation of the conjugated peptide will significantly
disrupt its ability to localize to the target tissue, and the subsequent radioactive metabolites will
undergo non-specific binding to other tissues and/or be rapidly cleared from the body. In the case of
radiopharmaceuticals, this will reduce imaging sensitivity due to increasing background radiation [33].
In radiotherapeutics, this can result in insufficient irradiation of the target tissue while increasing the
irradiation of non-target tissues [34,35].

Another point to consider is that amide bonds are often used to conjugate the radionuclide bearing
moiety to the biomolecule or linker and these bonds are also susceptible to the same degradation
pathways as peptide bonds via proteases and amidases [36]. As a result of these challenges, most
peptides for use in radiopharmaceuticals are synthetically modified to minimize metabolic degradation
in vivo [15,37].

3. Increasing the In Vivo Stability of Peptide-Based Radiopharmaceuticals

The peptide amide bond represents the central repeating structural element of peptides and
proteins. This bond possesses partial double bond character, which is one of the key attributes that
contributes to the rigidity of peptide chains. Its ability to form hydrogen bonds also makes the
peptide bond play a crucial role in its recognition by and interactions with other proteins. Normally,
the peptide amide bond is stable to hydrolysis, requiring harsh conditions involving concentrated
acids or bases at increased temperatures [38,39]. However, the peptide bond can be readily cleaved
under mild conditions at or even below room temperature in the presence of an appropriate protease
or peptidase [39,40].

Peptidases can either be classified as exopeptidases, which specifically hydrolyze the C- or
N-termini of a peptide, or as endopeptidases which are capable of hydrolyzing amide bonds
within a peptide [41,42]. Mechanistically, hydrolysis of an amide bond with a peptidase occurs
via a nucleophilic attack at the carbonyl carbon of the amide bond (Figure 3), with its pathway
dependent on the amino acids present in the peptidase’s active site [43]. Peptidases that have
nucleophilic amino acids residues such as cysteine and serine in their active site, can attack the carbonyl
carbon of the amide/peptide bond and form an acylated enzyme (as a thioester for cysteine or ester
for serine), which is more vulnerable to attack by water than the original peptide bond (Figure 3A).
Often these peptidases also have histidine and aspartic acid or glutamic acid within the active site,
as a ‘catalytic triad’ [43,44]. With peptidases that have amino acid residues such as aspartate/aspartic
acid or glutamate/glutamic acid (but no serine or cysteine) in their active site, these residues directly
assist a water molecule in its nucleophilic attack of the carbonyl carbon of the amide bond, leading to
direct hydrolysis of the amide bond (Figure 3B) [43].
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Several strategies have been developed to synthesize peptide analogues in which vulnerable
peptide bonds are either modified or obscured such that they are no longer targeted by proteolytic
enzymes. The goal of this is to generate metabolically stable peptide analogues that maintain
the biological activity of the original peptide. This review is focused on strategies to enhance
metabolic stability of PET peptide-based radiopharmaceuticals. It includes modifications of the
C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification,
PEGylation and alkyl chain incorporation, cyclization, and peptide bond substitution. While some
of the examples discussed in this review have only been applied to SPECT radiopharmaceuticals,
radiotherapeutics, or non-radioactive peptide-based pharmaceuticals, the strategies are applicable also
to PET peptide-based radiopharmaceuticals.

3.1. d-Amino Acids

Apart from glycine, all amino acids possess chirality and can therefore exist in either levorotatory
(l) or dextrorotatory (d) forms (Figure 4). However, nature has proven itself remarkably homochiral
and most amino acids are found in their l-form in mammalian systems. d-Amino acids can be found
in nature (e.g., in some species of frogs and bacteria), but these cases are exceedingly rare [45].
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The fundamental differences in chirality between l- and d-amino acids means that peptides
built from d-amino acids are not recognized by many proteins, including proteases [46]. The result
of this lack of recognition is that while most l-peptides are vulnerable to enzymatic degradation
in vivo [22], analogous d-peptides are highly resistant to degradation by proteases and have low
immunogenicity [47,48]. The simple substitution of all l-amino acids in a peptide with d-amino acids,
however, is generally an ineffective strategy as the resulting changes in peptide conformation and side
chain orientation can prevent the correct binding geometry and thus destroy target binding [49–52].
A common solution to this issue is retro-inversion, which constitutes reversing the d-peptide’s
sequence (Figure 5). This approach has proven successful in increasing the biological activity
of some unstructured d-peptides by restoring the native l-amino acid side chain angles [53,54].
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However, in structured peptides, retro-inversion is not enough to overcome the conformational changes
caused by the introduction of d-amino acids [46]. For example, left-handed helices in d-peptides remain
left-handed even after sequence reversal in retro-inversion, while helices in l-peptides are always
right-handed; this difference results in a significant decrease in the binding efficiency of peptides to
their biological target [51,55].
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Within the Protein Data Bank (PDB), approximately 62% of protein–protein interactions involve
helical structures [56]. Furthermore, approximately 80% of peptide drugs approved by the FDA contain
helical structures [57]. Due to this, retro-inversion may not be able to be applied to most clinically
interesting peptides to correct for the introduction of d-amino acids. However, the benefits offered
by d-amino acids can also be conferred to a peptide without substituting every amino acid with its
d-amino acid equivalent. For example, substituting the N-terminal l-amino acid of most proteins with
the corresponding d-amino acid can significantly increase in vivo stability by preventing recognition
of the N-terminus of the protein by proteases [58].

Research conducted by Donna et al. showed that the l-histidine and l-cysteine residues in the
α5β1 integrin inhibitor peptide Ac-PHSCN-NH2 (PHSCN) could be replaced with their d-stereoisomers
to give the mixed chirality peptide Ac-PhScN-NH2 (PhScN) (Figure 6) [59]. They found that the
mixed chirality peptide PhScN showed significantly improved potency as an inhibitor of α5β1
integrin-mediated invasion of naturally occurring basement membranes in vitro, with IC50 values of
0.097 pg/mL and 0.113 pg/mL for DU 145 and PC-3 cells, respectively, compared to 2600 pg/mL and
16,627 pg/mL for the unmodified analogue PHSCN [59]. Donna et al. proposed that the inclusion of
the d-amino acids, d-histidine, and d-cysteine in the PhScN peptide could greatly increase systemic
stability of the peptides compared to the unmodified analogue due to the resistance these unnatural
amino acids show against endoproteinases [59].
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One of the best-known examples of targeted peptide modification for increasing the metabolic
stability of a peptide is octreotide (Figure 7); a peptide-based drug developed from the endogenous
hormone somatostatin [60]. Somatostatin (Figure 7) is a 14 amino acid long cyclic peptide that inhibits
the secretion of a growth hormone. Somatostatin receptors are also found in high concentrations in
various neuroendocrine tumors [60,61]. The clinical application of somatostatin is severely limited
by its in vivo half-life of only 1–2 min in human plasma due to rapid enzymatic degradation [60].
This limitation spurred the development of somatostatin analogues with more useful properties,
including octreotide, in which the somatostatin amino acid sequence was shortened from 14 to 8 amino
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acids, the l-tryptophan residue was replaced with d-tryptophan, and the N-terminal l-amino acid
was replaced with a d-amino acid [60]. These modifications increased the in vivo half-life to 1.5 h in
human plasma, while maintaining a high binding affinity for the somatostatin receptor subtype SSTR2,
with an IC50 value of 0.56 nM for octreotide compared to 0.23 nM for the native somatostatin [60,62].
The improved half-life and maintained potency offered by octreotide and derivatives thereof led
to their radiolabeling with a variety of radioisotopes for use in the diagnosis and treatment of
various neuroendocrine tumors, including indium-111 for SPECT imaging [61,63], carbon-11 [64] and
gallium-68 [65] for PET imaging, and yttrium-90 [61] and lutetium-177 [66] for radiotherapy.
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Radiopharmaceuticals based upon the minigastrin peptide have been developed for the purposes
of imaging and therapy to target cholecystokinin 2 receptors overexpressed in a variety of thyroid,
lung, and ovarian tumors [67]. However, the clinical utility of early minigastrin radiopharmaceuticals
was compromised due to high kidney retention, which can cause nephrotoxicity [67,68]. For example,
the minigastrin radiopharmaceutical [111In-DOTA]MG0 (Figure 8A) showed a kidney retention of
approximately 127% ID/g [67]. To address the issue of kidney retention, new minigastrin analogues
were developed with a decreased number of glutamic acid residues to reduce the negative charge on
the peptide [68]. A minigastrin analogue with the five glutamic acid residues in the linker deleted
from the sequence of [111In-DOTA]MG0 had a significantly reduced kidney retention of approximately
0.3% ID/g [69], but it also had a decreased metabolic stability in human serum, with a mean half-life
of only 2 h compared to 72.6 h for [111In-DOTA]MG0, which ultimately reduced its suitability for
clinical use [69]. Kolenic-Petial et al. found that the half-life of these minigastrin analogues could be
improved by inserting a linker of non-ionic d-amino acids into the structure [68]. The authors further
demonstrated the metabolic stability of the minigastrin analogue could be improved by increasing the
length of the linker, with a linker comprised of six d-glutamine residues proving to be optimal and
resulting in a half-life in human serum of approximately 495 h (Figure 8B) [68].
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While the research of Kolenic-Petail et al. [68] discussed above utilized indium-111 for SPECT
imaging, the benefits achieved from utilizing d-amino acids could be easily carried over to PET studies,
for example, by chelating a PET radiometal such as gallium-68 in place of indium-111 or by utilizing
d-amino acids in the linker between a peptide and a radiofluorinated prosthetic group.

3.2. β-Amino Acids

β-Amino acids are widely found as biologically active natural products produced by plants [70],
microorganisms [71], and marine organisms [72], but relatively few β-amino acids are found in mammalian
systems [73]. The incorporation of single or multiple β-amino acids into peptides is of increasing interest
in the pharmaceutical field as they can enhance in vivo metabolic stability [74–78] and potency [74,79].
This has been attributed to their different electronic environments and backbone/side chain configurations,
compared to their α-amino acid analogues, decreasing recognition by proteases [80].

Garayoa et al. showed that the incorporation of a β-alanine-β-alanine (βAla-βAla) linker into
a human tumor targeting bombesin peptide radiopharmaceutical (Figure 9) resulted in a two-fold
increase in metabolic stability against proteolytic degradation and no decrease in receptor affinity
when compared to the unmodified structure (sans linker) in studies performed using in vitro tumor
cell cultures [81]. However, when the studies were performed in human plasma, the analogue with the
βAla–βAla linker showed decreased metabolic stability with a half-life of 10 h compared to 16 h for
the unmodified analogue [81].
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Further research by Garayoa et al. investigated alternative β-amino acid linkers (Figure 10) for the
same bombesin peptide radiopharmaceutical as shown above (Figure 9), with a focus on β-amino acids
that could hold a charge once incorporated into the final structure of the radiopharmaceutical [17].
The linkers were constructed from a combination of two or three of the selected β-amino acids in
sequence. It was found that the bombesin analogue modified with β3-homoglutamic acid (Figure 10d)
in the linker, with one single negative charge, showed a significant increase in tumor uptake and
tumor-to-tissue ratio, but did not increase metabolic stability compared to the previously developed
radiopharmaceutical (Figure 9) [17].
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In a similar study carried out by Popp et al., a single β-alanine amino acid, with a methylated
nitrogen, was used as a linker in a statine-based GRPr-antagonist radiopharmaceutical (Figure 11)
designed to target receptors on the surface of several human tumors [82]. The introduction of the
N-methylated β-alanine did not disrupt the binding affinity and presented a similar in vivo stability
in mice compared to the unmodified compound, with approximately 50% of the activity in the
bloodstream representing intact compound 15 min post injection in the case of both compounds [82].

Molecules 2020, 25, x 9 of 24 

 

 
Figure 9. Bombesin-based peptide radiopharmaceutical investigated by Garayoa et al., with the βAla–
βAla linker highlighted in red [81]. 

Further research by Garayoa et al. investigated alternative β-amino acid linkers (Figure 10) for 
the same bombesin peptide radiopharmaceutical as shown above (Figure 9), with a focus on β-amino 
acids that could hold a charge once incorporated into the final structure of the radiopharmaceutical 
[17]. The linkers were constructed from a combination of two or three of the selected β-amino acids 
in sequence. It was found that the bombesin analogue modified with β3-homoglutamic acid (Figure 
10d) in the linker, with one single negative charge, showed a significant increase in tumor uptake and 
tumor-to-tissue ratio, but did not increase metabolic stability compared to the previously developed 
radiopharmaceutical (Figure 9) [17]. 

 
Figure 10. Alternate β-amino acids (a) β-alanine; (b) β3-homoserine; (c) β3-homolysine; and (d) 
β3-homoglutamic acid investigated by Garayoa et al. for use as linkers [17]. 

In a similar study carried out by Popp et al., a single β-alanine amino acid, with a methylated 
nitrogen, was used as a linker in a statine-based GRPr-antagonist radiopharmaceutical (Figure 11) 
designed to target receptors on the surface of several human tumors [82]. The introduction of the N-
methylated β-alanine did not disrupt the binding affinity and presented a similar in vivo stability in 
mice compared to the unmodified compound, with approximately 50% of the activity in the 
bloodstream representing intact compound 15 min post injection in the case of both compounds [82]. 

 
Figure 11. Statine-based GRPr antagonist radiopharmaceutical investigated by Popp et al., with the 
N-methylated β-alanine linker highlighted in red [82]. 

Figure 11. Statine-based GRPr antagonist radiopharmaceutical investigated by Popp et al., with the
N-methylated β-alanine linker highlighted in red [82].



Molecules 2020, 25, 2314 10 of 24

The research undertaken by Garayoa et al. [17,81] and Popp et al. [82] aimed to demonstrate that
unnatural β-amino acids could be introduced into the structure of peptide-based radiopharmaceuticals
to increase metabolic stability. While neither author achieved a significant increase in metabolic
stability, they did produce compounds that maintained metabolic stability and binding affinity close to
the unmodified analogue. This indicates that there is room for improvement for future peptide-based
radiopharmaceuticals that incorporate unnatural β-amino acids.

While the research of Garayoa et al. only used the SPECT radionuclide technetium-99m,
it should be apparent that the introduction of β-amino acids can easily be applied to PET studies
through, for example, chelating PET radiometals or incorporating β-amino acids into peptide-based
PET radiopharmaceuticals. Despite the potential benefits to pharmacological properties, there are
currently no examples in the literature of β-amino acids being applied to improve the metabolic
stability of peptide-based fluorine-18 labeled radiopharmaceuticals. Interestingly, the research by
Schjoeth-Eskensen et al. successfully demonstrated the radiolabeling of the α-carbon of β-alanine
with fluorine-18 (Figure 12), but no stability studies or subsequent conjugation to a peptide
were performed [83].
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3.3. N-Methylation

Peptides can be modified through N-methylation (also known as N-alkylation). This method
constitutes substituting one or more NH groups in a peptide backbone with N-methyl substituents
(Figure 13). N-Methylation can confer several benefits compared to their unmodified analogues,
including enhanced protease resistance, membrane permeability, and biological activity [84].
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Figure 13. Structures of natural compared to N-methylated amino acids.

N-Methylation of a peptide backbone replaces a hydrogen bond donor (NH) with a potential steric
clash (NCH3), thus eliminating some inter- and intramolecular hydrogen bonds [85–87]. N-Methylation
can also greatly alter the conformation of the entire peptide. This occurs because the N-methyl group
will influence the conformational flexibility of both the peptide backbone and the side chains of the
residues close to the N-methyl amino acids. Of particular note, the energy barrier between the trans
and cis peptide bond conformations (Figure 14) is greatly reduced and consequently the cis peptide
bond conformation becomes readily accessible [88].
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With the overall conformational change that can occur with N-methylated peptides, and the
change in H-bonding capacity and steric features, N-methylation often leads to a decreased affinity of
the peptide for the active site of proteases and therefore increased metabolic stability. It has also been
found that N-methylation of an amide bond adjacent to the cleavage site can confer a greater resistance
against enzymatic degradation than N-methylation of the amide bond at the cleavage site itself [89].
This behavior may result from N-methylation making the cis conformation readily accessible and
then becoming the preferred conformation of the peptide in vivo. For example, the cis conformation
may result in portions of the peptide being positioned such that they are now less accessible to
proteolytic activity or simply no longer fit into the enzyme binding site, thus increasing the metabolic
stability [88]. However, these structural changes may also disrupt intra- and intermolecular hydrogen
bonds that may be important for the stabilization of biologically active conformations and for target
receptor recognition [90]. Therefore, the use of N-methylation for increasing metabolic stability must
be balanced against maintaining biological activity against the desired target receptor [91,92].

The endothelin peptides are potent vasoconstrictors. It has been found that highly potent
antagonists of endothelin receptors can be developed from the C-terminal hexapeptide of endothelin [88].
However, these compounds are generally unstable towards enzymatic proteolysis and consequently
have relatively short half-lives, which reduces their utility for clinical use [88]. Wayne et al. found
that the N-methylation of a single isoleucine residue in the sequence of these previously developed
endothelin receptor antagonists could significantly improve metabolic stability [88]. For example,
N-methylation of the amide bond between the Ile19 and Ile20 residues increased the half-life in rat
intestinal perfusate from 10.6 min to 538 min [88]. This modification also enhanced receptor binding
affinity from an IC50 of 40 nM in the case of the unmodified compound down to 10 nM [88].

N-Methylation has also been effective when combined with other peptide modifications to further
modulate the properties of a peptide-based radiopharmaceuticals. For example, as previously discussed
in Section 3.2, Popp et al. successfully incorporated an N-methylated β-alanine residue as a linker in
a statine-based GRPr antagonist radiopharmaceuticals [82].

3.4. PEGylation and Alkyl Linkers

PEGylation defines the process of linking one or more polyethylene glycol (PEG) polymer
chains (Figure 15) to a peptide, protein, or non-peptide molecule. PEG possesses useful properties,
including high solubility in water and many organic solvents, non-toxicity, and non-immunogenicity,
and has been approved by the FDA for human use [93]. Many PEGylated peptide-based
radiopharmaceuticals have been developed and shown to possess improved pharmacokinetic properties
compared to their unmodified analogues, including increased receptor binding affinity, increased
tumor uptake, and decreased kidney uptake [94–102]. Other potential improvements that have been
achieved though PEGylation include longer circulatory times, increased aqueous solubility [103],
and increased metabolic stability by creating steric hinderance that shields the molecule from
proteases [104]. PEGylation also increases the molecular mass and size of peptides, which further
increases body-residence time due to decreased kidney excretion [105]. The length and shape of PEGs
(linear, branched, or dendritic) have been shown to influence the pharmacological properties of the
PEGylated peptides and proteins, with branched PEG structures often most effective. This has been
postulated to be due to both a greater degree of steric hinderance against proteases and possessing
additional sites for conjugation with the target peptide or protein [106].
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The advantages offered by PEGylation has seen it applied to a variety of peptide-based
radiopharmaceuticals. For example, Hausner et al. found that the PEGylation of a radiopharmaceuticals
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derived from the αvβ6 integrin targeting peptide A20FMDV2, at both the C- and N-termini, greatly
improves its pharmacokinetic properties [107]. When evaluated in mice, the PEGylated peptide showed
good metabolic stability with approximately 80% of the compound remaining intact after incubation in
mouse serum for 1 h. The modified compound also showed a higher uptake in αvβ6-expressing tumors
compared to the unmodified peptide, with a tumor uptake in BxPC-3 cells of 4.7% ID/g compared to
0.69% ID/g at 1 h for the unmodified peptide (Figure 16) [107].
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The inclusion of large PEG groups has also been echoed by Dapp and co-workers [108,109],
who used a 5 KDa PEG group in the linker of a bombesin peptide radiotherapeutic (Figure 17).
The metabolic stability of the compound was assessed in vitro by incubating it in human serum for
five days [109]. The inclusion of the PEG into the linker resulted in an increase in the amount of
intact radiopharmaceuticals remaining after the five-day incubation, from 14% with the unmodified
compound to 52% with the modified compound [109].
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In another example, Wu et al. incorporated a mini-PEG (three ethylene oxide units) spacer into
[18F]FB-E[c(RGDyK)]2 to produce [18F]FB-mini-PEG-E[c(RGDyK)]2 (Figure 18). This radiopharmaceutical
showed greater radiolabeling yield, reduced renal excretion, and similar tumor uptake compared to the
non-PEGylated analogue (Figure 18) [110]. This example also demonstrated that long PEG chains are not
always necessary to significantly improve the properties of peptide-based radiopharmaceuticals.
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Work conducted by the Maecke group [111] also investigated the effect of PEGylation on the
previously developed bombesin analogue DOTA-Bombesin (7–14). Initial studies using a PEG4

chain as a linker between the DOTA chelator and the peptide with gallium-68 or lutetium-177 as the
radionuclide (Figure 19) found that the modified peptide-based radiopharmaceutical had superior
pharmacokinetic properties in the PC-3 tumor-bearing mouse model than previously developed
analogues [111]. In a subsequent study, the Maecke group synthesized a series of four lutetium-177
radiolabeled statine-based bombesin antagonist radiopharmaceuticals with PEG chains of different
lengths (2, 4, 6, or 12 PEG units) as the linker between the DOTA chelator and the peptide analogue
(Figure 19) [112]. The metabolic stability of these compounds was then assessed in human serum,
and it was found that the half-life increased as PEG chain length increased up to the PEG6 linker
(half-life of PEG2 = 246 h, PEG4 = 407 h, and PEG6 = 584 h), but began to decrease with the PEG12

linker (half-life of 407 h) [112].
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In a similar study by Bacher et al., the incorporation of a PEG3 linker into a different bombesin-based
radiopharmaceutical was explored as a method to increase its metabolic stability (Figure 20) [113].
In vitro stability assays conducted in human serum found that incorporation of the PEG3 linker
led to a 9% increase in stability compared to the compound not containing a linker [113]. In the
same study, Bacher et al. also explored the potential stabilizing effects of other alkyl chains as
linkers, including 4-amino-1-carboxymethyl-piperidine and 6-aminohexanoic acid (Figure 20) [113].
However, these analogues were found to decrease metabolic stability by 20% and 7%, respectively,
when compared to the radiopharmaceutical without any linker. In contrast to this, it was found
that when the 4-amino-1-carboxylmethyl-piperdine linker was incorporated into a dimer of the
bombesin-based radiopharmaceutical (Figure 21), there was a 52% increase in stability compared to the
dimer without any linker [113]. The incorporation of the 6-aminohexanoic acid linker into the dimer
resulted in decreased metabolic stability of the radiopharmaceutical [113].
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While beyond the scope of this review, it is interesting to note that PEGylation has also been
successfully applied to antibody fragments for the use as PET radiopharmaceuticals, with promising
results [114,115].

3.5. Peptide Cyclization

Cyclization of a peptide sequence has been found to enhance stability against proteolytic
degradation [116]. Cyclization is usually achieved by linking the C-terminus to the N-terminus of the
peptide backbone [117]. However, it can also be advantageous to cyclize peptides by linking the C-
or N-terminus to a side chain or linking one side chain to another side chain [118]. Depending on
the desired cyclization site, cyclic peptides can be arranged in several ways, including head-to-tail,
head-to-side chain, tail-to-side chain, and side chain-to-side chain (Figure 22) [119].
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A distinct advantage of backbone cyclization over other cyclization methods is that cyclization is
performed between backbone atoms, leaving the side chains that are usually essential for biological
activity untouched [84].

Cyclization of a peptide through the formation of an amide bond between the C- and N-terminus
can prevent degradation of the peptide by exopeptidases [60]. Cyclization of a linear peptide can also
be used to increase the peptides’ structural rigidity. This can increase metabolic stability by locking
the peptide into a conformation that is less susceptible towards proteolytic enzymes (conformational
constraints and/or selective molecular recognition). It can also be used to increase biological activity by
locking the peptide into a more biologically active conformation [118,120,121].

Cyclization has been applied to the RGD (Arg-Gly-Asp) peptide sequence that can be used to target
the αvβ3-integrin receptors, which are overexpressed on the surface of various tumor cells [33]. In cyclic
RGD systems, the RGD peptide sequence is flanked by other amino acids to form a ring system that
presents the RGD sequence in a specific conformation. Cyclic RGD systems are more potent, specific,
and resistant to proteolysis than their linear analogues [122]. Consequently, cyclic RGD systems have
been widely used in the development of various peptide-based PET radiopharmaceuticals [19,123].

3.6. Substitution of Amides with Sulfonamides

Another strategy that has been applied to increase the metabolic stability of peptide-based drugs
is to substitute one or more amide groups in the backbone of a peptide with sulfonamide groups
(Figure 23). Incorporation of the sulfonamide moiety into drugs is well known, as exemplified with the
classical antibacterial sulfa drugs, and the sulfonamide group is inherently more stable than amides in
mammalian systems [124].



Molecules 2020, 25, 2314 16 of 24

Molecules 2020, 25, x 16 of 24 

 

Cyclization of a peptide through the formation of an amide bond between the C- and N-terminus 
can prevent degradation of the peptide by exopeptidases [60]. Cyclization of a linear peptide can also 
be used to increase the peptides’ structural rigidity. This can increase metabolic stability by locking 
the peptide into a conformation that is less susceptible towards proteolytic enzymes (conformational 
constraints and/or selective molecular recognition). It can also be used to increase biological activity 
by locking the peptide into a more biologically active conformation [118,120,121]. 

Cyclization has been applied to the RGD (Arg-Gly-Asp) peptide sequence that can be used to 
target the αvβ3-integrin receptors, which are overexpressed on the surface of various tumor cells [33]. 
In cyclic RGD systems, the RGD peptide sequence is flanked by other amino acids to form a ring 
system that presents the RGD sequence in a specific conformation. Cyclic RGD systems are more 
potent, specific, and resistant to proteolysis than their linear analogues [122]. Consequently, cyclic 
RGD systems have been widely used in the development of various peptide-based PET 
radiopharmaceuticals [19,123]. 

3.6. Substitution of Amides with Sulfonamides 

Another strategy that has been applied to increase the metabolic stability of peptide-based drugs 
is to substitute one or more amide groups in the backbone of a peptide with sulfonamide groups 
(Figure 23). Incorporation of the sulfonamide moiety into drugs is well known, as exemplified with 
the classical antibacterial sulfa drugs, and the sulfonamide group is inherently more stable than 
amides in mammalian systems [124]. 

 
Figure 23. Structure of a regular peptides compared to sulfonamide analogue. 

Sulfonamide groups contain a tetrahedral achiral sulfur atom directly bound to two 
electronegative oxygen atoms. These features with respect to geometry and electronic environment 
strongly resemble the transition state of peptide bond hydrolysis (Figure 24) [125]. Consequently, 
peptides containing sulfonamide substitutions have been investigated as transition state isosteres for 
the use as protease inhibitors [126]. 

 
Figure 24. (A) Peptide bond structure. (B) Transition state for the hydrolysis of the peptide bond.  
(C) Sulfonamide bond as a suggested transition state isostere. 
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the native hydrogen bonding network of the peptide and disrupt the formation of secondary 
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for the sulfonamide oxygens to assume a variety of positions, where one oxygen occupies a cis or 
trans orientation with respect to the amide N-H, while the other oxygen is in neither a cis nor trans 

Figure 23. Structure of a regular peptides compared to sulfonamide analogue.

Sulfonamide groups contain a tetrahedral achiral sulfur atom directly bound to two electronegative
oxygen atoms. These features with respect to geometry and electronic environment strongly resemble the
transition state of peptide bond hydrolysis (Figure 24) [125]. Consequently, peptides containing sulfonamide
substitutions have been investigated as transition state isosteres for the use as protease inhibitors [126].
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When compared to the amide moiety, the sulfonamide group is a stronger hydrogen bond
donor [127] and the sulfonamide N-H is more acidic than the amide N-H, but a weaker hydrogen
bond acceptor [127–129]. Furthermore, the hydrogen bond accepting character of the sulfonamide
moiety is split between two accepting sites due to the two sulfonamide oxygens. These factors can
impact the native hydrogen bonding network of the peptide and disrupt the formation of secondary
structures. In contrast to the relatively rigid amide peptide bond, the sulfonamide bond is more freely
rotatable and the cis–trans isomerism is not observed [127,130]. This greater rotational freedom allows
for the sulfonamide oxygens to assume a variety of positions, where one oxygen occupies a cis or
trans orientation with respect to the amide N-H, while the other oxygen is in neither a cis nor trans
position. This can impede the formation of secondary structures by preventing the proper alignment of
hydrogen bonds [127]. These potential disruptions to secondary structure formation have been found
to have a greater effect on α-helices and a lesser effect on β-sheets [127].

The replacement of one or more amide bonds along a peptide backbone with sulfonamides has
been successfully applied to develop peptidosulfonamide peptide analogues that display increased
stability towards proteases compared to their unmodified analogues while also maintaining satisfactory
biological activity [127,128,131]. The most common method of applying this strategy is to identify
the preferred protease cleavage sites on a peptide and substitute the amides at those locations with
sulfonamides. However, it has also been found that the substitution of amides close to cleavage
sites can also increase metabolic stability [131]. This may be due to an effect similar to that seen in
N-methylation where the substitution of the native amide bond with a more flexible bond, in this
case a sulfonamide, allows the peptide to take a conformation that prevents proteases accessing the
cleavage site [88,90].

The synthesis of a peptide in which all amides in the sequence are substituted with sulfonamides
would lead to a peptidosulfonamide oligomer. However, this approach is not wise as α-amino
sulfonamides are prone to fragmentation, releasing SO2 [132]. This has been addressed by using
β-aminosulfonamides, which are more stable than their α-amino analogues (Figure 25) [127].
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The substitution of the amide moiety with sulfonamides is starting to be explored in the
development of peptide-based radiopharmaceuticals, including for linking of the peptide to the
targeting moiety. For example, common amine-reactive prosthetic groups such as N-succinimidyl
4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoic acid ([18F]FBA) are used to label peptides
through the formation of amide bonds with primary amine residues (e.g., N-terminus or lysine)
present in the peptide backbone [133,134]. While this method of labeling peptides has proven to
be convenient, the susceptibility of the resulting amide bonds to hydrolysis in vivo is a potential
vulnerability [36,135]. Löser et al. sought to explore this by comparing the metabolic stability
of the fluorinated amide, N-(4-fluorophenyl)-fluoroacetanilide, and the fluorinated sulfonamide,
N-(4-fluorophenyl)-3-fluoropropane-1-sulfonamide (Figure 26) [36]. The metabolic stability of both
compounds were tested, and after 120 min of incubation in pig liver esterase (the porcine homologue
of carboxylesterase), 95% of the N-(4-fluorophenyl)-3-fluoropropane-1-sulfonamide compared to only
20% of N-(4-fluorophenyl)-fluoroacetanilide remained intact [36]. While the compounds in this study
were not complete structural analogues of each other, this research provides evidence of the potential
benefits of substituting amide for sulfonamide bonds in radiopharmaceuticals.
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4. Conclusions

The success of peptide-based PET radiopharmaceuticals, such as NETSPOT®, has sparked
renewed interest in the development of new PET radiolabeled peptides for targeting diseases in the
body. The applicability of new peptide-based radiopharmaceuticals will be influenced to a large extent
by their in vivo stability as the inherently poor in vivo stability of natural peptides is one of the biggest
challenges in the development of peptide-based radiopharmaceuticals, especially as degradation of the
peptide can lead to non-specific binding. There have been several strategies developed to avoid this by
modifying natural peptides to enhance their metabolic stability and sometimes other pharmacological
properties such as receptor affinity. Effective strategies have included modification of the C- and/or
N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation
and alkyl chain incorporation, cyclization and peptide bond substitution. It has also been found
that by applying more than one of these modifications in tandem on the same peptide, the different
modifications can often work in concert to further enhance metabolic stability. However, no one
approach fits all peptides and the decision of which strategy to apply must be made on a case-by-case
basis. Consequently, it is rare to find individual studies where several different strategies have been
applied to the same peptide to compare their efficacies. While some of the examples discussed in this
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review have only been applied to SPECT radiopharmaceuticals, radiotherapeutics, or non-radioactive
peptide-based pharmaceuticals, the strategies could still be applied to PET radiopharmaceuticals.
This could be achieved through simple substitution of a SPECT radiometal with a PET radiometal or
by using the modification in the linker between a peptide and the radionuclide bearing moiety in a PET
radiopharmaceutical. With the use of the discussed strategies to ensure in vivo stability, the number of
successful peptide-based PET radiopharmaceuticals will continue to grow, and their clinical use will
continue to expand.
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