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Summary

Establishment of a well-functioning immune network in skin is crucial for

its barrier function. This begins in utero alongside the structural differen-

tiation and maturation of skin, and continues to expand and diversify

across the human lifespan. The microenvironment of the developing

human skin supports immune cell differentiation and has an overall anti-

inflammatory profile. Immunologically inert and skewed immune popula-

tions found in developing human skin promote wound healing, and as

such may play a crucial role in the structural changes occurring during

skin development.

Keywords: haematopoiesis; immune homeostasis; regulation/suppression;

skin.

The developing human skin

The human skin undergoes significant structural changes

during development in utero into a structurally complex

organ in postnatal life and adulthood. The two major layers

of human skin, the epidermis and dermis, develop over dif-

ferent gestational stages.1–3 The epidermis starts as a mono-

layer, which gains a superficial layer called the periderm

within 4 weeks.2 The epidermis begins to stratify at the end

of the first trimester, and consists of definitive layers towards

the end of the second trimester.1–5 The dermis is initially

densely cellular, which decreases after 8 post-conception

weeks (PCW) following increased production of extracellu-

lar matrix components.1,4 The epidermis and dermis interact

throughout the development process, and this is most evi-

dent during skin appendage formation, which begins at the

start of the second trimester.3–5 While structural maturation

is complete by birth, skin continues to functionally mature

into adulthood.6 In tandem to the major structural changes

occurring during the development of skin, the immune

composition expands in number and diversity. Despite con-

taining significantly fewer immune cells compared with

mature adult skin,7–10 the developing skin supports a diverse

range of immune populations (Fig. 1).

As haematopoiesis occurs sequentially in the yolk sac, fetal

liver and bone marrow, immune cells seeding skin could

arise from any of these three sites of developmental haema-

topoiesis. The postnatal persistence and functional relevance

of immune cells from yolk sac and fetal liver in humans

remains undefined. In addition, the precise role of immune

cells in what is currently presumed a sterile environment in

utero is unclear, but there is increasing support for the role
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of immune cells in tissue generation and regeneration. Our

review highlights the immune cells in human skin and their

role in the development of skin as a barrier organ.

Antigen-presenting cells

Langerhans cells

Specific to stratified squamous epithelium, Langerhans

cells (LCs) are of particular interest when studying devel-

oping skin and its immune environment. The epidermis

undergoes significant structural changes throughout

development, during which LCs take up residence as

early as 6 PCW.11 In mice, skin LCs are of dual origin,

arising from yolk sac macrophages and fetal liver mono-

cytes,12–16 and whether the same is true for LCs in

human skin remains unknown. LCs can also be found in

type II mucosal sites, such as the oral mucosa and

vagina; however, in mice these originate from bone mar-

row precursors.17,18 In skin, LCs are seeded during

embryogenesis, and in mice have been shown to con-

tribute to the population of LCs residing in adult skin,12

while mucosal LCs are seeded after birth and are contin-

uously replenished from circulating bone marrow-derived

precursors.12,17–20 However, during inflammation it has

been shown in mice that monocytes can differentiate

into skin LCs,21–23 and in humans after severe depletion

skin LCs can be reconstituted from donor
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Figure 1. Overview of the immune cells present in first- and second-trimester human skin. ?, unknown; DC, dendritic cell; ILC, innate lymphoid

cell; LC, Langerhans cell; MEMP, megakaryocyte-erythroid-mast cell progenitor; Mono-DC, monocyte-DC hybrid; Neut-myeloid progenitor, neu-

trophil-myeloid progenitor; NK, natural killer cell.
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haematopoietic stem cell-derived precursors following

bone marrow transplantation.24 Redundancy in LC estab-

lishment in skin through multiple origins, along with

alternate pathways for reconstitution after depletion, is

likely a reflection of their importance in skin. Further-

more, establishment during embryogenesis, rather than

postnatal seeding, suggests a functional role for LCs in

the developing skin.

LCs go through morphological and phenotypic changes

within skin; they grow larger, more dendritic, gain

expression of Langerin and CD1a, and form Birbeck

granules in a stepwise manner.7,11,25 LCs are uniformly

dendritic from 8 PCW,25 while surface expression and

Birbeck granule formation continue to develop into the

second trimester.7,11,25 Langerin expression is not detected

prior to 9 PCW, and precedes CD1a expression, which is

consistently seen from 11 PCW,7,11 although rare CD1a+

epidermal cells have been detected from as early as 8

PCW.25 Similarly, expression of receptor activator of

nuclear factor-kappaB (RANK) by LCs is acquired gradu-

ally, with weak expression detected towards the end of

the first trimester, and adult levels reached by mid-gesta-

tion.26 Birbeck granules develop during the second trime-

ster, showing heterogeneity within the LC population

until about 16 PCW, from whence they resemble adult

LCs.25 Heterogeneity is also observed in expression of

HLA-DR, CD36 and CD1c,25,27 which may be due to dif-

ferences in growth factors as the cells differentiate.

Differentiation of LCs occurs within skin and is sup-

ported by its microenvironment (for review, see Strobl

et al.28). The absence of langerin expression in fetal der-

mis7,8 suggests that LC differentiation is restricted to the

epidermis as opposed to migration of mature LCs into the

epidermis occurring. Transforming growth factor beta 1

(TGF-b1), bone morphogenic protein 7 (BMP7), RANK

ligand (RANKL) and IL-34 produced by keratinocytes have

been shown in mice to be important during LC growth

and differentiation.29–34 TGF-b1 and BMP7 can be used to

culture LC-like cells from human monocytes and CD34

progenitors in vitro,31,35 and RANKL supported their sur-

vival.34 TGF-b1 has also been linked to Runt-related tran-

scription factor 3 (RUNX3) expression, which has been

shown in mouse and in vitro human culture systems to be

an important positive regulator of LC differentiation.36,37

TGF-b1 precursor protein and BMP7 can be detected from

6 PCW in human embryonic epidermis,7,31 and the active

form of TGF-b1 can be detected from 7 PCW.7 Despite

showing weaker staining, the pattern of TGF-b1 expression

in fetal skin resembles that seen in adults by the end of the

second trimester,7 which coincides with LCs in fetal skin

being phenotypically indistinguishable from those in adult

skin.7,25 Although phenotypic maturity of LCs is reached

at this stage, it remains uncertain how functionally mature

the human fetal LCs are, or which intrinsic and extrinsic

factors drive the maturation process in vivo.

Dermal dendritic cells and macrophages

Unlike the epidermis, during development the dermis

hosts multiple antigen-presenting cell (APC) subsets.

Mature adult skin contains the dendritic cell (DC) subsets

DC1 and DC2, as well as macrophages, all of which have

been identified in first-trimester human skin and closely

resemble their adult counterparts.38 Macrophages greatly

outnumber DCs in the first trimester, but reach adult

ratios mid-gestation,7,39 coinciding with bone marrow

development.40 Furthermore, plasmacytoid DCs, mono-

cytes, monocyte-DCs (having both a monocyte and DC

gene signature) and a neutrophil-myeloid precursor have

also recently been identified in first-trimester human skin

using single-cell RNA sequencing (scRNAseq).41

Macrophages are the most abundant immune subset in

fetal skin,41 which may elicit a multitude of functions due

to their plasticity.42 As has been shown in mice, they may

be derived from progenitors originating in yolk sac, fetal

liver or bone marrow.13,16,43 Embryonic and fetal macro-

phages in the first- and second-trimester express MR

(CD206) and DC-SIGN (CD209),8,39 which is typically

attributed to an M2 phenotype.44 M2 macrophages are

anti-inflammatory and support migration and differentia-

tion of fibroblasts and keratinocytes during wound heal-

ing,45,46 and in mice and zebrafish have been shown to

support vascularization.47 As such, macrophages in devel-

oping human skin may play a crucial role in supporting the

structural changes occurring during maturation of skin.

Unlike macrophages and LCs, very little is known about

dermal DCs in developing skin beyond their presence.

DC1 and DC2 have been identified in fetal skin prior to

bone marrow production,38,39,41 as such they may originate

from both fetal liver- and bone marrow-derived precur-

sors. Major Histocompatibility Complex class II+ cells have

been observed in lymphatic vessels of second-trimester

skin,38 suggesting DCs may migrate as part of homeostatic

surveillance. Splenic DCs from matched samples have been

shown to induce T-cell proliferation, but similar functional

studies of fetal skin DCs have yet to be reported. Whether

fetal liver- and bone marrow-derived DCs found in fetal

skin behave in a similar fashion, and whether they func-

tionally resemble dermal DCs in healthy adult skin will be

an interesting avenue to explore.

Lymphoid cells

T-cells

Healthy adult skin hosts multiple T-cell subsets and at pro-

portions greater than those seen in circulation.48 The

establishment of this skin T-cell network begins in the sec-

ond trimester,9,10,39 which coincides with the production

and egress of mature T-cells from the thymus into the cir-

culation.49–51 Unlike adult skin, only ab T-cells have been

observed in fetal skin,39,52 despite cd T-cells being present
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in the circulation.53 Second trimester fetal skin contains 4–
7% the abundance of T-cells found in adult skin,10,39,48

and with cd T-cells representing 1–10% of the total T-cells

found in adult skin,48 the frequency may be too low for

confident detection by flow cytometry or immunofluores-

cence. Other high-resolution techniques, such as scRNA-

seq, may reveal the presence of these cells.

Fetal skin contains both CD4+ and CD8+ T-cells, of

which na€ıve CD4+ T-cells are the most abundant and

increase in frequency across development.10 In contrast to

T-cells in adult skin, which are predominantly memory-

effector/cutaneous lymphocyte antigen (CLA)+ T-cells,48

fetal skin contains very few memory-effector/CLA+ T-

cells, even into the third trimester.10 This may in part be

due to lower levels of T-cell skin-homing cytokine

CCL2754 in fetal skin compared with adult.8,39,55 CCL27

is predominantly expressed by differentiated keratinocytes

toward the end of the second trimester, with little to no

staining in the first trimester.55 As such, it has been sug-

gested that seeding of na€ıve T-cells in fetal skin occurs

independently of CCL27.39 The structural and functional

immaturity of the epidermis at the ages investigated may

also explain why epidermal T-cells have not yet been

identified in fetal skin.8,10,39

Regulatory T-cells (Tregs) constitute 10�20% of the

total T-cell pool in fetal skin, which is comparable to

proportions observed in healthy adult skin.9,39 Tregs in

adult skin are preferentially localized to hair follicles,9

which in fetal skin do not develop until mid-gestation3

and may explain the irregular localization of T-cells in

fetal skin.10 T-cells from fetal mesenteric lymph nodes

have been reported to be highly responsive to stimuli

and, without active suppression from fetal Tregs, prolifer-

ate extensively.56 It would be interesting to determine

whether T-cells in fetal skin behave in a similar manner,

what role they play, and whether the Tregs play an active

role in suppressing these and other immune cells in skin.

Innate lymphoid cells

While T-cells were only detected in fetal skin after thymic

production, natural killer (NK) cells and innate lymphoid

cell (ILC) precursors have been identified in skin as early

as 8 PCW.41 Despite being the most abundant immune

cell types isolated from fetal skin after macrophages,41

these are otherwise poorly described. These NK cells

expressed genes for perforin, killer cell lectin receptors

(KLRs), interferon-c and multiple granzymes,41 showing

resemblance to functionally mature NK cells. Ivarsson

et al. phenotypically and functionally compared NK cells

across fetal lung, spleen, liver, bone marrow and mesen-

teric lymph nodes, finding the NK cells in lung were

more differentiated than the other sites.57 Similar to fetal

skin, lungs are exposed to amniotic fluid, and after birth

will be exposed to an array of potentially immunogenic

factors from the external environment, therefore the NK

cells in fetal skin may share a similar profile to those in

fetal lung. In contrast to first-trimester skin NK cells, the

gene signature of the other ILCs is more similar to that

of an undifferentiated ILC.41 Cells with a gene signature

consistent with ILC2s were detected in second-trimester

skin by scRNAseq (Botting et al., unpublished), which

may have differentiated from the ILC precursor found in

first-trimester skin. Therefore, this ILC precursor may

also give rise to the ILC1, 2 and 3 subsets that have been

described in healthy adult skin.58

As well as ILC precursors, lymphocyte precursors were

also identified in first-trimester skin by scRNAseq, where

they were found to be more abundant in embryonic than

fetal skin.41 Developing skin may therefore foster an envi-

ronment for immune cell differentiation and maturation,

much like lymphoid tissues.

B-cells

B-cells have not been observed in fetal skin by flow

cytometry7 or immunofluorescence8 using CD19 and

CD20 as markers. However, using scRNAseq, B-cells and

their precursors have been detected in skin as young as 8

PCW.41 Detection of cells in various stages of B-cell dif-

ferentiation in first-trimester skin indicates that B-cell

precursors are released from the liver into circulation

where they can then seed tissue. It is yet to be determined

whether the precursors differentiate within skin after

seeding, or if specific stages are seeded, but the presence

of B-cell precursors without differentiated B-cells in

matched kidneys41 supports the former. Furthermore, it

suggests the B-cells were not merely present within the

vasculature. Plasma cells, but not B-cells, are present in

steady-state adult skin,8,59,60 so it is possible that B-cells

and their precursors may play a specific role during the

development of fetal skin, or they may non-specifically

seed tissues, but this remains unknown.

Mast cells, erythrocytes and megakaryocytes

Mast cells have been detected in fetal skin as early as 8

PCW,41 and continue to mature and expand throughout

the second trimester.8,39 This may be supported by the

relatively high levels of stem cell factor, a molecule that

induces mast cell chemotaxis and supports their differen-

tiation,61 produced by embryonic skin compared with

adult skin.7 Similar to mast cells in adult skin, they are

commonly located near blood vessels and appendages,39

but at a significantly lower frequency.8,39 Mast cells in

first- and second-trimester fetal skin contain immature

granules,39,62 which is reflected in the delayed detection

of positive tryptase or toluidine blue staining in the sec-

ond trimester,8,39 despite tryptase transcripts being

detected from 8 PCW41 and the presence of a distinct
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population of CD117+ mast cells being detected from 10

to 12 PCW.39 Mature chymase+ mast cells are not present

until the end of the second trimester, and even then they

are scarce in comparison to adult skin in which approxi-

mately 50% of mast cells are chymase+.39

As well as mast cells, there have also been megakary-

ocytes, erythroid cells and their common precursors have

also been identified in first-trimester skin.41 Furthermore,

the erythroid cells detected were in various stages of

development.41 This and the presence of their common

precursor suggest that not only do mast cells differentiate

in developing human skin, but physiological erythro-

poiesis may also be occurring.

Role of immune cells during skin development

Establishment of what will become a diverse and exten-

sive immune system in mature adult skin begins in the

embryo, and continues to develop and expand in utero.

Mature adult skin is constantly exposed to the external

environment, which is reflected in the multitude of resi-

dent or circulating immune cells that provide continuous

surveillance against potential threats.60 Conversely, pre-

natal skin develops in what is presumed to be a sterile

environment.63,64 As such, a surveillance role may be less

essential, which is reflected by the reduced frequency of

immune cells in developing skin compared with adult

skin.7–10,39,53 Despite containing relatively few immune

cells, the immune component of developing skin is able

to respond to stimuli. APCs in developing skin are able

to efficiently take up antigens, upregulate co-stimulatory

molecules, stimulate T-cell proliferation and migrate out

of skin.7,38 This suggests that an appropriate immune

response could be mounted if challenged.

A key consideration that has not been fully explored is

the role of immune cells in shaping the development of

cutaneous microanatomical structures, including appen-

dages such as hair follicles. The role of macrophages in

tissue remodelling,65,66 Tregs in hair follicle regeneration

and maintenance,67 and interaction between immune cells

and epidermal stem cells68–70 have been reported in post-

natal murine life. The contribution of immune cells to

skin generation during development will be an interesting

avenue for future studies.

The presence of relatively fewer adaptive immune cells

in developing versus mature adult skin in part reflects the

timeline of haematopoiesis during development. Seeding

of T-cells and expansion of DC populations coincide with

thymic and bone marrow development, respectively.40,49–51

Prior to their contribution, expansion of the immune

compartment in developing skin is compensated by high

numbers of proliferating cells.7 The proportion of prolifer-

ating immune cells in embryonic skin is more than four

times that of fetal skin, which in turn contains more than

four times the number of proliferating immune cells than

those found in mature adult skin.7 As such, the immune

compartment in skin continues to expand both in number

and diversity throughout development, although the long-

evity of these cells remains unclear. In mice, it has been

shown that fetal LCs persist into adulthood,12 but whether

the same occurs in humans and in the multitude of other

immune cell types present in both fetal and adult skin is

unknown. If immune cells seeded in fetal skin persist into

adulthood, it is of interest to determine whether the func-

tion of any of these long-lived populations evolved to

reflect the needs of adult skin.

The developing skin not only contains relatively fewer

immune cells than mature adult skin,7–10,39,53 but the cel-

lular and chemical environment is skewed toward keeping

the immune cells in an immunosuppressed or immuno-

logically inert state as well (Fig. 2). Developing skin pro-

duces lower levels of pro-inflammatory cytokines,7,71,72

and 18-to 50-fold higher levels of immunosuppressive

cytokines than healthy adult skin.7 Other immune cells

contribute to this, as seen in the skew toward anti-inflam-

matory M2 macrophages,7,8,44 and potently immunosup-

pressive Tregs.56 Fetal lung NK cells are hypo-responsive

and express multiple inhibitory receptors,57 and fetal sple-

nic DCs, which are transcriptionally similar to fetal skin

DCs, are immunosuppressive in an arginase-2 dependent

manner,38 suggesting NK cells and DCs in developing

skin may also contribute to the immunosuppressive envi-

ronment. Contribution of multiple cell types, both

immune and non-immune, to maintaining an immuno-

suppressive environment indicates these interactions are

crucial for normal development of skin.

Despite keeping immune cells immunosuppressed/im-

munologically inert, developing skin fosters immune cell

differentiation. LCs differentiate and mature within the

epidermis,3,7,11,25 which is supported by TGF-b1 produc-

tion by the periderm and keratinocytes.7 The presence of

megakaryocyte-erythrocyte-mast cell progenitors

(MEMPs), lymphocyte precursors, B-cell progenitors, ILC

precursors and their progeny41 indicates differentiation of

these lineages may be supported within developing der-

mis. This is also seen in the myeloid compartment, with

the detection of myeloid precursors, monocytes and

monocyte-DC intermediates in first-trimester skin.41 Fos-

tering immune cell differentiation may be one method to

aid expansion of the immune compartment of developing

skin. Furthermore, tissue-specific signatures have been

reported for multiple immune cell types,41,42,73,74 and dif-

ferentiation within the tissue, as seen in skin, may con-

tribute to the development of these signatures.

Skin goes through significant structural changes during

development, which may contribute to the frequency and

function of its immune compartment. Anatomically, there

is no difference in the vasculature of second-trimester fetal

skin versus mature adult skin.8,75 While this suggests that

access to skin is not a limiting factor in seeding the
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immune network in second-trimester fetal skin, it cannot

be excluded that endothelial cells in fetal versus adult skin

differ functionally, potentially influencing immune infiltra-

tion. Mature skin is rich with hair follicles and glands,76,77

which only start to develop toward the end of the second

trimester.3 The unique cells within these environments may

provide crucial factors needed to maintain the immune

cells that inhabit them, such as LCs in the epidermis78 and

Tregs in hair follicles.9 Therefore, the establishment and

development of some immune cells may be inhibited by

the absence of their microanatomical niche.

The structure and properties of skin and the influence

on immune development goes both ways. This is

particularly evident when looking at wound healing.

Developing human skin has the ability to heal without

scarring, a feature that is restricted to the first and second

trimesters.79–81 A key factor of scarless healing is reduced

immune infiltrate,6,8,81,82 therefore the immunosuppressive/

immune inert environment and fewer immune cells in

developing skin may contribute to this.8,79–81 In mice,

reduced scarring is observed in wounds containing fewer

and immature mast cells, and is attributed to decreased

degranulation.83 A similar mechanism may be operational

in developing human skin, in which the mast cells contain

immature granules.39,62 Other immune cells linked to

wound healing are T-cells, ILCs and macrophages. In

ILC
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Mechanism unclear

DC2
Arginase2-dependent

suppression of TNF production
(fetal spleen)

Damped immune response
↑ wound healing

Macrophage
M2 anti-inflammatory

(IL-10 producing)
↑ wound healing

Mast cell
↓ degranulation linked to

↓ scarring and
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Treg
Produce IGF1 

which ↑ KC healing
Immunosuppression

supports
↑ wound healing

NK
KIR-mediated ↓

immune response
(fetal lung)

Tissue generation,
regeneration,

modelling
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Figure 2. Summary of the role immune cells play during development of human skin. ↓, decreased; ↑, increased; DC, dendritic cell; IGF1, insulin
growth factor 1; ILC, innate lymphoid cell; KC, keratinocyte; KIR, killer cell immunoglobulin-like receptor; NK, natural killer cell.
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response to wounding, epidermal T-cells have been shown

to produce insulin-like growth factor 1,84 which enhances

would healing through regulation of keratinocytes,85 and

ILC recruitment to cutaneous wounds in mice has been

shown to promote wound healing, although the mechanism

is unclear.86,87 Macrophages in developing skin are skewed

toward an M2 anti-inflammatory phenotype, which is more

supportive of wound healing,46 in contrast to M1 macro-

phages, which inhibit wound healing.88,89 As such, these

may also be contributing to scarless wound healing in

developing skin. Appendage formation involves dynamic

changes to the epidermis and dermis,3–5,90 and perhaps

immune cells involved in wound healing also aid the struc-

tural changes occurring during human skin development.

Summary

Encased in a normally sterile environment, developing

human skin begins to establish its immune system. In

many of the immune cell populations identified, signs of

differentiation within skin are also observed, indicating

that the developing human skin is an environment that

supports differentiation, similar to haematopoietic tissues.

There is a diverse range of immune cells present in the

developing human skin, many of which are immunologi-

cally inert or geared toward immunosuppression, wound

healing, and potentially modelling the skin microarchitec-

ture and appendage development. Better understanding of

how the immune cells in developing skin function and

interact, and how this contributes to tissue generation,

superior wound healing and immunoregulation could

lead to breakthroughs in inflammatory skin diseases, such

as dermatitis, and regenerative medicine.
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